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Parsing

• Our heartless / soulless parser is simply a recognizer
– Identifies whether a sentence is in a language

• Whether a code file abides by the rules of a programming language

• Parse errors can be identified and described at this stage.

• Observe: Many implementations of parsers, e.g. c++ compiler, can 
identify errors that are more closely related to semantics (as compared 
to syntax)
– How is this done?



Attribute Grammars 

• Attribute Grammars are an extended form of a CFG that can account 
for “other rules” that can be determined statically, but cannot be 
accounted for using standard CFGs. (Knuth)
– Compatibility

• Examples (what types of errors can be identified statically, but not with 
a standard CFG):  
1. Variable not in scope, not accessible

2. Multiple definitions in same scope

3. Type incompatibility
• Example: function returns a float but a Node* is expected

– These are errors that are not syntactic, but can be recognized statically (before 
runtime).



Static Semantics

• Static Semantics are “syntax” rules that are partially related to semantics.
– “Static” as we can check the rules before runtime, during parsing

• Definitions
• Attribute is a characteristic of a terminal or non-terminal

• Semantic Rule Functions are associated with grammar rules

• Predicate functions: state the static semantic rules associated with a grammar rule

• Attribute Grammar is a CFG with the following:
– Attributes for a CFG symbol X, A(X)

– Semantic Rule Function: for each rule in the grammar, 𝑋0 → 𝑋1𝑋2…𝑋𝑛 a semantic rule S(𝑋0) 
computes the attributes of 𝑋0 given the attributes of 𝑋1 𝑋2…𝑋𝑛 , S 𝑋0 =
𝑓(𝐴 𝑋0 , 𝐴 𝑋1 , … , 𝐴(𝑋𝑛)).

– Predicate function: is a Boolean expression on the attributes of a grammar. A false value of a 
predicate function implies that a static semantics rule has been violated.

• A parse tree with an attributed grammar may have attributes, semantic rules, and a 
predicate function associated with each node. 

• If all the attribute values of a parse tree have been computed, the parse tree is said 
to be fully attributed.

• Intrinsic attributes: are attributes of terminals – leaf nodes in a parse tree



Example: Attribute Grammar

• Attribute grammar to test for compatibility
– Attributes: expectedType, actualType

– Grammar:

1. <expr> -> < 𝑛𝑢𝑚1 >+< 𝑛𝑢𝑚2 >
1. Semantic Rule: 

if < 𝑛𝑢𝑚1 >. 𝑎𝑐𝑡𝑢𝑎𝑙𝑇𝑦𝑝𝑒 == 𝑖𝑛𝑡 && < 𝑛𝑢𝑚2 >. 𝑎𝑐𝑡𝑢𝑎𝑙𝑇𝑦𝑝𝑒 == 𝑖𝑛𝑡
then < 𝑒𝑥𝑝𝑟 >. 𝑎𝑐𝑡𝑢𝑎𝑙𝑇𝑦𝑝𝑒 = 𝑖𝑛𝑡

else

then < 𝑒𝑥𝑝𝑟 >. 𝑎𝑐𝑡𝑢𝑎𝑙𝑇𝑦𝑝𝑒 = other 

2. Predicate Rule:

< 𝑒𝑥𝑝𝑟 >. 𝑎𝑐𝑡𝑢𝑎𝑙𝑇𝑦𝑝𝑒 ==< 𝑒𝑥𝑝𝑟 >. 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑𝑇𝑦𝑝𝑒

2. <expr> -> <num>
1. Semantic Rule: < 𝑒𝑥𝑝𝑟 >. 𝑎𝑐𝑡𝑢𝑎𝑙𝑇𝑦𝑝𝑒 = < 𝑛𝑢𝑚 >. 𝑎𝑐𝑡𝑢𝑎𝑙𝑇𝑦𝑝𝑒
2. Predicate Rule: < 𝑒𝑥𝑝𝑟 >. 𝑎𝑐𝑡𝑢𝑎𝑙𝑇𝑦𝑝𝑒 ==< 𝑒𝑥𝑝𝑟 >. 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑𝑇𝑦𝑝𝑒

3. <num> -> 0 | 1 | …| 9
1. Semantic Rule: < 𝑣𝑎𝑟 >. 𝑎𝑐𝑡𝑢𝑎𝑙𝑇𝑦𝑝𝑒 = 𝑖𝑛𝑡

actualType = int actualType = int

actualType = int actualType = int

actualType = int



Example: Attribute Grammar

• Attribute grammar to test for compatibility
– Attributes: expectedType, actualType

– Grammar:

1. <expr> -> < 𝑣𝑎𝑟1 >+< 𝑣𝑎𝑟2 >
1. Semantic Rule: 

if < 𝑣𝑎𝑟1 >. 𝑎𝑐𝑡𝑢𝑎𝑙𝑇𝑦𝑝𝑒 == 𝑖𝑛𝑡 && < 𝑣𝑎𝑟2 >. 𝑎𝑐𝑡𝑢𝑎𝑙𝑇𝑦𝑝𝑒 == 𝑖𝑛𝑡
then < 𝑒𝑥𝑝𝑟 >. 𝑎𝑐𝑡𝑢𝑎𝑙𝑇𝑦𝑝𝑒 = 𝑖𝑛𝑡
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2. <expr> -> <var>
1. Semantic Rule: < 𝑒𝑥𝑝𝑟 >. 𝑎𝑐𝑡𝑢𝑎𝑙𝑇𝑦𝑝𝑒 = < 𝑣𝑎𝑟 >. 𝑎𝑐𝑡𝑢𝑎𝑙𝑇𝑦𝑝𝑒
2. Predicate Rule: < 𝑒𝑥𝑝𝑟 >. 𝑎𝑐𝑡𝑢𝑎𝑙𝑇𝑦𝑝𝑒 ==< 𝑒𝑥𝑝𝑟 >. 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑𝑇𝑦𝑝𝑒

