COSC252: Programming Languages:

Semantic Specification

Jeremy Bolton, PhD
Adjunct Professor

FORGETOW:
gUNI VERSIT Tg\c

Outline

What happens after syntactic analysis (parsing)?
|. Attribute Grammars: bridging the gap

ll. Semantic Specifications
|. Operational Semantics
Il. Denotational Semantics
Ill. Axiomatic Semantics

FEORGETOW:
gUZVI VERSI ZTIL:Z\C

Parsing

Our heartless / soulless parser is simply a recognizer

— ldentifies whether a sentence is in a language
» Whether a code file abides by the rules of a programming language

Parse errors can be identified and described at this stage.

Observe: Many implementations of parsers, e.g. c++ compiler, can
identify errors that are more closely related to semantics (as compared
to syntax)

— How is this done?

FEORGETOW:
gUZVI VERSI ZTIL:Z\C

Attribute Grammars

o Attribute Grammars are an extended form of a CFG that can account
for “other rules” that can be determined statically, but cannot be
accounted for using standard CFGs. (Knuth)

— Compatibility

« Examples (what types of errors can be identified statically, but not with
a standard CFG):
1. Variable not in scope, not accessible
2. Multiple definitions in same scope
3. Type incompatibility
Example: function returns a float but a Node* is expected

— These are errors that are not syntactic, but can be recognized statically (before
runtime).

FEORGETOW:
gUZVI VERSI ZTIL:Z\C

Static Semantics

Static Semantics are “syntax” rules that are partially related to semantics.
— “Static” as we can check the rules before runtime, during parsing

Definitions

« Attribute is a characteristic of a terminal or non-terminal
« Semantic Rule Functions are associated with grammar rules
« Predicate functions: state the static semantic rules associated with a grammar rule

Attribute Grammar is a CFG with the following:
— Attributes for a CFG symbol X, A(X)

— Semantic Rule Function: for each rule in the grammar, X, - X; X, ... X, a semantic rule S(X,)
computes the attributes of X, given the attributes of X; X, ... X,, , S(X,) =

f(A XO)'A(Xl)J 'A(Xn))
— Predicate function: is a Boolean expression on the attributes of a grammar. A false value of a
predicate function implies that a static semantics rule has been violated.

A parse tree with an attributed grammar may have attributes, semantic rules, and a
predicate function associated with each node.

If all the attribute values of a parse tree have been computed, the parse tree is said
to be fully attributed.

Intrinsic attributes: are attributes of terminals — leaf nodes in a parse tree

FEORGETOW:
gUZVI VERSI ZTIL:Z\C

Example: Attribute Grammar

CXPF

 Attribute grammar to test for compatibility
“ actualType = int

— Attributes: expectedType, actualType
— Grammarr:

1. <expr>-><numq; > +<num, >

1. Semantic Rule:
If < numy >.actualType == int && < num, >.actualType == int
then < expr >.actualType = int

else actualType = int

actualType = int

then < expr >.actualType = other

2. Predicate Rule: 3 6

< expr >.actualType ==< expr >.expectedType
2. <expr>-><num> actualType = int actualType = int
1. Semantic Rule: < expr >.actualType = < num >.actualType
2. Predicate Rule: < expr >.actualType ==< expr >.expectedType
3. <num>->0|1]...]9
1. Semantic Rule: < var >.actualType = int

FEORGETOW:
gUZVI VERSI ZTIL:Z\C

Example: Attribute Grammar

@X@\

 Attribute grammar to test for compatibility ~—actualType = int
— Attributes: expectedType, actualType /

— Grammatr:

1. <expr>-><vary > +<var, >

1. Semantic Rule:
If < var; >.actualType == int && < var, >.actualType == int
then < expr >.actualType = int

else / actualType =int actualType =int

then < expr >.actualType = other

2. Predicate Rule: >< >/

< expr >.actualType ==< expr >.expectedType
2. <expr>-><var> actualType = int actualType = int
1. Semantic Rule: < expr >.actualType = < var >.actualType
2. Predicate Rule: < expr >.actualType ==< expr >.expectedType
3. <var>->x|y|z
1. Semantic Rule: < var >.actualType = symbolTableLookup(< var >.lexeme)

FEORGETOW:
gUZVI VERSI ZTIL:Z\C

Dynamic Semantics

 After lexical and syntactic analysis,
semantic analysis Is performed

— Application of meaning to an input sentence St\L

L Lexical analysis

Syntactic analysis
)\/M

FEORGETOW:
gUZVI VERSI ZTIL:Z\C

Semantics: Compiler vs Interpreter

Compiler

Sentence

v

Lexical analysis

“J/ Token Sequence

Syntactic analysis

Parse Tree

Symbol Table

Intermediate Code Generator*

Intermediate
Code

Machine Code Generator

machine code

iﬁ

Interpreter

Sentence

Vi

\[/ Token Sequence

Syntactic analysis
Parse Tree

Simulation /
Direct Execution in running interpreter

FEORGETOW:
glﬂVIVERSI 7*1'2(

Semantics: from lexemes to abstractions

* |In most languages

— Each lexeme, syntactic unit, of a language has
Intrinsic meaning (semantics)

— This semantics of an input sentence is generally
determined in terms of the semantics of the lexemes

of the input
* But How?
— The application of semantics is driven by the BNF /
productions. This also implies that all characteristics
of a language not specified by the BNF, must be
specified in the application of semantics. A

— It is intuitive that semantics are applied based on
BNF. Meaning is applied to the lexemes directly, and
meaning is assigned to non-terminal constructs in /
terms of the meaning of its constituents

* Meaning is propagated up the parse tree

FEORGETOW:
gUZVI VERSI ZTIL:Z\C

Semantics Example

 Whatis the meaning of “3 + 577

— What is the meaning of “3” ?
* Lexeme “3” is the 3 symbol.

« Semantics of “3”: the number 3
« Semantics in the context of \/ JF @
Computer PL: binary rep of 3
— What is the meaning of “+” ?
* Lexeme “+” is the plus symbol.
« Semantics of “+”; addition operation J N
« Semantics in the context of \ E
¢ o !
>

Computer PL: a specific ALU operation

— What is the meaning of “5" ?

FEORGETOW:
gUZVI VERSI ZTIL:Z\C

Introduction

 In previous chapters, we discussed semantics from an informal, or
descriptive, point of view
— Historically, this has been the usual approach

* There Is a need for a more mathematical description of the
behavior of programs and programming languages, to make the
definition of a language so precise that:

— Programs can be proven correct in a mathematical way

— Translators can be validated to produce exactly the behavior described in
the language definition

Programming Languages, 12 g%?%%?%

Third Editinn

Introduction (contd.)

« Developing such a mathematical system aids the designer in
discovering inconsistencies and ambiguities

* There is no single accepted method for formally defining
semantics

 Several methods differ in the formalisms used and the kinds of
Intended applications

« Formal semantic descriptions are more often supplied after the
fact, and only for a portion of a language

Programming Languages, 13 g%?%%?%
Third Editinn

Introduction (contd.)

* Formal methods have begun to be used as part of the
specification of complex software projects, including language

translators
* Three principal methods to describe semantics formally:

— Operational semantics
— Denotational semantics
— Axiomatic semantics

GEORGETOWIN_,

Programming Languages, 14 UNIVERSITY

Third Editinn

Semantic Specification

« Semantic Specification determines how meaning is applied to a sentence of
a language
— Auniversally standardized form of semantic specification does not exist, but there are 3
general categories

» Operational Semantics: describes the semantics of a language in terms of the state of the underlying
machine

» Denotational Semantics: describes the semantics of a language in terms of functions defined on
programs and program constructs

« Axiomatic Semantics: Uses mathematical logic to formalize characteristics of a program.

