
Project 1. Simple Calculator Interpreter.

COSC 252

Jeremy Bolton

Over the course of the term you will design and build programming languages. The first is a simple

calculator language. Specifically, you will design and build an interpreter for a Calculator as specified

below.

Instructions:

I. Language Description. The simple calculator programming language, which we will refer to as

calc, is described as follows:

a. The basic syntax will consist of parenthetical operations in prefix notation. There will be

binary and unary operations.

i. Arithmetic Operations

 +, -, *, /

ii. Relational

 >, <, >=, <=, =

iii. Logical

 OR, AND, NOT

iv. Literals

 Integers, floats, #t, #f

v. Operations

b. Example Usage:

i. (+ 3 4)

ii. (- 2)

iii. (> (+ 2 5) (- 3 9))

iv. (not

 (or

 (> (+ 1 2) (/ 3 2))

 (not (= 3 (+1 2)))

)

)

II. Design and build cacl

a. Design tokens and build tokenizer

i. Create a list of all tokens. Use a two column table. The first column will list the

token name or category and the second column will be either the token(s) itself

(if it only takes 1 form) or a definition of the token using a regular expression or

FSM, if it has many forms (all lexeme representations). For ease I encourage you

to simply include this as a comment in your source code for the tokenizer.

Token Lexeme(s)

id (regex for ids)

plus_op +

int (regex for ints)

float (regex for floats)

… …

ii. Using C or C++, implement a tokenizer for cacl. Include your token list and

definitions in the comments of your source code.

 Input to tokenizer: string

 Ouput: sequence of tokens

iii. Error Handling: If there is a tokenizer error, please throw a tokenizer error. (This

will likely only occur if you encounter a symbol that is not in the input alphabet.)

b. Design grammar and build parser.

i. Define/Design the grammar using BNF. (For ease feel free to include this in

comments in your source code for your parser.) Use a start symbol named

<program>. The goal is to have an unambiguous grammar, where the standard

operator precedence is observed, intuitive combinations of syntactic structures

(sequentially and nested) are permitted, and all sentence structures described

in the description can be derived using the productions.

ii. Using C or C++ implement a top-down recursive descent parser. Include the BNF

production set in the comments at the beginning of your parser source code.

iii. NOTE:

 Revisit your grammar to assure that it can be recognized by a top-down

parser. The crux of a top-down parse is to correctly predict a RHS when

resolving a LHS abstraction. You will want to make this prediction as

easy as possible. Try to keep the number of lookaheads to 1 (or less) for

each possible decision.

 Error Handling: If there is a parse error, provide an intuitive error

message should be printed to the console, the input buffer should be

cleared, and control should be returned to the main method, where the

interpreter will continue in interactive mode.

 Hint … Debugging help:

a. Test your parser before adding semantics!!!

b. Have your parser compose a string that illustrates the path of

the function call chain during the parse, (this mimics the parse

tree). Use the parse tree rendering using tool

(http://mshang.ca/syntree/):

C++ Syntax Example (from previous term!) for testing / debugging your parser:

Sample Input: x = x + 4;

Resulting string to test parser (given some specified grammar):

[P [SL [S [V x] [As =] [E [T [V x]] [Pl +] [T [N 4]]] [Se ;]]]

Resulting Parse Tree Rendering using web tool:

c. Implement Semantic Analysis.

i. Incorporate semantic evaluation directly into the parser.

ii. Allow for interactive interface (similar to https://scheme.cs61a.org/)

iii. Examples:

>> (+ 3 2)

 >> 5

>> (or

 (> (+ 1 2) (/ 3 2))

 (not (== 3 (+1 2)))

)

>> true

III. RUBRIC

Requirements Points Allocated

RegEx design + Tokenizer Checkpoint(Design and Impl) 5%

 Token Design 5%

 Tokenizer 15%

BNF + Syntax Checkpoint(Design and Impl) 5%

 Grammar Design 10%

 Parser 25%

 Syn Error Messages 5%

Semantic Analysis

 Correct Evaluation 20%

 Last Eval Printed 5%

 Error Message / Recovery 5%

TOTAL 100%