3. <var> -> x | y | z
1. Semantic Rule: < 𝑣𝑎𝑟 >. 𝑎𝑐𝑡𝑢𝑎𝑙𝑇𝑦𝑝𝑒 = 𝑠𝑦𝑚𝑏𝑜𝑙𝑇𝑎𝑏𝑙𝑒𝐿𝑜𝑜𝑘𝑢𝑝(< 𝑣𝑎𝑟 >. 𝑙𝑒𝑥𝑒𝑚𝑒)

actualType = int actualType = int

actualType = int actualType = int

actualType = int



Dynamic Semantics

• After lexical and syntactic analysis, 

semantic analysis is performed

– Application of meaning to an input sentence



Semantics: Compiler vs Interpreter

Compiler
Interpreter

Token Sequence

Parse Tree



Semantics: from lexemes to abstractions

• In most languages
– Each lexeme, syntactic unit, of a language has 

intrinsic meaning (semantics)

– This semantics of an input sentence is generally 
determined in terms of the semantics of the lexemes 
of the input.

• But How?

– The application of semantics is driven by the BNF 
productions. This also implies that all characteristics 
of a language not specified by the BNF, must be 
specified in the application of semantics. 

– It is intuitive that semantics are applied based on 
BNF. Meaning is applied to the lexemes directly, and 
meaning is assigned to non-terminal constructs in 
terms of the meaning of its constituents

• Meaning is propagated up the parse tree



Semantics Example

• What is the meaning of “3 + 5”?

– What is the meaning of  “3” ?
• Lexeme “3” is the 3 symbol.

• Semantics of “3”: the number 3

• Semantics in the context of 

Computer PL: binary rep of 3

– What is the meaning of  “+” ?
• Lexeme “+” is the plus symbol.

• Semantics of “+”: addition operation

• Semantics in the context of 

Computer PL: a specific ALU operation

– What is the meaning of  “5” ?



Introduction

• In previous chapters, we discussed semantics from an informal, or 

descriptive, point of view

– Historically, this has been the usual approach

• There is a need for a more mathematical description of the 

behavior of programs and programming languages, to make the 

definition of a language so precise that: 

– Programs can be proven correct in a mathematical way

– Translators can be validated to produce exactly the behavior described in 

the language definition

Programming Languages, 
Third Edition

12



Introduction (cont’d.)

• Developing such a mathematical system aids the designer in 

discovering inconsistencies and ambiguities

• There is no single accepted method for formally defining 

semantics

• Several methods differ in the formalisms used and the kinds of 

intended applications

• Formal semantic descriptions are more often supplied after the 

fact, and only for a portion of a language

Programming Languages, 
Third Edition

13



Introduction (cont’d.)

• Formal methods have begun to be used as part of the 

specification of complex software projects, including language 

translators

• Three principal methods to describe semantics formally:

– Operational semantics

– Denotational semantics

– Axiomatic semantics

Programming Languages, 
Third Edition

14



Semantic Specification

• Semantic Specification determines how meaning is applied to a sentence of 
a language
– A universally standardized form of semantic specification does not exist, but there are 3 

general categories
• Operational Semantics: describes the semantics of a language in terms of the state of the underlying 

machine

• Denotational Semantics: describes the semantics of a language in terms of functions defined on 
programs and program constructs

• Axiomatic Semantics: Uses mathematical logic to formalize characteristics of a program.

• Properties of a good semantic specification
– It must be complete. Each input program that abides by the syntax should have 

appropriate semantics as defined by the specification

– It must be consistent. Each input program must not have two conflicting semantics.



Introduction (cont’d.)

• Operational semantics: 

– Defines a language by describing its actions in terms of the operators of 

an actual or hypothetical machine

– Requires that the operations of the machine used in the description are 

also precisely defined

– A mathematical model called a “reduction machine” is often used for this 

purpose (similar in spirit to the notion of a Turing machine)

Programming Languages, 
Third Edition

16



Introduction (cont’d.)

• Denotational semantics: 

– Uses mathematical functions on programs and program components to 

specify semantics

– Programs are translated into functions about which properties can be 

proved using standard mathematical theory of functions

Programming Languages, 
Third Edition

17



Introduction (cont’d.)

• Axiomatic semantics: 

– Applies mathematical logic to language definition

– Assertions, or predicates, are used to describe desired outcomes and 

initial assumptions for program

– Language constructs are associated with predicate transforms to create 

new assertions out of old ones

– Transformers can be used to prove that the desired outcome follows from 

the initial conditions

– Is a method aimed specifically at correctness proofs

Programming Languages, 
Third Edition

18



• All these methods are syntax-directed

– Semantic definitions are based on a context-free grammar or Backus-

Naur Form (BNF) rules

• Formal semantics must then define all properties of a language 

that are not specified by the BNF

– Includes static properties such as static types and declaration before use

• Formal methods can describe both static and dynamic properties

• We will view semantics as everything not specified by the BNF

Introduction (cont’d.)

Programming Languages, 
Third Edition

19



Introduction (cont’d.)

• Two properties of a specification are essential:

– Must be complete: every correct, terminating program must have 

associated semantics given by the rules

– Must be consistent: the same program cannot be given two different, 

conflicting semantics

• Additionally, it is advantageous for the semantics to be minimal, or 

independent

– No rule is derivable from the other rules

Programming Languages, 
Third Edition

20



Introduction (cont’d.)