* Properties of a good semantic specification

— It must be complete. Each input program that abides by the syntax should have
appropriate semantics as defined by the specification

— It must be consistent. Each input program must not have two conflicting semantics.

FEORGETOW:
gUZVI VERSI ZTIL:Z\C

Introduction (contd.)

* Operational semantics:

— Defines a language by describing its actions in terms of the operators of
an actual or hypothetical machine

— Requires that the operations of the machine used in the description are
also precisely defined

— A mathematical model called a “reduction machine” is often used for this
purpose (similar in spirit to the notion of a Turing machine)

Programming Languages, 16 g%?%%?%
Third Editinn

Introduction (contd.)

e Denotational semantics:

— Uses mathematical functions on programs and program components to
specify semantics

— Programs are translated into functions about which properties can be
proved using standard mathematical theory of functions

Programming Languages, 17 g%?%%?%
Third Editinn

Introduction (contd.)

« Axiomatic semantics:
— Applies mathematical logic to language definition

— Assertions, or predicates, are used to describe desired outcomes and
Initial assumptions for program

— Language constructs are associated with predicate transforms to create
new assertions out of old ones

— Transformers can be used to prove that the desired outcome follows from
the initial conditions

— Is a method aimed specifically at correctness proofs

Programming Languages, 18 g%?%%?%
Third Editinn

Introduction (contd.)

« All these methods are syntax-directed

— Semantic definitions are based on a context-free grammar or Backus-
Naur Form (BNF) rules

 Formal semantics must then define all properties of a language
that are not specified by the BNF
— Includes static properties such as static types and declaration before use

Formal methods can describe both static and dynamic properties
« We will view semantics as everything not specified by the BNF

Programming Languages, 19 g%?%%?%
Third Editinn

Introduction (contd.)

« Two properties of a specification are essential:

— Must be complete: every correct, terminating program must have
associated semantics given by the rules

— Must be consistent: the same program cannot be given two different,
conflicting semantics
« Additionally, it is advantageous for the semantics to be minimal, or
Independent

— No rule iIs derivable from the other rules

Programming Languages, 20 g%?%%?%
Third Editinn

Introduction (contd.)

« Formal specifications written in operational or denotational style
have an additional useful property:

— They can be translated relatively easily into working programs in a
language suitable for prototyping, such as Prolog, ML, or Haskell

Programming Languages, 21 g%?%%?%
Third Editinn

Operational Semantics

« Goal: Describe semantics by specifying effects on underlying machine.

« Semantic rules are often presented in the form of reduction or logical
rules

 Observations

— The state underlying a machine has lots of details / is complex. This approach
may not be practical.

— Rather than tracking the state of a machine at a low level, this approach can be
applied at an intermediate level of the computing abstraction.

« However, this makes operational semantics difficult to formalize as the machine truly
depends upon its lower level representation.

FEORGETOW:
gUZVI VERSI ZTIL:Z\C

A Sample Small Language

* The basic sample language to be used is a version of the integer
expression language used in Ch. 6

* BNF rules for this language:

expr — expr ‘+° term | expr ‘=’ term | term
term — term ‘*’ factor | factor

factor — ‘(’expr ‘)’ | number

number — number digit | digit

digit - 0|1’ 2|3 |4 |56 | T| 8|9

Figure 12.1 Basic sample language

Programming Languages, 23 g%?%%?%
Third Editinn

A Sample Small Language (cont’d.)

* This results in simple semantics:

— The value of an expression is a complete representation of its meaning: 2
+3*4 means 14

« Complexity will now be added to this language In stages
* In the first stage, we add variables, statements, and assignments

— A program is a list of statements separated by semicolons
— A statement is an assignment of an expression to an identifier

Programming Languages, 24 g%?%%?%
Third Editinn

A Sample Small Language (cont’d.)

factor — “(* expr ')’ | number | identifier
program — stmt-list

stmt-list — stmt *;’ stmt-list | stmt

stmt — identifier ‘:=’ expr

identifier — identifier letter | letter
letter — ‘a’ | b’

K B

-

|z

Figure 12.2 First extension of the sample language

Programming Languages, 25 g%%?%
Third Editian

A Sample Small Language (cont’d.)

* Semantics are now represented by a set of values corresponding
to identifiers whose values have been defined, or bound, by
assignments

« Example:
a := 2+43;
b := a¥4;
a := b-5

— Results in bindings b=20 and a=15 when it finishes
— Set of values representing the semantics of the program is {a=15, b=20}

GEORGETOWIN_,

Programming Languages, 26 UNIVERSITY
Third Editinn

A Sample Small Language (cont’d.)

« Such a set is essentially a function from identifiers to integer
values, with all unassigned identifiers having a value undefined

— This function is called an environment, denoted by:

e Note that th Env: Identifier — l\]}leger U,{ Ll]'ldEf}example program can be
defined as:

15171 =a
Env(l)= § 201t /= 5h
undef otherwise
GEORGETOWIN(.

Programming Languages, 27 UNIVERSITY
Third Editinn

A Sample Small Language (cont’d.)

* The operation of looking up the value of an identifier 1 in an
environment Env IS Env (I)

« Empty environment is denoted by Env,

+ An environ/Z) = undet forall 7,50 o rhorates both the symbol table

and state functions

« Such environments:
— Do not allow pointer values
— Do not include scope information
— Do not permit aliases

GEORGETOWIN_,

Programming Languages, 28 UNIVERSITY
Third Editinn

A Sample Small Language (cont’d.)

* For this view of the semantics of a program represented by a
resulting final environment:

— Consistency: we cannot derive two different final environments for the
same program

— Completeness: we must be able to derive a final environment for every
correct, terminating program

« We now add if and while control statements

— Syntax of the i f and while statements borrows the Algol68 convention
of writing reserved words backward, instead of begin and end blocks

Programming Languages, 29 g%?%%?%
Third Editinn

A Sample Small Language (cont’d.)

stmt — assign-stmt | if-stmt | while-stmt
assign-stmt — identifier =" expr
if-stmt — ‘if” expr ‘then’ stmt-list ‘else’ stmt-list ‘fi’

while-stmt — ‘while’ expr ‘do’ stmt-list ‘od’

Figure 12.3 Second extension of the sample language

Programming Languages, 30 g%%?%
Third Editian

A Sample Small Language (cont’d.)

 Meaning of an if-stmt:
— expr IS evaluated in the current environment

— If it evaluates to an integer greater than O, then stmt-11ist after then Is
executed

— If not, stmt-11ist after the else is executed

 Meaning of @ while-stmt:

— As long as expr evaluates to a quantity greater than O, stmt-1ist IS
repeatedly executed and expr Is reevaluated

 Note that these semantics are nonstandard!

Programming Languages, 31 g%?%%?%
Third Editinn

A Sample Small Language (cont’d.)

« Example program in this language:

n := 0 - 5;
if n then i := n else 1 := 0 - n f£i;
fact := 1;
while 1 do
fact := fact * 1i;
1 :=1 -1

od

« Semantics are given by the final environment:
fn=-5,i=0, fact =120}

Programming Languages, 32 g%?%%?%
Third Editinn

A Sample Small Language (cont’d.)

