
COSC252: Programming Languages:

Semantic Specification

Jeremy Bolton, PhD

Adjunct Professor

Outline

I. What happens after syntactic analysis (parsing)?

II. Attribute Grammars: bridging the gap

III. Semantic Specifications

I. Operational Semantics

II. Denotational Semantics

III. Axiomatic Semantics

Parsing

• Our heartless / soulless parser is simply a recognizer
– Identifies whether a sentence is in a language

• Whether a code file abides by the rules of a programming language

• Parse errors can be identified and described at this stage.

• Observe: Many implementations of parsers, e.g. c++ compiler, can
identify errors that are more closely related to semantics (as compared
to syntax)
– How is this done?

Attribute Grammars

• Attribute Grammars are an extended form of a CFG that can account
for “other rules” that can be determined statically, but cannot be
accounted for using standard CFGs. (Knuth)
– Compatibility

• Examples (what types of errors can be identified statically, but not with
a standard CFG):
1. Variable not in scope, not accessible

2. Multiple definitions in same scope

3. Type incompatibility
• Example: function returns a float but a Node* is expected

– These are errors that are not syntactic, but can be recognized statically (before
runtime).

Static Semantics

• Static Semantics are “syntax” rules that are partially related to semantics.
– “Static” as we can check the rules before runtime, during parsing

• Definitions
• Attribute is a characteristic of a terminal or non-terminal

• Semantic Rule Functions are associated with grammar rules

• Predicate functions: state the static semantic rules associated with a grammar rule

• Attribute Grammar is a CFG with the following:
– Attributes for a CFG symbol X, A(X)

– Semantic Rule Function: for each rule in the grammar, 𝑋0 → 𝑋1𝑋2…𝑋𝑛 a semantic rule S(𝑋0)
computes the attributes of 𝑋0 given the attributes of 𝑋1 𝑋2…𝑋𝑛 , S 𝑋0 =
𝑓(𝐴 𝑋0 , 𝐴 𝑋1 , … , 𝐴(𝑋𝑛)).

– Predicate function: is a Boolean expression on the attributes of a grammar. A false value of a
predicate function implies that a static semantics rule has been violated.

• A parse tree with an attributed grammar may have attributes, semantic rules, and a
predicate function associated with each node.

• If all the attribute values of a parse tree have been computed, the parse tree is said
to be fully attributed.

• Intrinsic attributes: are attributes of terminals – leaf nodes in a parse tree

Example: Attribute Grammar

• Attribute grammar to test for compatibility
– Attributes: expectedType, actualType

– Grammar:

1. <expr> -> < 𝑛𝑢𝑚1 >+< 𝑛𝑢𝑚2 >
1. Semantic Rule:

if < 𝑛𝑢𝑚1 >. 𝑎𝑐𝑡𝑢𝑎𝑙𝑇𝑦𝑝𝑒 == 𝑖𝑛𝑡 && < 𝑛𝑢𝑚2 >. 𝑎𝑐𝑡𝑢𝑎𝑙𝑇𝑦𝑝𝑒 == 𝑖𝑛𝑡
then < 𝑒𝑥𝑝𝑟 >. 𝑎𝑐𝑡𝑢𝑎𝑙𝑇𝑦𝑝𝑒 = 𝑖𝑛𝑡

else

then < 𝑒𝑥𝑝𝑟 >. 𝑎𝑐𝑡𝑢𝑎𝑙𝑇𝑦𝑝𝑒 = other

2. Predicate Rule:

< 𝑒𝑥𝑝𝑟 >. 𝑎𝑐𝑡𝑢𝑎𝑙𝑇𝑦𝑝𝑒 ==< 𝑒𝑥𝑝𝑟 >. 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑𝑇𝑦𝑝𝑒