• Formal specifications written in operational or denotational style 

have an additional useful property:

– They can be translated relatively easily into working programs in a 

language suitable for prototyping, such as Prolog, ML, or Haskell

Programming Languages, 
Third Edition

21



Operational Semantics

• Goal: Describe semantics by specifying effects on underlying machine.

• Semantic rules are often presented in the form of reduction or logical 

rules

• Observations

– The state underlying a machine has lots of details / is complex. This approach 

may not be practical.

– Rather than tracking the state of a machine at a low level, this approach can be 

applied at an intermediate level of the computing abstraction.

• However, this makes operational semantics difficult to formalize as the machine truly 

depends upon its lower level representation.



A Sample Small Language

• The basic sample language to be used is a version of the integer 

expression language used in Ch. 6

• BNF rules for this language:

Programming Languages, 
Third Edition

23



A Sample Small Language (cont’d.)

• This results in simple semantics: 

– The value of an expression is a complete representation of its meaning: 2 

+ 3 * 4 means 14

• Complexity will now be added to this language in stages

• In the first stage, we add variables, statements, and assignments

– A program is a list of statements separated by semicolons

– A statement is an assignment of an expression to an identifier

Programming Languages, 
Third Edition

24



A Sample Small Language (cont’d.)

Programming Languages, 
Third Edition

25



A Sample Small Language (cont’d.)

• Semantics are now represented by a set of values corresponding 
to identifiers whose values have been defined, or bound, by 
assignments

• Example:

– Results in bindings b=20 and a=15 when it finishes

– Set of values representing the semantics of the program is {a=15, b=20}

Programming Languages, 
Third Edition

26



A Sample Small Language (cont’d.)

• Such a set is essentially a function from identifiers to integer 

values, with all unassigned identifiers having a value undefined

– This function is called an environment, denoted by:

• Note that the Env function given by this example program can be 

defined as: 

Programming Languages, 
Third Edition

27



A Sample Small Language (cont’d.)

• The operation of looking up the value of an identifier I in an 
environment Env is Env(I)

• Empty environment is denoted by Env0

• An environment as defined here incorporates both the symbol table 
and state functions

• Such environments: 
– Do not allow pointer values

– Do not include scope information

– Do not permit aliases

Programming Languages, 
Third Edition

28



A Sample Small Language (cont’d.)

• For this view of the semantics of a program represented by a 

resulting final environment:

– Consistency: we cannot derive two different final environments for the 

same program

– Completeness: we must be able to derive a final environment for every 

correct, terminating program

• We now add if and while control statements

– Syntax of the if and while statements borrows the Algol68 convention 

of writing reserved words backward, instead of begin and end blocks

Programming Languages, 
Third Edition

29



A Sample Small Language (cont’d.)

Programming Languages, 
Third Edition

30



A Sample Small Language (cont’d.)

• Meaning of an if-stmt:

– expr is evaluated in the current environment

– If it evaluates to an integer greater than 0, then stmt-list after then is 

executed

– If not, stmt-list after the else is executed

• Meaning of a while-stmt:

– As long as expr evaluates to a quantity greater than 0, stmt-list is 

repeatedly executed and expr is reevaluated

• Note that these semantics are nonstandard!

Programming Languages, 
Third Edition

31



A Sample Small Language (cont’d.)

• Example program in this language:

• Semantics are given by the final environment:

Programming Languages, 
Third Edition

32



A Sample Small Language (cont’d.)

• Difficult to provide semantics for loop constructs
– We will not always give a complete solution

• Formal semantic methods often use a simplified version of syntax 
from that given

• An ambiguous grammar can be used to define semantics 
because:
– Parsing step is assumed to have already taken place

– Semantics are defined only for syntactically correct constructs

• Nonterminal symbols can be replaced by single letters

Programming Languages, 
Third Edition

33



A Sample Small Language (cont’d.)

• Nonterminal symbols can be replaced by single letters

– May be thought to represent strings of tokens or nodes in a parse tree

• Such a syntactic specification is sometimes called an abstract 

syntax

Programming Languages, 
Third Edition

34



A Sample Small Language (cont’d.)

• Abstract syntax for our sample language:

Programming Languages, 
Third Edition

35



A Sample Small Language (cont’d.)

• To define the semantics of each symbol, we define the semantics 

of each right-hand side of the abstract syntax rules in terms of the 

semantics of their parts

– Thus, syntax-directed semantic definitions are recursive in nature

• Tokens in the grammar are enclosed in quotation marks

Programming Languages, 
Third Edition

36



Operational Semantics

• Operational semantics specify how an arbitrary program is to be 

executed on a machine whose operation is completely known

• Definitional interpreters or compilers: translators for the 

language written in the machine code of the chosen machine

• Operational semantics can define the behavior of programs in 

terms of an abstract machine

Programming Languages, 
Third Edition

37



Operational Semantics (cont’d.)

• Reduction machine: an abstract machine whose control 
operates directly on a program to reduce it to its semantic “value”

• Example: reduction of the expression (3+4)*5

• To specify the operational semantics, we give reduction rules 
that specify how the control reduces constructs of the language to 
a value

Programming Languages, 
Third Edition

38



Logical Inference Rules

• Inference rules in logic are written in the form:

– If the premise is true, the conclusion is also true

• Inference rule for the commutative property of addition:

• Inference rules are used to express the basic rules of 

prepositional and predicate calculus:

Programming Languages, 
Third Edition

39



Logical Inference Rules (cont’d.)