« Difficult to provide semantics for loop constructs
— We will not always give a complete solution

« Formal semantic methods often use a simplified version of syntax
from that given

* An ambiguous grammar can be used to define semantics
because:
— Parsing step is assumed to have already taken place
— Semantics are defined only for syntactically correct constructs

* Nonterminal symbols can be replaced by single letters

Programming Languages, 33 g%?%%?%
Third Editinn

A Sample Small Language (cont’d.)

* Nonterminal symbols can be replaced by single letters
— May be thought to represent strings of tokens or nodes in a parse tree

« Such a syntactic specification is sometimes called an abstract
syntax

Programming Languages, 34 g%?%%?%
Third Editinn

A Sample Small Language (cont’d.)

» Abstract syntax for our sample language:

P— L
L—L L,
S—1"="FE

E—-E ‘+E,
N—N D | D
D — 0
I—1 A A

A=‘a

Programming Languages,
Third Editian

B B

b ..

S
If’ E ‘then’ L, ‘else’ L, fi’

*while’ E ‘do’ L ‘od’

EI — E:

JEI o EE
i.('-' El i:}'-‘

i.g!

35

N

P : Program

L : Statement-list
S : Statement

E : Expression
N : Number

D : Digit

{ : Identifier

A : Letter

FEORGETOW:
gUZVI VERSI 7*1'2(

A Sample Small Language (cont’d.)

* To define the semantics of each symbol, we define the semantics
of each right-hand side of the abstract syntax rules in terms of the
semantics of their parts

— Thus, syntax-directed semantic definitions are recursive in nature
* Tokens in the grammar are enclosed in quotation marks

Programming Languages, 36 g%?%%?%
Third Editinn

Operational Semantics

« Operational semantics specify how an arbitrary program is to be
executed on a machine whose operation is completely known

« Definitional interpreters or compilers: translators for the
language written in the machine code of the chosen machine

« Operational semantics can define the behavior of programs in
terms of an abstract machine

Program [=---+ Control [~----= Store

Figure 12-4 Three parts of an abstract machine

GEORGETOWIN_,

Programming Languages, 37 UNIVERSITY
Third Editinn

Operational Semantics (contd.)

 Reduction machine: an abstract machine whose control
operates directly on a program to reduce it to its semantic “value”

« Example: reduction of the expression (3+4) *5

(3+4)*5=>(7)*5 — 3 and 4 are added to get 7
=>7 %3 — the parentheses around 7 are dropped
e TO Specn‘\ => 35 — 7and 5 are mulhphr:cl to get 35 rules

that specify how the control reduces constructs of the language to
a value

Programming Languages, 38 g%?%%?%
Third Editinn

Logical Inference Rules

 Inference rules in logic are written in the form:

premise

conclusion
— If the premise is true, the conclusion is also true

 Inference rule for the commutative property of addition:

a+ b=c

+a=c -
. Inference rules are Jsod’ i express the basic rules of

prepositional and predicate calculus:

a—b,b—oc
a—C

Programming Languages, 39 g%?%%?%
Third Editinn

Logical Inference Rules (contd.)

« Axioms: inference rules with no premise
— They are always true
— Example:

a+0=a
— Axioms can be written as an inference rule with an empty premise:

— Orwithoutthe g4+ 0=4a €:

a+ 0D=a

Programming Languages, 40 g%?%%?%
Third Editinn

Reduction Rules
for Integer Arithmetic Expressions

« Structured operational semantics: the notational form for
writing reduction rules that we will use

« Semantics rules are based on the abstract syntax for expressions:

E_}E] :_I_? Ej | E] :_!' Ej | E] - Ej | '.'{"!' E] '."}!'

N—N,D|D
D—0 | 1"|...] 9
 The notation ctatac that expression reduces to

. E=> :
expression 1 by som.c .cuuction rule

Programming Languages, 41 g%?%%?%
Third Editinn

Reduction Rules for Expressions

1. Collect all rules for reducing
digits to values In this one rule

— All are axioms

£ug S S
I Il
W W
N —_

S % i & U
I
A"
-]

GEORGETOWIN_,

Programming Languages, 42 UNIVERSITY
Third Editian

Reduction Rules for Expressions (contd.)

2. Collect all rules for reducing numbers to values in this one rule
— All are axioms Ve

Ve
Ve
Ve
Ve
Ve
Ve
Ve
Ve
Ve

=>10%V

= 10%V + |
=>10%V + 2
=10 %V + 3
=>10%V + 4
=>10%V + 5
"=>10%V+ 6
= 10%V + 7
=10 %V + 8
"=>10%V+9

Fa LI P2 = D

O 00 = Oy Ln

GEORGETOWIN_,

Programming Languages, 43 UNIVERSITY
Third Editian

Reduction Rules for Expressions (contd.)

3. V + V.=>V +V, 10 E=>FE
4. ViV, =>V, -V Vit E=>V'+'E
5. 2 2 B
6 VoV =V %V, 11 E=>FE
e e " E‘="E=>V*‘="E
7 .(.- 'll'r_l,:".).- :} 'll'r_l,:"]
E=>F E=>FE
] 12. — —
8. E'+ E=>E "+ E, Vi E=>V™E
E=>F E=>F
9 ‘3]* ’ 13' £t A {]- Ly
+ E'-"E =>FE ‘- E CE)Y=>"(CE")
E=>FE 14 E=>E,FE =>E,
E**E =>FE " E, E=>E,
Programming Languages, 44 g%%?%

Third Editian

Reduction Rules for Expressions (cont'd.)

* Rules 1 through 6 are all axioms

* Rules 1 and 2 express the reduction of digits and numbers to
values
— Character ‘0’ (a syntactic entity) reduces to the value 0 (a semantic
entity)
* Rules 3 to 5 allow an expression consisting of two values and an
operator symbol to be reduced to a value by applying the
appropriate operation whose symbol appears in the expression

* Rule 6 says parentheses around an expression can be dropped

Programming Languages, 45 g%?%%?%
Third Editinn

Reduction Rules for Expressions (cont'd.)

 The rest of the reduction rules are inferences that allow the

reduction machine to combine separate reductions together to
achieve further reductions

* Rule 14 expresses the general fact that reductions can be

performed stepwise (sometimes called the transitivity rule for
reductions)

GEORGETOWIN_,

Programming Languages, 46 UNIVERSITY
Third Editinn

Reduction Rules for Expressions (cont'd.)

* Applying these reduction rules to the expression:

2*%(3+4) -5
 First reduce the expression: 3 + 4:
dC MR SLLY. R SRR & (Rules 1 and 7)
=> 3+ 4 (Rules 1 and 10)
==34+4=7 (Rule 3)

« Thus, by rule 14, we have: 3 A =T

Programming Languages, a7 g%?%%?%
Third Editian

Reduction Rules for Expressions (contd.)

« Continuing:
:{’? :3? '.'_l_? '.'4? :'}? :} '.'{’? -III.' '."}? {’RLI]E:. 13*}
=> 7 (Rule 6)

e Now reduce the expression 2* (3+4) as follows:

.2.- :;,.:-:? :{’? :3? :_I_? :4? '.'W.}? =}2 :;,.:-::' '.'{’? :3? :_|_.T :4? :):' (RLI]ES 1 ﬂﬂd g]
=> 2 %7 (Rule 12)
=>2%T7=14 (Rule 3)
« And finally:
:2.‘-' '-':':f.!' :{’? :3!' '-'_l_!' :4.‘-' :“}:‘ :_:' :5:' =} 14 :_:' '.'5:' (RLI]ﬁ.E 1 and 8“}
=>14*="5 (Rule 11)
=>14-5=9 (Rule 4)
Programming Languages, 48 g%?%@?%

Third Editian

Environments and Assignment

» Abstract syntax for our sample language:

P— L
L—L L,
S—1"="FE

E—-E ‘+E,
N—N D | D
D — 0
I—1 A A

A=‘a

Programming Languages,
Third Editian

B B

b ..