2. <expr> -> <num>
1. Semantic Rule: < 𝑒𝑥𝑝𝑟 >. 𝑎𝑐𝑡𝑢𝑎𝑙𝑇𝑦𝑝𝑒 = < 𝑛𝑢𝑚 >. 𝑎𝑐𝑡𝑢𝑎𝑙𝑇𝑦𝑝𝑒
2. Predicate Rule: < 𝑒𝑥𝑝𝑟 >. 𝑎𝑐𝑡𝑢𝑎𝑙𝑇𝑦𝑝𝑒 ==< 𝑒𝑥𝑝𝑟 >. 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑𝑇𝑦𝑝𝑒

3. <num> -> 0 | 1 | …| 9
1. Semantic Rule: < 𝑣𝑎𝑟 >. 𝑎𝑐𝑡𝑢𝑎𝑙𝑇𝑦𝑝𝑒 = 𝑖𝑛𝑡

actualType = int actualType = int

actualType = int actualType = int

actualType = int

Example: Attribute Grammar

• Attribute grammar to test for compatibility
– Attributes: expectedType, actualType

– Grammar:

1. <expr> -> < 𝑣𝑎𝑟1 >+< 𝑣𝑎𝑟2 >
1. Semantic Rule:

if < 𝑣𝑎𝑟1 >. 𝑎𝑐𝑡𝑢𝑎𝑙𝑇𝑦𝑝𝑒 == 𝑖𝑛𝑡 && < 𝑣𝑎𝑟2 >. 𝑎𝑐𝑡𝑢𝑎𝑙𝑇𝑦𝑝𝑒 == 𝑖𝑛𝑡
then < 𝑒𝑥𝑝𝑟 >. 𝑎𝑐𝑡𝑢𝑎𝑙𝑇𝑦𝑝𝑒 = 𝑖𝑛𝑡

else

then < 𝑒𝑥𝑝𝑟 >. 𝑎𝑐𝑡𝑢𝑎𝑙𝑇𝑦𝑝𝑒 = other

2. Predicate Rule:

< 𝑒𝑥𝑝𝑟 >. 𝑎𝑐𝑡𝑢𝑎𝑙𝑇𝑦𝑝𝑒 ==< 𝑒𝑥𝑝𝑟 >. 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑𝑇𝑦𝑝𝑒

2. <expr> -> <var>
1. Semantic Rule: < 𝑒𝑥𝑝𝑟 >. 𝑎𝑐𝑡𝑢𝑎𝑙𝑇𝑦𝑝𝑒 = < 𝑣𝑎𝑟 >. 𝑎𝑐𝑡𝑢𝑎𝑙𝑇𝑦𝑝𝑒
2. Predicate Rule: < 𝑒𝑥𝑝𝑟 >. 𝑎𝑐𝑡𝑢𝑎𝑙𝑇𝑦𝑝𝑒 ==< 𝑒𝑥𝑝𝑟 >. 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑𝑇𝑦𝑝𝑒

3. <var> -> x | y | z
1. Semantic Rule: < 𝑣𝑎𝑟 >. 𝑎𝑐𝑡𝑢𝑎𝑙𝑇𝑦𝑝𝑒 = 𝑠𝑦𝑚𝑏𝑜𝑙𝑇𝑎𝑏𝑙𝑒𝐿𝑜𝑜𝑘𝑢𝑝(< 𝑣𝑎𝑟 >. 𝑙𝑒𝑥𝑒𝑚𝑒)

actualType = int actualType = int

actualType = int actualType = int

actualType = int

Dynamic Semantics

• After lexical and syntactic analysis,

semantic analysis is performed

– Application of meaning to an input sentence

Semantics: Compiler vs Interpreter

Compiler
Interpreter

Token Sequence

Parse Tree

Semantics: from lexemes to abstractions

• In most languages
– Each lexeme, syntactic unit, of a language has

intrinsic meaning (semantics)

– This semantics of an input sentence is generally
determined in terms of the semantics of the lexemes
of the input.

• But How?