• Axioms: inference rules with no premise

– They are always true

– Example: 

– Axioms can be written as an inference rule with an empty premise:

– Or without the horizontal line:  

Programming Languages, 
Third Edition

40



Reduction Rules 
for Integer Arithmetic Expressions

• Structured operational semantics: the notational form for 

writing reduction rules that we will use

• Semantics rules are based on the abstract syntax for expressions:

• The notation                states that expression E reduces to 

expression E1 by some reduction rule

Programming Languages, 
Third Edition

41



Reduction Rules for Expressions

1. Collect all rules for reducing 

digits to values in this one rule

– All are axioms

Programming Languages, 
Third Edition

42



Reduction Rules for Expressions (cont’d.)

2. Collect all rules for reducing numbers to values in this one rule

– All are axioms

Programming Languages, 
Third Edition

43



10.

11.

12.

13.

14.

Reduction Rules for Expressions (cont’d.)

3.

4.

5.

6.

7.

8.

9.

Programming Languages, 
Third Edition

44



Reduction Rules for Expressions (cont’d.)

• Rules 1 through 6 are all axioms

• Rules 1 and 2 express the reduction of digits and numbers to 
values
– Character ‘0’ (a syntactic entity) reduces to the value 0 (a semantic 

entity)

• Rules 3 to 5 allow an expression consisting of two values and an 
operator symbol to be reduced to a value by applying the 
appropriate operation whose symbol appears in the expression

• Rule 6 says parentheses around an expression can be dropped

Programming Languages, 
Third Edition

45



Reduction Rules for Expressions (cont’d.)

• The rest of the reduction rules are inferences that allow the 

reduction machine to combine separate reductions together to 

achieve further reductions

• Rule 14 expresses the general fact that reductions can be 

performed stepwise (sometimes called the transitivity rule for 

reductions)

Programming Languages, 
Third Edition

46



Reduction Rules for Expressions (cont’d.)

• Applying these reduction rules to the expression:

• First reduce the expression: 3 + 4:

• Thus, by rule 14, we have: 

Programming Languages, 
Third Edition

47



Reduction Rules for Expressions (cont’d.)

• Continuing:

• Now reduce the expression 2*(3+4) as follows:

• And finally:

Programming Languages, 
Third Edition

48



Environments and Assignment

• Abstract syntax for our sample language:

Programming Languages, 
Third Edition

49



Environments and Assignment (cont’d.)

• We want to extend the operational semantics to include 
environments and assignments

• Must include the effect of assignments on the storage of the 
abstract machine

• Our view of storage: an environment that is a function from 
identifiers to integer values (including the undefined value):

• The notation               indicates that expression E is evaluated in 
the presence of environment Env

Programming Languages, 
Third Edition

50



Environments and Assignment (cont’d.)

• Now our reduction rules change to include environments

• Example: rule 7 with environments becomes:

– This states that if E reduces to E1 in the presence of Env, then E ‘+’ E2

reduces to E1 ‘+’ E2 in the same environment

Programming Languages, 
Third Edition

51



Environments and Assignment (cont’d.)

• The one case of evaluation that explicitly involves the environment is 
when an expression is an identifier I, giving a new rule:

15.

This states that if the value of identifier I is V in Env, then I reduces to V in the 

presence of Env

• Next, we add assignment statements and statement sequences to the 

reduction rules

Programming Languages, 
Third Edition

52



Environments and Assignment (cont’d.)

• Statements must reduce to environments instead of integer 

values, since they create and change environments, giving this 

rule:

16.

This states that the assignment of the value V to I in Env reduces to a 

new environment where I is equal to V

• Reduction of expressions within assignments uses this rule:

17.

Programming Languages, 
Third Edition

53



Environments and Assignment (cont’d.)

• A statement sequence reduces to an environment formed by 

accumulating the effect of each assignment, giving this rule:

18.

• Finally, a program is a statement sequence with no prior 

environment, giving this rule:

19.

It reduces to the effect it has on the empty starting environment

Programming Languages, 
Third Edition

54



Environments and Assignment (cont’d.)

• Rules for reducing identifier expressions are completely 

analogous to those for reducing numbers

• Sample program to be reduced to an environment:

• To simplify the reduction, we will suppress the use of quotes to 

differentiate between syntactic and semantic entities

Programming Languages, 
Third Edition

55



Environments and Assignment (cont’d.)

• First, by rule 19, we have:

• Also, by rules 3, 17, and 16:

• Then by rule 18:

Programming Languages, 
Third Edition

56



Environments and Assignment (cont’d.)

• Similarly, by rules 15, 9, 5, 17, and 16:

• Then by rule 18 :

• Finally, by a similar application of rules:

Programming Languages, 
Third Edition

57



Control

• Next we add if and while statements, with this abstract syntax:

• Reduction rules for if statements include: 

20.

Programming Languages, 
Third Edition

58



Control (cont’d.)

Programming Languages, 
Third Edition

59

21.

22.

• Reduction rules for while statements include:

23.

24.



Implementing Operational Semantics in a 
Programming Language

• It is possible to implement operational semantic rules directly as a 

program to get an executable specification

• This is useful for two reasons:

– Allows us to construct a language interpreter directly from a formal 

specification

– Allows us to check the correctness of the specification by testing the 

resulting interpreter

• A possible Prolog implementation for the reduction rules of our 

sample language will be used 

Programming Languages, 
Third Edition

60



Implementing Operational Semantics in a 
Programming Language (cont’d.)