S
If’ E ‘then’ L, ‘else’ L, fi’

*while’ E ‘do’ L ‘od’

EI — E:

JEI o EE
i.('-' El i:}'-‘

i.g!

49

N

P : Program

L : Statement-list
S : Statement

E : Expression
N : Number

D : Digit

{ : Identifier

A : Letter

FEORGETOW:
gUZVI VERSI 7*1'2(

Environments and Assignment (contd.)

* We want to extend the operational semantics to include
environments and assignments

* Must include the effect of assignments on the storage of the
abstract machine

« Our view of storage: an environment that is a function from
identifiers to integer values (including the undefined value):

* The notal g, 1dentifier —s Imﬁﬁﬁr) {unda[pssmn E IS evaluated In

the presence or enV|rnnr|n§TT; Env

Programming Languages, 50 g%?%%?%
Third Editinn

Environments and Assignment (contd.)

« Now our reduction rules change to include environments
« Example: rule 7 with environments becomes:

<E | Env>=><E | Env>
<E '+’ E, | Emv>=><E ‘+'E | Env>

— This states that if £ reduces to E1 In the presence of Env,thenE '+’ E2
reducesto E1 ‘+’ E2 in the same environment

Programming Languages, 51 g%?%%?%
Third Editinn

Environments and Assignment (contd.)

* The one case of evaluation that explicitly involves the environment is
when an expression is an identifier 1, giving a new rule:

15.
Envily =V

f <1 | Env> => <V | Env>

This states t IS V In Env, then T reduces to Vv In the

presence of Env

* Next, we add assignment statements and statement seguences to the
reduction rules

Programming Languages, 52 g%?%%?%
Third Editinn

Environments and Assignment (contd.)

« Statements must reduce to environments instead of integer
values, since they create and change environments, giving this
rule:

16. <[="V | Env>=>Env & {I=V}

This states that the assignment of the value v to I in Env reduces to a
new environment where I is equal to v

* Reduction of expressions within assignments uses this rule:
17.

<E | Env>=><E, | Env>

<[="FE | Enw>=><l"="E | Env>

GEORGETOWIN_,

Programming Languages, 53 UNIVERSITY
Third Editinn

Environments and Assignment (contd.)

« A statement sequence reduces to an environment formed by
accumulating the effect of each assignment, giving this rule:

18.

<§ | Env>=> Env,

_ <§ L | Env>=><L | Env> _ _
* Finally, a progiaii 1> a statciniern seyuence with no prior

environment, giving this rule:

19.
L=><L | Env> . .
It reduces to the ciicud it naos uni the empty Startlng environment

Programming Languages, o4 g%?%%?%
Third Editinn

Environments and Assignment (contd.)

* Rules for reducing identifier expressions are completely
analogous to those for reducing numbers

« Sample program to be reduced to an environment:

a := Z2+3;
bh 1= a*4;

» To simplify*u'c reauction, we will suppress the use of quotes to

differentiate between syntactic and semantic entities

Programming Languages, 55 g%?%%?%

Third Editinn

Enuvironments and Assignment (cont’d.)

* First, by rule 19, we have:

a'=2+3b=a*d a:=b—5=>
<a:=2+3b:=a*4a:=b—35| Env>

* Also, by rules 3, 17, and 16:

<a:=2+3| Env>=>
<a:=5 | Eny,>=>
Env, & {a=35} = {a=3]

* Then by rule 18:

<a:=2+3:b:=a*4a:=b—-35 | Env>=>

<b:=a*4:a:=b—-5 | {a=35}>
GEORGETOWIN_,

Programming Languages, 56 UNIVERSITY
Third Editian

Enuvironments and Assignment (cont’d.)

« Similarly, by rules 15, 9, 5, 17, and 16:

<h:=ax4 | l[a=5)>=><b:=5%4 | [a=5]>=>
<b:=20| {a=35}>=>{a=5}& {b=20})={a=35,b= 20}

 Then by rule 18 :

<h:=axd;a=b—-5|{
<a:=b—-5|{a=55b=

R / a similar annlicatinn of rul :
Fma”y b) <a:=b—-5|{a=55b=20 €S

J>
U}

f:a—”ﬂ—:&| a=5b=
<a:=15| {a=5,b=20}>
{a=5,b=20} & {a = 15,1 =2m
Programming Languages, 57 G%?%ng?%ﬂc

Third Editian

Control

« Next we add if and while statements, with this abstract syntax:

S — “if” E ‘then’ L, ‘else’ L, ‘fi’
| “while’ E ‘do’ L ‘od’
« Reduction rules for If statements include:

20. <E|Env>=><E | Env>
<‘if” E ‘then’ L ‘else’ L, *fi" | Env> =>
<‘if’ E, ‘then’ L, ‘else’ L, ‘fi" | Env>
Programming Languages, 58 g%?%%?%

Third Editinn

Control (cont'd.)

V>0

21.
<'if’ V‘then’ L ‘else’ L, ‘fi" | Env>=> <L | Env>

22, v=0

<‘if” V'then” L, ‘else’” L, *fi" | Env>=><L, | Env>
e Reduction rules for while statements include:

<E | Env>=><V | Env>, V<0

23, ———————T
<‘while’ E ‘do’ L ‘od” | Env>=> Env
>4 <E | Env>=><V | Env>, V>0
" <*while’ E ‘do’ L ‘od’ | Env=><L; *while” E ‘do’ L ‘od’ | Env>
Programming Languages, 59 g%%?%

Third Editian

Implementing Operational Semantics in a
Programming Language

* |tis possible to implement operational semantic rules directly as a
program to get an executable specification

* This is useful for two reasons:
— Allows us to construct a language interpreter directly from a formal
specification
— Allows us to check the correctness of the specification by testing the
resulting interpreter
« A possible Prolog implementation for the reduction rules of our
sample language will be used

Programming Languages, 60 g%?%%?%
Third Editinn

Implementing Operational Semantics in a
Programming Language (cont’d.)

 Example: 3+ (4+5) In Prolog:

timeg (3,plus(4,5))

« Example: tnis program:

a 1= Z2+3;
b :1= a*4,;
— Canber . _ nPrologas:

. This is amseq[assignia,plusiﬁ,ﬂ.5 ,

necessary seg(assign(b, times(a,4)), assign(a,sub(b,5))))
Programming Languages, 61 gEE G‘Of?gEER:Z,;‘?TWN

Third Editian

Implementing Operational Semantics in a
Programming Language (cont’d.)

* We can write reduction rules (ignoring environment rules for the
moment)

* A general reduction rule for expressions:

reduce(¥X,Y) :-

— Where x Is any arithmetic expression (in abstract syntax) and Y is the
result of a single reduction step applied to x

« Example:
— Rule 3 can be written as:

reduce (plus (V1,V2) ,R) :-

integer(V1l), integer(V2), !, R 18 V1 + V2
Programming Languages, 62 g%?%%?%

Third Editinn

Implementing Operational Semantics in a
Programming Language (cont’d.)