– The application of semantics is driven by the BNF
productions. This also implies that all characteristics
of a language not specified by the BNF, must be
specified in the application of semantics.

– It is intuitive that semantics are applied based on
BNF. Meaning is applied to the lexemes directly, and
meaning is assigned to non-terminal constructs in
terms of the meaning of its constituents

• Meaning is propagated up the parse tree

Semantics Example

• What is the meaning of “3 + 5”?

– What is the meaning of “3” ?
• Lexeme “3” is the 3 symbol.

• Semantics of “3”: the number 3

• Semantics in the context of

Computer PL: binary rep of 3

– What is the meaning of “+” ?
• Lexeme “+” is the plus symbol.

• Semantics of “+”: addition operation

• Semantics in the context of

Computer PL: a specific ALU operation

– What is the meaning of “5” ?

Introduction

• In previous chapters, we discussed semantics from an informal, or

descriptive, point of view

– Historically, this has been the usual approach

• There is a need for a more mathematical description of the

behavior of programs and programming languages, to make the

definition of a language so precise that:

– Programs can be proven correct in a mathematical way

– Translators can be validated to produce exactly the behavior described in

the language definition

Programming Languages,
Third Edition

12

Introduction (cont’d.)

• Developing such a mathematical system aids the designer in

discovering inconsistencies and ambiguities

• There is no single accepted method for formally defining

semantics

• Several methods differ in the formalisms used and the kinds of

intended applications

• Formal semantic descriptions are more often supplied after the

fact, and only for a portion of a language

Programming Languages,
Third Edition

13

Introduction (cont’d.)

• Formal methods have begun to be used as part of the

specification of complex software projects, including language

translators

• Three principal methods to describe semantics formally:

– Operational semantics

– Denotational semantics

– Axiomatic semantics

Programming Languages,
Third Edition

14

Semantic Specification

• Semantic Specification determines how meaning is applied to a sentence of
a language
– A universally standardized form of semantic specification does not exist, but there are 3

general categories
• Operational Semantics: describes the semantics of a language in terms of the state of the underlying

machine

• Denotational Semantics: describes the semantics of a language in terms of functions defined on
programs and program constructs

• Axiomatic Semantics: Uses mathematical logic to formalize characteristics of a program.

• Properties of a good semantic specification
– It must be complete. Each input program that abides by the syntax should have

appropriate semantics as defined by the specification

– It must be consistent. Each input program must not have two conflicting semantics.

Introduction (cont’d.)

• Operational semantics:

– Defines a language by describing its actions in terms of the operators of

an actual or hypothetical machine

– Requires that the operations of the machine used in the description are

also precisely defined

– A mathematical model called a “reduction machine” is often used for this

purpose (similar in spirit to the notion of a Turing machine)

Programming Languages,
Third Edition

16

Introduction (cont’d.)

• Denotational semantics:

– Uses mathematical functions on programs and program components to

specify semantics

– Programs are translated into functions about which properties can be

proved using standard mathematical theory of functions

Programming Languages,
Third Edition

17

Introduction (cont’d.)

• Axiomatic semantics:

– Applies mathematical logic to language definition

– Assertions, or predicates, are used to describe desired outcomes and

initial assumptions for program

– Language constructs are associated with predicate transforms to create

new assertions out of old ones

– Transformers can be used to prove that the desired outcome follows from

the initial conditions

– Is a method aimed specifically at correctness proofs

Programming Languages,
Third Edition

18

• All these methods are syntax-directed

– Semantic definitions are based on a context-free grammar or Backus-

Naur Form (BNF) rules

• Formal semantics must then define all properties of a language

that are not specified by the BNF

– Includes static properties such as static types and declaration before use

• Formal methods can describe both static and dynamic properties

• We will view semantics as everything not specified by the BNF

Introduction (cont’d.)

Programming Languages,
Third Edition

19

Introduction (cont’d.)