• Example: 3*(4+5) in Prolog:

• Example: this program:

– Can be represented in Prolog as:

• This is actually a tree representation, and no parentheses are 
necessary to express grouping

Programming Languages, 
Third Edition

61



Implementing Operational Semantics in a 
Programming Language (cont’d.)

• We can write reduction rules (ignoring environment rules for the 

moment)

• A general reduction rule for expressions:

– Where X is any arithmetic expression (in abstract syntax) and Y is the 

result of a single reduction step applied to X

• Example: 

– Rule 3 can be written as:

Programming Languages, 
Third Edition
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Implementing Operational Semantics in a 
Programming Language (cont’d.)

• Rule 7 becomes:

• Rule 10 becomes:

• Rule 14 presents a problem if written as:

– Infinite recursive loops will result

• Instead, write rule 14 as two rules:

Programming Languages, 
Third Edition

63



Implementing Operational Semantics in a 
Programming Language (cont’d.)

• Now extend to environments and control: a pair <E|Env> can be 

thought of as a configuration and written in Prolog as 
config(E,Env)

• Rule 15 then becomes:

– Where atom(I) tests for a variable and lookup operation finds values in 

an environment

Programming Languages, 
Third Edition

64



Implementing Operational Semantics in a 
Programming Language (cont’d.)

• Rule 16 becomes:

– Where update inserts the new value V for I into Env, yielding Env1

• Any dictionary structure for which lookup and update can be 

defined can be used to represent an environment in this code

Programming Languages, 
Third Edition

65



Denotational Semantics

• Specifies semantics in terms of functions from programs and program 
constructs to semantics

• Observations: 
– Formal specification based on recursive function theory

– Most rigorous 

– Most widely used

• Basic Idea
– Define functions that map programming

constructs to mathematical constructs. If we

can formalize the semantics using mathematical

constructs, we can then define a formal semantics

for a language



Denotational Semantics

• A denotational semantics consists of 

1. A syntactic domain: grammar productions

2. Semantic domain: sets on which the semantic functions take their values

3. Semantic functions: mapping from productions to values



Denotational Semantics

• Denotational semantics use functions to describe the semantics of 

a programming language

– A function associates semantic values to syntactically correct constructs

• Example: a function that maps an integer arithmetic expression to 

its value:

– Syntactic domain: domain of a semantic function

– Semantic domain: range of a semantic function, which is a mathematical 

structure

Programming Languages, 
Third Edition

68



Denotational Semantics (cont’d.)

• Example: val(2+3*4) = 14 

– Set of integers is the semantic domain

– val maps the syntactic construct 2+3*4 to the semantic value 14; it denotes the 
value 14

• A program can be viewed as something that receives input and 
produces output

• Its semantics can be represented by a function:

– Semantic domain is a set of functions from input to output

– Semantic value is a function
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Denotational Semantics (cont’d.)

• Since semantic domains are often functional domains, and values of 

semantic functions will be functions themselves, we will assume the 

symbol “” is right associative and drop the parentheses:

• Three parts of a denotational definition of a program:

– Definition of the syntactic domains

– Definition of the semantic domains

– Definition of the semantic functions themselves (sometimes called valuation 

functions)
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Syntactic Domains

• Syntactic domains: 

– Are defined in denotational definition using notation similar to abstract 

syntax

– Are viewed as sets of syntax trees whose structure is given by grammar 

rules that recursively define elements of the set

• Example:
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Semantic Domains

• Semantic domains: sets in which semantic functions take their 

values

– Like syntactic domains but may also have additional mathematical 

structure, depending on use

• Example: integers have arithmetic operations

• Such domains are algebras, which are specified by listing their 

functions and properties

– Denotational definition of semantic domains lists the sets and operations 

but usually omits the properties of the operations
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Semantic Domains (cont’d.)

• Domains sometimes need special mathematical structures that 

are the subject of domain theory

– Term domain is sometimes reserved for an algebra with the structure of a 

complete partial order

– This structure is needed to define the semantics of recursive functions and 

loops

• Example: semantic domain of the integers:
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Semantic Functions

• Semantic function: specified for each syntactic domain

• Each function is given a different name based on its associated 

syntactic domain, usually with boldface letters

• Example: value function from the syntactic domain Digit to the 

integers: 
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Semantic Functions (cont’d.)

• Value of a semantic function is specified recursively on the trees 

of syntactic domains using the structure of grammar rules

• Semantic equation corresponding to each grammar rule is given

• Example: grammar rule for digits:

– Gives rise to syntax tree nodes:  
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Semantic Functions (cont’d.)

• Example (cont’d.):
– Semantic function D is defined by these semantic equations representing 

the value of each leaf:

– This notation is shorted to the following:

– Double brackets [[…]] indicate that the argument is a syntactic entity 
consisting of a syntax tree node with the listed arguments as children 
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Semantic Functions (cont’d.)

• Example: semantic function from numbers to integers:

– Is based on the syntax:

– And is given by these equations: 

– Where [[ND]] refers to the tree node 

– And [[D]] refers to the node
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Denotational Semantics of Integer Arithmetic 
Expressions
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Denotational Semantics of Integer Arithmetic 
Expressions (cont’d.)

• Using these equations to obtain the semantic value of an 

expression, we compute                        or more precisely, 
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Environments and Assignments

• First extension to our sample language adds identifiers, 

assignment statements, and environments

• Environments are functions from identifiers to integers (or 

undefined)

• Set of environments becomes a new semantic domain:
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Environments and Assignments (cont’d.)

