
Project 2. Scheme Interpreter.

COSC 252

Jeremy Bolton

You will implement a mini-scheme interpreter. Luckily, cacl has a very similar syntax to scheme, thus you

do not need to create this interpreter from scratch; instead, you will add capabilities to your previously

submitted calc interpreter thus effectively implementing a scheme interpreter.

You will need to update the design of the language: the tokens, the grammar, and the semantics

accordingly.

When in doubt of desired behavior feel free to default to [Dy], https://scheme.cs61a.org/, and/or ask

me.

Instructions:

I. Language Additions. Add to the simple calculator the following:

a. data type: rational numbers

 3/4

b. “Built-in” procedures / operations

 Constructing lists using single quote: ‘

 list

 car

 cdr

 cons

 lambda

 let

 letrec

 define

 null?

 atom?

 list?

 cond / else

 length

 eval*

 map **

 delay and force ***

c. Capabilities

 High-Order Functions

 (define make-double (lambda (f)

(lambda (x) (f x x)))

 Recursion

 (define memv

https://scheme.cs61a.org/

(lambda (x ls)

(cond

[(null? ls) #f]

[(eqv? (car ls) x) ls]

[else (memv x (cdr ls))])))

 Appropriate scope/binding rules

 (let ([x 1])

 (let ([x (+ x 1)])

 (+ x x)))

d. Example Usage:

 (list 'a 'b 'c)

 (define x

 (or

 (> (+ 1 2) (/ 3 2))

 (not (= 3 (+1 2)))

)

)

 (let ([x 'a])

 (let ([f (lambda (y) (list x y))])

 (f 'b)))

 (let ([list1 '(a b c)] [list2 '(d e f)])

 (cons (cons (car list1)

 (car list2))

 (cons (car (cdr list1))

 (car (cdr list2)))))

II. Design and build mini-scheme

a. Design tokens and build tokenizer

 Updates to tokenizer will be needed.

b. Design grammar and build parser.

 Updates to Grammar will be needed.

 NOTE:

 Debugging help:

a. Test your parser before adding semantics!!!

b. Hint: Have your parser compose a string that demonstrates the

path of the function call chain during the parse, (this mimics the

parse tree). Use the parse tree rendering using tool

(http://mshang.ca/syntree/):

c. Implement Semantic Analysis. Incorporate semantic evaluation directly into the parser.

 See discussion in Section I.

 Include appropriate error messages and recovery.

 When in doubt of desired behavior feel free to default to [Dy],

https://scheme.cs61a.org/, and/or ask me.

III. RUBRIC

Requirements Points Allocated

mini-scheme Parser / Tokenizer Updates 30%

 Semantic Evaluation 60%

 Error Message / Recover 5%

 map 5%

 delay and force 5%

TOTAL 100% + 5% extra credit

https://scheme.cs61a.org/