Rule 7 becomes:

reduce(plus (E,E2) ,plus(E1,E2)) :- reduce(E,El)

 Rule 10 becomes:

reduce (plus (V,E) ,plus(V,E1)) :-
integer(V), !, reduce(E,El)

* Rule 14 presents a problem if written as:
reduce (E,E2) :- reduce(E,El), reduce(El,E2)
— Infinite recursive loops will result
e |nstead, write rule 14 as two rules:

reduce_all(V,V) :- integer(V), !.
reduce _all(E,E2) :- reduce(E,El), reduce_all(El,E2)
: FORGET
Programming Languages, 63 QEE%IEERS?M

Third Editian

Implementing Operational Semantics in a
Programming Language (cont’d.)

* Now extend to environments and control: a pair <t |Env> can be
thought of as a configuration and written in Prolog as
config(E, Env)

 Rule 15 then becomes:

reduce(config(I,Env),config(V,Env)) :-

atom(I), !, lookup(Env, I, V)

— Where atom (1) tests for a variable and 1ocokup operation finds values in
an environment

Programming Languages, 64 g%?%%?%
Third Editinn

Implementing Operational Semantics in a
Programming Language (cont’d.)

 Rule 16 becomes:

reduce (config(assign(I,V),Env), Envl) :-

integer(V), !, update(Env, value(I,V), Envl)

— Where update inserts the new value v for 1 into Env, yielding Env1

* Any dictionary structure for which 1ookup and update can be
defined can be used to represent an environment in this code

Programming Languages, 65 g%?%%?%
Third Editinn

Denotational Semantics

Specifies semantics in terms of functions from programs and program
constructs to semantics

Observations:

— Formal specification based on recursive function theory

B MOSt rlgorous Denotational Semantic
— Most widely used Fanclion

TN

Basic Idea \
“‘l
Semantic Domain:
Mathematical c@

— Define functions that map programming Syntacic Domain

constructs to mathematical constructs. If we | Ebfg:%mg
can formalize the semantics using mathematical

constructs, we can then define a formal semantics

for a language

FEORGETOW:
gUZVI VERSI ZTIL:Z\C

Denotational Semantics

* A denotational semantics consists of
1. A syntactic domain: grammar productions
2. Semantic domain: sets on which the semantic functions take their values
3. Semantic functions: mapping from productions to values

Denotational Semantic
Function

Semantic Domain:
Mathematical constructs

FEORGETOW:
gUZVI VERSI ZTIL:Z\C

Denotational Semantics

* Denotational semantics use functions to describe the semantics of
a programming language
— A function associates semantic values to syntactically correct constructs

« Example: a function that maps an integer arithmetic expression to
Its value:

Val : Expression — Integer

— Syntactic uuinani. uuinian ur a semantic function

— Semantic domain: range of a semantic function, which is a mathematical
structure

Programming Languages, 68 g%?%%?%
Third Editinn

Denotational Semantics (contd.)

 Example: val (2+3*4) = 14
— Set of integers is the semantic domain

— val maps the syntactic construct 2+3*4 to the semantic value 14; it denotes the
value 14

* A program can be viewed as something that receives input and
produces output

* Its semantics can be represented by a function:

— Semantic d P : Program — (Input — Output) to output
— Semantic vaiue Is a Tuncton

GEORGETOWIN_,

Programming Languages, 69 UNIVERSITY
Third Editinn

Denotational Semantics (contd.)

 Since semantic domains are often functional domains, and values of
semantic functions will be functions themselves, we will assume the
symbol “=7 is right associative and drop the parentheses:

* Three part?: Program — Input — Outputtion of a program:
— Definition of the syntactic domains
— Definition of the semantic domains

— Definition of the semantic functions themselves (sometimes called valuation
functions)

Programming Languages, 70 g%?%%?%
Third Editinn

Syntactic Domains

e Syntactic domains:

— Are defined in denotational definition using notation similar to abstract
syntax

— Are viewed as sets of syntax trees whose structure is given by grammar
rules that recursively define elements of the set

« Example:
D: Digit
N: Number
N—ND|D
D0 | 1" |...]°9
Programming Languages, 71 g?ﬂ%?gEERj,;’?]WYN

Third Editinn

Semantic Domains

e Semantic domains: sets in which semantic functions take their
values

— Like syntactic domains but may also have additional mathematical
structure, depending on use
« Example: integers have arithmetic operations

« Such domains are algebras, which are specified by listing their
functions and properties

— Denotational definition of semantic domains lists the sets and operations
but usually omits the properties of the operations

Programming Languages, 72 g%?%%?%
Third Editinn

Semantic Domains (contd.)

« Domains sometimes need special mathematical structures that
are the subject of domain theory

— Term domain is sometimes reserved for an algebra with the structure of a
complete partial order

— This structure is needed to define the semantics of recursive functions and

loops
« Example: semantic domain of the integers:
Domain v: Integer = {. .., —2,—-1,0,1,2,...}
Operations
+ : Integer X Integer — Integer
— : Integer X Integer — Integer
@ Integer X Integer — Integer
Programming Languages, 73 g%?%%?%x

Third Editinn

Semantic Functions

« Semantic function: specified for each syntactic domain

« Each function is given a different name based on its associated
syntactic domain, usually with boldface letters

« Example: value function from the syntactic domain Digit to the
Integers:

D : Digit — Integer

GEORGETOWIN_,

Programming Languages, 74 UNIVERSITY
Third Editinn

Semantic Functions (cont'd.)

« Value of a semantic function is specified recursively on the trees
of syntactic domains using the structure of grammar rules
« Semantic equation corresponding to each grammar rule is given

« Example: grammar rule for digits:

— Gives rise to syntax tree nodes:
D0 [‘1"|...] ‘&

Programming Languages, 75 g%?%%?%
Third Editinn

Semantic Functions (cont'd.)

« Example (cont'd.):
— Semantic function D Is defined by these semantic equations representing
the value of each leaf:

D D D
D(|)=0, D()=1,... D(])=9
‘0 ‘1 ‘9’
— This notation IS shorted to the 1ollowing:

— Double bra PIF0° 11 =0, DIFT]I = 1, .. . DI['¥"]] =9 4t js @ syntactic entity
consisting of a syntax tree node with the listed arguments as children

Programming Languages, 76 g%?%%?%
Third Editinn

Semantic Functions (cont'd.)

« Example: semantic function from numbers to integers:

— Is based on the synN : Number — Integer
— And Is given by these equations: N sND | D

NIIND]] = 10 % N[[N]]] + N[[D])
— Where [[NNIPIL = DUDIE

— And [[D]] refers to the node {

Programming Languages, & g%?%%?%
Third Editinn

Denotational Semantics of Integer Arithmetic
Expressions

Svntactic Domains Semantic Functions

E: Expression
N: Number
D: Digit

E-E‘+E |E‘—E |E “*E,
| ‘CE®)Y | N

N—-ND | D

D—0|1"|...|9

Semantic Domains

Domain v: Integer = {. . .,
Operations
+ : Integer X Integer — Integer
— : Integer X Integer — Integer
o Integer X Integer — Integer

Programming Languages, /8
Third Editian

-2, -1,0,1,2, ..

E : Expression — Integer

1

E|
’%ﬂ=ﬂ@ﬂ Ef[E,]
*E\|l = EI[IE|]] * E[IE,]]

[E11 + EI[E,]]
]

N: Number — Integer

NI[ND]] = 10 * N[[N]]] + N[[D]]
N[[DI] = DIID]]

D : Digit — Integer
D'’ =0,D[[*I"]] = 1,.. ., D[[*'9"]] =9

FEORGETOW:
glﬂVIVERSI 7*1'2(

Denotational Semantics of Integer Arithmetic
Expressions (cont’d.)