• In denotational semantics, the value undef is called bottom, from 

the theory of partial orders, and is denoted by the symbol 

• Semantic domains with this value are called lifted domains and 

are subscripted with the symbol

• The initial environment defined previously can now be defined as:

• Semantic value of an expression becomes a function from 

environments to integers: 

Programming Languages, 
Third Edition

81



Environments and Assignments (cont’d.)

• The value of an identifier is its value in the environment provided 
as a parameter:

• For a number, the environment is immaterial:

• For statements and statement lists, the semantic values are 
functions from environments to environments
– The “&” notation is used to add values to functions that we have used in 

previous sections
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Denotational Semantics 
of Control Statements

• if and while statements have this abstract syntax:

• Denotational semantics is given by a function from environments 

to environments:

• Semantic function of the if statement:
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Denotational Semantics 
of Control Statements (cont’d.)

• Semantic function for the while statement is more difficult

– Can construct a function as a set by successively extending it to a least-

fixed-point solution, the “smallest” solution satisfying the equation

– Here, F will be a function on the semantic domain of environments

• Must also deal with nontermination in loops by assigning the 

“undefined” value
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Denotational Semantics 
of Control Statements (cont’d.)

• The domain of environments becomes a lifted domain:

• Semantic function for statements is defined as:  
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Implementing Denotational Semantics in a 
Programming Language

• We will use Haskell for a possible implementation of the 

denotational functions of the sample language

• Abstract syntax of expressions:

• We ignore the semantics of numbers and simply let values be 

integers
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Implementing Denotational Semantics in a 
Programming Language (cont’d.)

• Assume we have defined an Environment type with a lookup and 

update operation

• The E evaluation function can be defined as:
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Another: Denotation Semantics Example

• Example Grammar (includes int
definition)

• 𝐸 → 𝐸1" + "𝐸2 𝐸1" − " 𝐸2 𝐸1"∗" 𝐸2| 𝑁

• 𝑁 → 𝑁𝐷 | 𝐷

• 𝐷 → "0" "1" "2"|… |"9“

• Semantic Domains:
– Domain: Integer

– Operations:

• +: 𝐼𝑛𝑡𝑒𝑔𝑒𝑟 𝑋 𝐼𝑛𝑡𝑒𝑔𝑒𝑟 → 𝐼𝑛𝑡𝑒𝑔𝑒𝑟

• −: 𝐼𝑛𝑡𝑒𝑔𝑒𝑟 𝑋 𝐼𝑛𝑡𝑒𝑔𝑒𝑟 → 𝐼𝑛𝑡𝑒𝑔𝑒𝑟

• ∗: 𝐼𝑛𝑡𝑒𝑔𝑒𝑟 𝑋 𝐼𝑛𝑡𝑒𝑔𝑒𝑟 → 𝐼𝑛𝑡𝑒𝑔𝑒𝑟

• Semantic Functions:
– Eval_D: Digit => Integer

Eval_D[“0”] = 0

Eval_D[“1”] = 1

…

– Eval_N: Number => Integer
Eval_N[ND] = 10*Eval_N[N] + Eval_D[D]

Eval_N[ND] = 10*Eval_N[N] + Eval_N[D]

Eval_N[D] = Eval_D[D]

– Eval_E: Expression => Integer
Eval_E[𝐸1" + "𝐸2] = Eval_E[𝐸1] + Eval_E[𝐸2]
Eval_E[𝑁] = Eval_N[N]



Denotation Semantics: Example with runtime 
environment

• Environment is often formalized as a parameter to the 
semantic functions

• Example Grammar (includes int definition)
• S→ 𝐼𝐷" = "𝐸;

• 𝐸 → 𝐸1" + "𝐸2 𝐸1" − " 𝐸2 𝐸1"∗" 𝐸2| 𝑁

• 𝑁 → 𝑁𝐷 | 𝐷

• 𝐷 → "0" "1" "2"| … |"9“
• ID → {[a-z]}

• Semantic Domains:
– Domain: Set of all Enviroments

• 𝐸𝑛𝑣𝑖𝑟𝑜𝑚𝑒𝑛𝑡 = 𝐼𝐷 → 𝐼𝑛𝑡𝑒𝑔𝑒𝑟

– Domain: Integer

– Operations:

• +: 𝐼𝑛𝑡𝑒𝑔𝑒𝑟 𝑋 𝐼𝑛𝑡𝑒𝑔𝑒𝑟 → 𝐼𝑛𝑡𝑒𝑔𝑒𝑟

• −: 𝐼𝑛𝑡𝑒𝑔𝑒𝑟 𝑋 𝐼𝑛𝑡𝑒𝑔𝑒𝑟 → 𝐼𝑛𝑡𝑒𝑔𝑒𝑟

• ∗: 𝐼𝑛𝑡𝑒𝑔𝑒𝑟 𝑋 𝐼𝑛𝑡𝑒𝑔𝑒𝑟 → 𝐼𝑛𝑡𝑒𝑔𝑒𝑟

• Semantic Functions:

– Eval_SEnv [S]: S => Environment
• Eval_SEnv [S] = Env ∪ (ID, Eval_EEnv [E])

– Eval_D: Digit => Integer
Eval_DEnv[“0”] = 0

Eval_DEnv [“1”] = 1

…

– Eval_N: Number => Integer
Eval_NEnv [ND] = 10*Eval_NEnv [N] + Eval_DEnv [D]

Eval_NEnv [ND] = 10*Eval_NEnv [N] + Eval_NEnv [D]

Eval_NEnv [D] = Eval_DEnv [D]

– Eval_E: Expression => Integer
Eval_EEnv [𝐸1" + "𝐸2] = Eval_EEnv [𝐸1] + Eval_EEnv [𝐸2]
Eval_EEnv [𝑁] = Eval_NEnv [N]



Axiomatic Semantics 

• Formalizes semantics via mathematical logic

• Has no model for the state of the machine

• Generally used to determine algorithm correctness, or other 

characteristics / constraints related to an algorithm

• Observations: generally not a comprehensive specification for 

semantics

– Preconditions

– Postconditions



Axiomatic Semantics

• Axiomatic semantics: define the semantics of a program, 
statement, or language construct by describing the effect its 
execution has on assertions about the data manipulated by the 
program

• Elements of mathematical logic are used to specify the semantics, 
including logical axioms

• We consider logical assertions to be statements about the 
behavior of the program that are true or false at any moment 
during execution
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Axiomatic Semantics (cont’d.)

