
Project 3. CLOS Interpreter.

COSC 252

Jeremy Bolton

You will implement CLOS (Common Lisp Object System) interpreter. You will simply add this Object

System to your mini-scheme, thus you do not need to create this interpreter from scratch.

You will need to update the design of the language, the token set, the grammar, and the semantics

accordingly.

When in doubt of desired behavior feel free to default to our course server: cs-

class.uis.georgetown.edu; the command for the interpreter is clisp. Type man clisp to learn more. If you

do not have a course server acct, let me know ASAP!

Instructions:

I. Language Additions. Add to the simple calculator the following:

a. “Built-in” functions

 defclass, :initarg, :initform

 make-instance

 defparameter

 setf

 slot-value

 defgeneric

 defmethod

b. Capabilities

 inheritance

 dynamic dispatch (polymorphism)

 dynamic classes

 multiple inheritance

 generics (explicit polymorphism)

c. Example Usage:

 (defclass bank-account ()

((customer-name

:initarg :customer-name)

(balance

:initarg :balance

:initform 0))) ([x 'a])

 (let ([f (lambda (y) (list x y))])

 (f 'b)))

 (slot-value *account* 'customer-name)

 (defmethod initialize-instance :after ((account bank-account) &key)

(let ((balance (slot-value account 'balance)))

(setf (slot-value account 'account-type)

(cond

 ((>= balance 100000) :gold)

 ((>= balance 50000) :silver)

(t :bronze)))))

II. Design and build CLOS

a. Design tokens and build tokenizer

 Updates to tokenizer are likely not needed

b. Design grammar and build parser.

 Updates to Grammar are likely not needed.

 NOTE:

 Debugging help:

a. Test your parser before adding semantics!!!

b. Hint: Have your parser compose a string that illustrates the path

of the function call chain during the parse, (this mimics the

parse tree). Use the parse tree rendering using tool

(http://mshang.ca/syntree/):

c. Implement Semantic Analysis. Incorporate semantic evaluation directly into the parser.

 See discussion in Section I.

 Include appropriate error messages and recovery.

 When in doubt of desired behavior feel free to default to [Se], THE course

server, and/or ask me.

III. RUBRIC

Requirements Points Allocated

clos Token / Parsing Updates 20%

 OOP def, acc, setf, mk-inst 70%

 Multi-Inheritance* 10%

 Dynamic Classes* 10%

 Generics* 10%

 Error Messages 10%

TOTAL 100% + 30% extra credit