« Using these equations to obtain the semantic value of an
expression, we compute E[[(2 + 3)=4]]ecisely,
EI’I’:{’? ::? :_I_? :3? :*}? '.':#_.'-' :4.‘-']']

= E[["'(~)1 = E[[47]]
= E[["2" "+ "3']] = N[["4]]
= (E[["27]] + E[["3°]]) = D[[*4"]]
= (N[[*27]] + N[[*3°]]) = 4
= DI[["2°]] + D[['3']]) = 4
=2+ 3)x4=5%4 =20
Programming Languages, 79 g?ﬂ%?gEERj,;’?]WYN

Third Editian

Enuvironments and Assignments

* First extension to our sample language adds identifiers,
assignment statements, and environments

* Environments are functions from identifiers to integers (or
undefined)

 Set of environments becomes a new semantic domain:

Domain Env: Environment = ldentifier — Integer U {undef}

Programming Languages, 80 g%?%%?%
Third Editinn

Enuvironments and Assignments (contd.)

 |In denotational semantics, the value undef Is called bottom, from
the theory of partial orders, and is denoted by the symbol

« Semantic domains with this value are Luilled lifted domains and
are subscripted with the symbol

* The Initial environment defined previously can now lic defined as:

« Semantic value of an exnrescinn hecomes a fiinction from

: : Env (I) = L for all identifiers /.
environments to integet.. °

E : Expression — Environment — Integer L

Programming Languages, 81 g%?%%?%
Third Editinn

Enuvironments and Assignments (contd.)

* The value of an identifier is its value In the environment provided
as a parameter:

E[[N(Env) = Env(l)
 For a number, the environment is immaterial:

E[[N11(Env) = N[[N]]
e For statements and statement lists, the semantic values are
functions from environments to environments

— The “&” notation is used to add values to functions that we have used in
previous sections

GEORGETOWIN_,

Programming Languages, 82 UNIVERSITY
Third Editinn

Syntactic Domains

Program

Statement-list

Statement

Expression

: Number

. Digt

[: Identifier

A: Letter

P - L

L - L%L|S

S = I1"=E

E— E+E|E‘—E|E"‘E
|“CEY TN

N—=ND|D

D=0 |1 |...|®

I—=TA|A

A='a | P |...| 7

D=2MmAy

Figure 12.5 A denotational definition for the sample language extended with assignment statements and
environments (continues)

GEORGETOWIN_,

Programming Languages, 83 UNIVERSITY
Third Editian

Semantic Domains

Domain v: Integer = {. .., =2, —1,0, 1, 2.. . .}

Operations

+ : Integer X Integer — Integer
— : Integer X Integer — Integer
+ : Integer X Integer — Integer

Domain Env: Environment = Identifier — Integer

Semantic Functions
P : Program — Environment
P[[L]] = L[[L]](Env,)
L : Statement-list — Environment — Environment

LI[L, " L]} = LI[L,]] L[L]]
LI[S]] = S[IS]]

Figure 12.5 A denotational definition for the sample language extended with assignment statements and
environments (continues)

Programming Languages, 84 g%%?%
Third Editian

S : Statement — Environment — Environment
S[[T =" EJ(Emv) = Env & {1 = E[[E]}(Emv)}
E : Expression — Environment — Integer

E[[E, ‘+" E]I(Emv) = E[[E])(Env) + E[[E J)(Env)
E[[E, ‘=" E]I(Emv) = E[[E])(Env) — E[[E J)(Em)
E[E, *+ E,]N(Env) = E[[E,]|(Env) + E[[E,])(Env)
E[['C E *Y])(Emv) = E[[E])(Env)

E[[N(Emv) = Em(T)

E[[N]](Em) = N[[N]]

N: Number — Integer

N[IND]] = 10«N[[NT]] + NIIDT]
NIID]] = DD}

D : Digit — Integer
Do =00)= 1...DI["Y]]1 =9

Figure 12.5 A denotational definition for the sample language extended with assignment statements and
environmeants

GEORGETOWIN_,

Programming Languages, 85 UNIVERSITY
Third Editian

Denotational Semantics
of Control Statements

« If and while statements have this abstract syntax:
§: Statement
S—=I1""="FE
| “if” E ‘then’ L, else’ L, “fi’
| ‘while’ E ‘do’ L ‘od’
« Denotational semantics is given by a function from environments

to environments: , .
S5 : Statement — Environment — Environment

° Seman“c fl inctinn nf thao if cfnfnmanf

S[[‘if” E ‘then’ L, ‘else’ L, ‘fi’[|(Env) =
if E[[E]]{E.-n) = D then L] [J[]J [(Env) else L[[L]I(Env)
Programming Languages, 86 g%?%%?%

Third Editian

Denotational Semantics
of Control Statements (contd.)

 Semantic function for the while statement is more difficult

— Can construct a function as a set by successively extending it to a least-
fixed-point solution, the “smallest” solution satisfying the equation

— Here, F will be a function on the semantic domain of environments

* Must also deal with nontermination in loops by assigning the
“undefined” value

Programming Languages, 87 g%?%%?%
Third Editinn

Denotational Semantics
of Control Statements (contd.)

« The domain of environments becomes a lifted domain:

« Semantic func Environment, = (Identifier — Integer), -

S : Statement — Environment L Environment

Programming Languages, 88 g%?%@?%
Third Editian

Implementing Denotational Semantics in a
Programming Language

* We will use Haskell for a possible implementation of the
denotational functions of the sample language

* Abstract syntax of expressions:

data Expr = Val Int | Ident String | Plus Expr Expr

| Minus Expr Expr | Times Expr Expr

« We ignore the semantics of numbers and simply let values be
Integers

GEORGETOWIN_,

Programming Languages, 89 UNIVERSITY
Third Editinn

Implementing Denotational Semantics in a
Programming Language (cont’d.)

« Assume we have defined an Environment type with a lookup and
update operation

 The £ evaluation function can be defined as:

exprE :: Expr -> Environment -> Int
exprE (Plus el e2) env = (exprE el env) + (exprE e2 env)
eXxprE (Minus el e2) env = (exprE el env) - (eXprE 2 env)
eXxprE (Times el e2) env = (exprE el env) * (exprE e2 env)
exprE (Val n) env = n
exprE (Ident a) env = lockup env a
Programming Languages, 90 g%?%%?%x

Third Editian

Another: Denotation Semantics Example

» Example Grammar (includes int * Semantic Functions:

definition) s g Integer
n " m__n " v - -
E - E1 + Ez | E]_ EZ | El E2| N EvaI_D[“'I”] = 1

« N>ND|D

« D-"0""1"]"2"| ...|"9 — Eval_N: Number => Integer

Eval_N[ND] = 10*Eval_N[N] + Eval_D|[D]

* Semantic Domains: Eval_N[ND] = 10*Eval_N[N] + Eval_N[D]
— Domain: Integer Eval_N[D] = Eval_DI[D]
— Operations:
« +: Integer X Integer — Integer — Eval_E: Expression => Integer
« —:Integer X Integer — Integer Eval_E[E," + "E>] = Eval_E[E,] + Eval_E[E;]
* x:Integer X Integer — Integer Eval_E[N] = Eval_N[N]
GEORGETOWIN_,

UNIVERSITY

Denotation Semantics: Example with runtime
environment

Environment is often formalized as a parameter to the * Semantic Functions:
semantic functions

— Eval_Sg,, [S]: S => Environment

Example Grammar (includes int definition) . Eval S.[S]=Envu (ID, Eval_E,[E])
—~Env -) ——Env

S— ID" ="E;

E—>E"+"E, |E\"—"E,| E{"*"E;| N ..