• Preconditions: assertions about the situation just before 

execution

• Postconditions: assertions about the situation just after 

execution

• Standard notation is to write the precondition inside curly brackets 

just before the construct and write the postcondition similarly just 

after the construct:

or
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Axiomatic Semantics (cont’d.)

• Example:

– Semantics become:

• Such pre- and postconditions are often capable of being tested for 

validity during execution, as a kind of error checking 

– Conditions are usually Boolean expressions

• In C, can use the assert.h macro library for checking assertions
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Axiomatic Semantics (cont’d.)

• An axiomatic specification of the semantics of the language 
construct C is of the form 
– Where P and Q are assertions

– If P is true just before execution of C, then Q is true just after execution of C

• This representation of the action of C is not unique and may not 
completely specify all actions of C

• Goal-oriented activity: way to associate to C a general relation 
between precondition P and postcondition Q
– Work backward from the goal to the requirements
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Axiomatic Semantics (cont’d.)
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• There is one precondition P that is the most general or 
weakest assertion with the property that

• Called the weakest precondition of postcondition Q
and construct C

• Written as

• Can now restate the property as  



Axiomatic Semantics (cont’d.)

• We define the axiomatic semantics of language construct C as the 

function             from assertion to assertion

– Called a predicate transformer: takes a predicate as argument and 

returns a predicate result

– Computes the weakest precondition from any postcondition 

• Example assignment can now be restated as:
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General Properties of wp

• Predicate transformer              has certain properties that are true 
for almost all language constructs C

• Law of the Excluded Miracle:

– There is nothing a construct C can do that will make false into true  

• Distributivity of Conjunction: 

• Law of Monotonicity:
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General Properties of wp (cont’d.)

• Distributivity of Disjunction:

• The last two properties regard implication operator “” and “or” 
operator with equality if C is deterministic

• The question of determinism adds complexity

– Care must be taken when talking about any language construct
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Axiomatic Semantics 
of the Sample Language

• The specification of the semantics of expressions alone is not 

commonly included in an axiomatic specification

• Assertions in an axiomatic specificator are primarily statements 

about the side effects of constructs

– They are statements involving identifiers and environments
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Axiomatic Semantics 
of the Sample Language (cont’d.)

• Abstract syntax for which we will define the wp operator:

• The first two rules do not need separate specifications

– The wp operator for program P is the same as for its associated 

statement-list L
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Axiomatic Semantics 
of the Sample Language (cont’d.)

• Statement-lists: for lists of statements separated by a semicolon, 

we have:

– The weakest precondition of a series of statements is the composition of 

the weakest preconditions of its parts

• Assignment statements: definition of wp is:

– is the assertion Q, with E replacing all free occurrences of the 

identifier I in Q
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Axiomatic Semantics 
of the Sample Language (cont’d.)

• Recall that an identifier I is free in a logical assertion Q if it is not 
bound by either the existential quantifier “there exists” or the 
universal quantifier “for all”

• says that for Q to be true after the assignment 
I:=E, whatever Q says about I must be true about E before the 
assignment is executed 

• If statements: our semantics of the if statement state that the 
expression is true if it is greater than 0 and false otherwise 
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Axiomatic Semantics 
of the Sample Language (cont’d.)

• Given the if statement: 

• The weakest precondition is defined as:

• While statements:                          executes as long as E>0

• Must give an inductive definition based on the number of times 
the loop executes

• Let                                   be a statement that the loop executes I
times and terminates satisfying Q
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Axiomatic Semantics 
of the Sample Language (cont’d.)

• Then

• And

• Continuing, we have in general that: 

• Now we define: 
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Axiomatic Semantics 
of the Sample Language (cont’d.)

• Note that this definition of the semantics of the while requires that 

the loop terminates

• A non-terminating loop always has false as its weakest 

precondition (it can never make a postcondition true)

• These semantics for loops are difficult to use in the area of 

proving correctness of programs
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Proofs of Program Correctness

• The major application of axiomatic semantics is as a tool for 

proving correctness of programs

• Recall that C satisfies a specification               provided 

• To prove correctness:

1. Compute wp from the axiomatic semantics and general properties of wp

2. Show that 
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Proofs of Program Correctness (cont’d.)

• To show that a while-statement is correct, we only need an 

approximation of its weakest precondition, that is some assertion 
W such that

• If we can show that PW, we have also shown the correctness of 

{P} while… {Q}, since PW and Wwp(while…,Q) imply that 
Pwp(while…,Q)
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Proofs of Program Correctness (cont’d.)

• Given the loop                            we need to find an assertion W such 
that these conditions are true:

– Every time the loop executes, W continues to be true by condition (a)

– When the loop terminates, (b) says Q must be true

– (c) implies that W is the required approximation for 
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Proofs of Program Correctness (cont’d.)