N - ND|D — Eval_D: Digit => Integer
D —"0"|"1"]"2"| ...|"9" Eval_Dg,[0"]=0

D~ {[a-z]} Eval_Dg,, [*17] =1

Semantic Domains:
— Domain: Set of all Enviroments
Enviroment = ID — Integer

— Eval_N: Number => Integer
Eval_Ng,, [ND] = 10*Eval_Ng,, [N] + Eval_Dg,, [D]
Eval_Ng,, [ND] = 10*Eval_Ng,, [N] + Eval_Ng,, [D]

— Domain: Integer Eval_Ng,, [D] = Eval_Dgp, [D]

— Operations:
+: Integer X Integer — Integer — Eval_E: Expression => Integer
—tInteger X Integer — Integer Eval_Eg [E."+ "E,] = Eval_Eg,, [E;:] + Eval_Eg,,[E:]
*: Integer X Integer — Integer EvaI_EEnv [N] - EvaI_NEnv [N]

FEORGETOW:
gUZVI VERSI ZTIL:Z\C

Axiomatic Semantics

Formalizes semantics via mathematical logic
Has no model for the state of the machine

Generally used to determine algorithm correctness, or other
characteristics / constraints related to an algorithm

Observations: generally not a comprehensive specification for
semantics

— Preconditions

— Postconditions

FEORGETOW:
gUZVI VERSI ZTIL:Z\C

Axiomatic Semantics

« Axiomatic semantics: define the semantics of a program,
statement, or language construct by describing the effect its
execution has on assertions about the data manipulated by the
program

« Elements of mathematical logic are used to specify the semantics,
Including logical axioms

* We consider logical assertions to be statements about the
behavior of the program that are true or false at any moment
during execution

GEORGETOWIN_,

Programming Languages, 94 UNIVERSITY
Third Editinn

Axiomatic Semantics (cont’d.)

* Preconditions: assertions about the situation just before
execution

« Postconditions: assertions about the situation just after
execution

« Standard notation is to write the precondition inside curly brackets
just before the construct and write the postcondition similarly just

after the construct:
x=A}x := x + 1 {x=A+1) (x = A}

/1

o= X o+ 1

(x=A+1]

Programming Languages, 95 g%?%%?%
Third Editinn

Axiomatic Semantics (cont’d.)

« Example: x := 1/ v
— Semantics become:
{v=0]
x =1/ v
(x=1/v]

« Such pre- and postconditions are often capable of being tested for
validity during execution, as a kind of error checking

— Conditions are usually Boolean expressions
* In C, can use the assert.h macro library for checking assertions

Programming Languages, 96 g%?%%?%
Third Editinn

Axiomatic Semantics (cont’d.)

« An axiomatic specification of the semantics of the language
construct c Is of the form (P} C (0)

— Where p and ¢ are assertions
— If p is true just before execution of ¢, then ¢ is true just after execution of c

* This representation of the action of ¢ Is not unigue and may not
completely specify all actions of ¢

« Goal-oriented activity: way to associate to C a general relation
between precondition P and postcondition Q
— Work backward from the goal to the requirements

GEORGETOWIN_,

Programming Languages, 97 UNIVERSITY
Third Editinn

Axiomatic Semantics (cont’d.)

e There is one precondition P that is the most general or
weakest assertion with the property that
(P} C{Q]}

e Called the weakest precondition of postcondition ©
and construct
* Writtenas wp(C,Q)
e Can now restate the property as
{P} C{Q}1if and only if P — wp(C,Q)

Programming Languages, 98 g%?%@?%
Third Editian

Axiomatic Semantics (cont’d.)

* We define the axiomatic semantics of language construct ¢ as the
function from assertion to iwp(C._))N

— Called a predicate transformer: takes a predicate as argument and
returns a predicate result

— Computes the weakest precondition from any postcondition
« Example assignment can now be restated as:

wp(x := 1/y, x = 1/y)={y =0}

Programming Languages, 99 g%?%%?%
Third Editinn

General Properties of wp

Predicate transformer wp(C,Q) rtain properties that are true
for almost all language constructs c

Law of the Excluded Miracle:
— There is nothing a construct C can do that wp(C.false) = false trye

Distributivity of Conjunction:

Law of MOIH‘.;;,.[[;*_P and () = wp(C,P) and wp(C,0Q)

if @ — R then wp(C,Q) — wp(C.R)

Programming Languages, 100 g%?%%?%
Third Editinn

General Properties of wp (contd.)

* Distributivity of Disjunction:
wp(C.P) or wp(C,Q) — wp(C.FP or Q)

The last two properties regard implication operator “=” and “or”
operator with equality if ¢ is deterministic
T

ne guestion of determinism adds complexity
— Care must be taken when talking about any language construct

Programming Languages, 101 g%?%%?%
Third Editinn

Axiomatic Semantics
of the Sample Language

« The specification of the semantics of expressions alone is not
commonly included in an axiomatic specification

« Assertions in an axiomatic specificator are primarily statements
about the side effects of constructs

— They are statements involving identifiers and environments

GEORGETOWIN_,

Programming Languages, 102 UNIVERSITY

Third Editinn

Axiomatic Semantics
of the Sample Language (cont’d.)

* Abstract syntax for which we will define the wp operator:

P— L
.J'L—M‘L_";'.a'L3 A
S—=I1"="E

‘if ' E ‘then’ L, ‘else’ L, ‘1’

e The first twe . ..o Loie £ do L od . specifications

— The wp operator for program p is the same as for its associated
statement-list L

Programming Languages, 103 g%?%%?%
Third Editinn

Axiomatic Semantics
of the Sample Language (cont’d.)

« Statement-lists: for lists of statements separated by a semicolon,
we have:
wp(L ;L ,Q)=wp(L . wp(L, Q))

— The weakest precondition of a series of statements is the composition of
the weakest preconditions of its parts

« Assignment statements: definition of wp Is:

_ wpl(l := E,Q) = Q|E/]] _
— IS the asseruun g, wiui & 1eplacing all free occurrences of the

identifier 1 CI£/1]

Programming Languages, 104 g%?%%?%
Third Editinn

Axiomatic Semantics
of the Sample Language (cont’d.)

« Recall that an identifier 1 Is free in a logical assertion ¢ If it IS not
bound by either the existential quantifier “there exists” or the
universal quantifier “for all”

. says that for ¢ to be true after the assignment
L:=E, Whel /72 £ 57 o it T must be true about £ before the
assignmerit 1s executeu

* If statements: our semantics of the if statement state that the

expression is true if it Is greater than 0 and false otherwise

Programming Languages, 105 g%?%%?%
Third Editinn

Axiomatic Semantics
of the Sample Language (cont’d.)

* Given the If statement: if Ethenl else L fi
* The weakest precondition is defined as:

wp(if Ethen L else L, fi, Q) =
(E>0—wp(L,Q)) and (E <0 — wp(L,,Q))

* While statements: hile Eda T oges as long as >0

« Must give an inductive definition based on the number of times
the loop executes

¢ Let be a statement that the loop executes 1
mMminatne catichnnma
times and ter 'H (wnile Edo Lo, Q)°

GEORGETOWIN_,

Programming Languages, 106 UNIVERSITY
Third Editinn

Axiomatic Semantics
of the Sample Language (cont’d.)