• An assertion W satisfying condition (a) is called a loop invariant for 

the loop, since a repetition of the loop leaves W true

– In general, loops have many invariants W

– Must find an appropriate W that also satisfies conditions (b) and (c)
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Axiomatic Semantics

• Logical assertions (predicates) are denoted in braces

{preconditions}

statements

{postconditions}

• Example

{x > 0}

sum = x + 1

{sum > 1}



Axiomatic Semantics

• Axiomatic semantic specification

– Can we use axiomatic semantics to specify a language

• Look at {P} C {Q}

– We can attempt to specify C via the pre condition P and the post condition 

Q. P -> Q. However, in general, this will not uniquely specify C.

– However, we can use this logical framework to determine what 

preconditions are necessary to achieve some postcondition.



Axiomatic Semantics: Example

• Note that there are many assertions P, with property {P}C{Q}

• Example

{P}

sum = x + 1

{sum > 1}

P could be x > 0, or x > 1, or x > 2, … 

It is often desired to know the most general assertion or weakest precondition P 
of postcondition Q given programming construct C, such that {P}C{Q}. Also 
written wp(C,Q)



Weakest Precondition 

• Example
– What is the weakest precondition P

1. {P}

y = x – 7

{y < 0}

2. wp( x = x + 5 , x = 10)

3. {P}

y = 1/x

{y > 5}



Weakest Precondition 

• Statement Lists
– wp(L1;L2, Q) = wp(L1, wp(L2,Q))

• Example
{P}

y = x + 5

z = y * 2

{z < 0}

wp(y = x+5; z = y * 2, Q) = wp(y = x + 5, wp( z = y * 2 , z<0))

= wp(y = x + 5, y < 0)

= x < -5



Exercise: Try the following

1. {P}

y = x + 5

z = y / 2

{z < 0}

2. {P}

y = 5 * x

z = y / 2

{1 > z > 0}



Axiomatic Semantics for proof of program correctness

• Program correctness idea. Assume we have an assertion of the form {P} C {Q}. If we can show that P implies wp(C,{Q}), 
then we can conclude that the assertion {P} C {Q} is true.

– Set up. Define Q to assure that program is “correct”.

– Next, either confirm some P implies wp(C,{Q}) , or solve for P = wp(C,{Q})

• Prove the following is swap algorithm is correct.
swapXY:

t = x

x = y

y = t

• Using the weakest precondition to show that {P} C {Q}, 
{x = X, y = Y}

t = x

x = y

y = t

{y = X, x = Y}

wp(t=x;x=y;y=t, {y=X, x=Y}) = wp(t=x;x=y, wp( y=t, {y=X, x=Y} ) )

=  wp(t=x, wp(x=y,   {t = X, x=Y}))

=  wp(t=x, {t = X, y = Y}))

= {x = X, y = Y}



Appendix



Operational Semantics: Simple Expressions Example

– CFG:

• <e> -> < 𝑛1 > +< 𝑛2 >

• <n> -> 0 | 1 | 2 | … | 9

– Semantic rules: as Reduction rules and logic rules

• “0” => 0 (binary representation of zero)  , string zero reduced to value zero

• “1” => 1 (binary representation of one)

• …

• “9” => 9 (binary representation of nine)

• 𝑋1"+"𝑋2 => X1 + 𝑋2 (addition of X1 𝑎𝑛𝑑 𝑋2 ) , two values combined by “+” reduces to addition of the two values

•
𝑛⇒𝑛1

𝑛 "+"𝑛2⇒𝑛1"+"𝑛2
if n resolves to 𝑛1 then 𝑛 " + "𝑛2 resolves to 𝑛1" + "𝑛2

•
𝑛⇒𝑛1

𝑋+𝑛1⇒𝑋 "+"𝑛
if n resolves to 𝑛1 then X " + "𝑛1 resolves to X " + "𝑛



Operational Semantics: Runtime Environment 
Example

• To make assignments we must specify our runtime environment

– 𝐸𝑛𝑣: 𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑟𝑠 → 𝑣𝑎𝑙𝑢𝑒𝑠

• CFG:
• <s> => <v> = <e> ; 

• <e> => < 𝑛1 > +< 𝑛2 >
• <n> => 0 | 1 | 2 | … | 9 | <id>

• <id> => x | y | z

– We can modify our previous rules to include the idea of environment.

•
𝑛⇒𝑛1

𝑛 "+"𝑛2⇒𝑛1"+"𝑛2
if n resolves to 𝑛1 then 𝑛 " + "𝑛2 resolves to 𝑛1" + "𝑛2

•
𝑛 𝐸𝑛𝑣 ⇒{𝑛1|𝐸𝑛𝑣}

{𝑛 +𝑛2 𝐸𝑛𝑣 ⇒{𝑛1"+"𝑛2|𝐸𝑛𝑣}
if n resolves to 𝑛1 given runtime environment Env, then then 

𝑛 " + "𝑛2 resolves to 𝑛1" + "𝑛2 given runtime environment Env.



Operational Semantics: Runtime Environment 
Example

• Using this notation, we can use operational semantics to 

determine how to evaluate an identifier and how to assign values 

to an identifier
𝐸𝑛𝑣 𝑖𝑑 =𝑋

{𝑖𝑑 𝐸𝑛𝑣 ⇒{𝑋|𝐸𝑛𝑣}

if id maps to X given the mapping, then id evaluates to X in the environment

{𝑖𝑑 "=" V | Env} => Env = Env ∪ 𝑖𝑑, 𝑉

add mapping of id to V to the environment