* Then H(while EdoL od, Q)= E<0and Q

* And H(while Edo Lod, Q) = E>0and wp(L,Q and E £ 0)
= E >0 and wp(L,H (while E do L od, Q))

Continuing, we have In general that:

H. (while E do L od, Q) =
E>0and wp(L.H(while E do L od, Q))
 Now we define:

wp(while E do L od, Q)
= there exists an i such that H(while EdoL od, ()
GEORGETOWIN(,

Programming Languages, 107 UNIVERSITY
Third Editian

Axiomatic Semantics
of the Sample Language (cont’d.)

« Note that this definition of the semantics of the while requires that
the loop terminates

* A non-terminating loop always has false as its weakest
precondition (it can never make a postcondition true)

wp(while 1 do L od, Q) = false, forall L and Q
e These semaiuus 1ul IVUPD alt ulllivuit wu udce i uic dféa of

proving correctness of programs

Programming Languages, 108 g%?%%?%

Third Editinn

Proofs of Program Correctness

* The major application of axiomatic semantics Is as a tool for
proving correctness of programs

* Recall that C satisfies a specification (P) C{Q)led
« To prove correctne” = wp(C.Q)

1. Compute wp from the axiomatic semantics and general properties of wp
2. Show that

P — wp(C.Q)

Programming Languages, 109 g%?%%?%
Third Editinn

Proofs of Program Correctness (cont’d.)

« To show that a while-statement Is correct, we only need an

approximation of its weakest precondition, that is some assertion
w such that

W — wp(while..., Q)

e |f we can show that p>w, we have also shown the correctness of

{P} while.. {Q}, Since p>w and Ww>wp (while.., Q) imply that
P2wp (while..., Q)

GEORGETOWIN_,

Programming Languages, 110 UNIVERSITY
Third Editinn

Proofs of Program Correctness (cont’d.)

* Given the loop hile E do I og [0 find an assertion w such

that these conditions are uue:
(a) Wand (E >0) - wp(L,W)
(b)y Wand (E<0)— Q
— Every time (¢c) P—-W to be true by condition (a)
— When the loop terminates, (b) says ¢ must be true
— (c) implies that w is the required approximation for

wp(while..., Q)

Programming Languages, 111 g%?%%?%
Third Editinn

Proofs of Program Correctness (cont’d.)

« An assertion w satisfying condition (a) Is called a loop invariant for
the loop, since a repetition of the loop leaves w true
— In general, loops have many invariants w
— Must find an appropriate w that also satisfies conditions (b) and (c)

Programming Languages, 112 g%?%%?%
Third Editinn

Axiomatic Semantics

* Logical assertions (predicates) are denoted in braces
{preconditions}
statements
{postconditions}

« Example
{x>0}
sum=x+1
{sum > 1}

FEORGETOW:
gUZVI VERSI ZTIL:Z\C

Axiomatic Semantics

« Axiomatic semantic specification
— Can we use axiomatic semantics to specify a language

* Look at {P} C {Q}

— We can attempt to specify C via the pre condition P and the post condition
Q. P -> Q. However, in general, this will not uniquely specify C.

— However, we can use this logical framework to determine what
preconditions are necessary to achieve some postcondition.

FEORGETOW:
gUZVI VERSI ZTIL:Z\C

Axiomatic Semantics: Example

* Note that there are many assertions P, with property {P}C{Q}
 Example

{P}
sum=x+1
{sum > 1}

Pcouldbex>0,orx>1,0orx>2, ...
It is often desired to know the most general assertion or weakest precondition P

of postcondition Q given programming construct C, such that {P}C{Q}. Also
written wp(C,Q)

FEORGETOW:
gUZVI VERSI ZTIL:Z\C

Weakest Precondition

* Example
— What is the weakest precondition P
1. {P}
y=x-—17
{y <0}

2. wp(x=x+5,x=10)

3. {P}
y = 1/x
{y > 5}

FEORGETOW:
gUZVI VERSI ZTIL:Z\C

Weakest Precondition

e Statement Lists
— wp(L;L,, Q) = wp(L,, wp(L,,Q))

 Example
1P}
y=X+35
Z=Yy*2
z <0}

Wp(y =x+5;z=y*2,Q) =wp(y=x+5wp(z=y*2, z<0))
=wp(y =x+5,y<0)
=X<-5

FEORGETOW:
gUZVI VERSI ZTIL:Z\C

Exercise: Try the following

1. {P}
y=X+5
z=y/2
{z<0}

2. {P}
y=35%*X
z=y/2
{1>z>0}

FEORGETOW:
gUZVI VERSI ZTIL:Z\C

Axiomatic Semantics for proof of program correctness

* Program correctness idea. Assume we have an assertion of the form {P} C {Q}. If we can show that P implies wp(C,{Q}),
then we can conclude that the assertion {P} C {Q} is true.

— Set up. Define Q to assure that program is “correct”.
— Next, either confirm some P implies wp(C,{Q}) , or solve for P = wp(C,{Q})

* Prove the following is swap algorithm is correct.
swapXY:
(=

« Using the weakest precondition to show that {P} C {Q},
x=Xy=Y}
=X

wp(t=x;x=y;y=t, {y=X, x=Y}) = wp(t=x;x=y, wp(y=t, {y=X, x=Y}))
= wp(t=x, wp(x=y, {t=X, x=Y}))
= wp(t=x, {t=X,y =Y}))
= {X = X, y = Y}

FEORGETOW:
gUZVI VERSI ZTIL:Z\C

Appendix

Operational Semantics: Stimple Expressions Example

— CFG:

e <e>-><n > +<n, >

e <n>->01]1]2]|...]19
— Semantic rules: as Reduction rules and logic rules

« “0” => 0 (binary representation of zero) , string zero reduced to value zero
“1” => 1 (binary representation of one)

“9" => 9 (binary representation of nine)
X{"+"'X, =>X; +X, (addition of X, and X,) , two values combined by “+” reduces to addition of the two values

n:n H " n n "
« ———————ifnresolves to n, thenn "+ "n, resolves to n," + "n,
n + n,=>nq4 + ny

n=n . T n n n
. L — if n resolves to n; then X " + "n, resolves to X " + "n
X+n=X"+"n

FEORGETOW:
gUZVI VERSI ZTIL:Z\C

Operational Semantics: Runtime Environment
Example

* To make assignments we must specify our runtime environment

— Env:identifiers — values

e CFG:

e <S> =>K<\V>=<e>,
e <e>=><n; > +<n, >
e <n>=>0[1]|2]...]9]|<id>
e <id>=>x]|y]|z
— We can modify our previous rules to include the idea of environment.

ﬁ T n n n n
« — 1 ___jfnresolves to n, thenn "+ "n, resolves to n," + "n,
n + no=nq + ns
n|Envi={n,|Env
" J>{ 1,', -) If n resolves to n,; given runtime environment Env, then then
{n +n,) Env}=>{n1 +"n, |Env}

n "4+ "n, resolvesto n;" + "n, given runtime environment Env.

FEORGETOW:
gUZVI VERSI ZTIL:Z\C

Operational Semantics: Runtime Environment
Example

« Using this notation, we can use operational semantics to
determine how to evaluate an identifier and how to assign values
to an identifier

Env(id)=X
{id| Env}=>{X|Env}

If Id maps to X given the mapping, then id evaluates to X in the environment

{id"="V|Env} => Env=Env U (id,V)
add mapping of id to V to the environment

FEORGETOW:
gUZVI VERSI ZTIL:Z\C

FEORGETOW:
glﬂVIVERSI 7*1'2(