• Two properties of a specification are essential:

– Must be complete: every correct, terminating program must have

associated semantics given by the rules

– Must be consistent: the same program cannot be given two different,

conflicting semantics

• Additionally, it is advantageous for the semantics to be minimal, or

independent

– No rule is derivable from the other rules

Programming Languages,
Third Edition

20

Introduction (cont’d.)

• Formal specifications written in operational or denotational style

have an additional useful property:

– They can be translated relatively easily into working programs in a

language suitable for prototyping, such as Prolog, ML, or Haskell

Programming Languages,
Third Edition

21

Operational Semantics

• Goal: Describe semantics by specifying effects on underlying machine.

• Semantic rules are often presented in the form of reduction or logical

rules

• Observations

– The state underlying a machine has lots of details / is complex. This approach

may not be practical.

– Rather than tracking the state of a machine at a low level, this approach can be

applied at an intermediate level of the computing abstraction.

• However, this makes operational semantics difficult to formalize as the machine truly

depends upon its lower level representation.

A Sample Small Language

• The basic sample language to be used is a version of the integer

expression language used in Ch. 6

• BNF rules for this language:

Programming Languages,
Third Edition

23

A Sample Small Language (cont’d.)

• This results in simple semantics:

– The value of an expression is a complete representation of its meaning: 2

+ 3 * 4 means 14

• Complexity will now be added to this language in stages

• In the first stage, we add variables, statements, and assignments

– A program is a list of statements separated by semicolons

– A statement is an assignment of an expression to an identifier

Programming Languages,
Third Edition

24

A Sample Small Language (cont’d.)

Programming Languages,
Third Edition

25

A Sample Small Language (cont’d.)

• Semantics are now represented by a set of values corresponding
to identifiers whose values have been defined, or bound, by
assignments

• Example:

– Results in bindings b=20 and a=15 when it finishes

– Set of values representing the semantics of the program is {a=15, b=20}

Programming Languages,
Third Edition

26

A Sample Small Language (cont’d.)

• Such a set is essentially a function from identifiers to integer

values, with all unassigned identifiers having a value undefined

– This function is called an environment, denoted by:

• Note that the Env function given by this example program can be

defined as:

Programming Languages,
Third Edition

27

A Sample Small Language (cont’d.)

• The operation of looking up the value of an identifier I in an
environment Env is Env(I)

• Empty environment is denoted by Env0

• An environment as defined here incorporates both the symbol table
and state functions

• Such environments:
– Do not allow pointer values

– Do not include scope information

– Do not permit aliases

Programming Languages,
Third Edition

28

A Sample Small Language (cont’d.)

• For this view of the semantics of a program represented by a

resulting final environment:

– Consistency: we cannot derive two different final environments for the

same program

– Completeness: we must be able to derive a final environment for every

correct, terminating program

• We now add if and while control statements

– Syntax of the if and while statements borrows the Algol68 convention

of writing reserved words backward, instead of begin and end blocks

Programming Languages,
Third Edition

29

A Sample Small Language (cont’d.)

Programming Languages,
Third Edition

30

A Sample Small Language (cont’d.)

• Meaning of an if-stmt:

– expr is evaluated in the current environment

– If it evaluates to an integer greater than 0, then stmt-list after then is

executed

– If not, stmt-list after the else is executed

• Meaning of a while-stmt:

– As long as expr evaluates to a quantity greater than 0, stmt-list is

repeatedly executed and expr is reevaluated

• Note that these semantics are nonstandard!

Programming Languages,
Third Edition

31

A Sample Small Language (cont’d.)

• Example program in this language:

• Semantics are given by the final environment:

Programming Languages,
Third Edition

32

A Sample Small Language (cont’d.)

• Difficult to provide semantics for loop constructs
– We will not always give a complete solution

• Formal semantic methods often use a simplified version of syntax
from that given

• An ambiguous grammar can be used to define semantics
because:
– Parsing step is assumed to have already taken place

– Semantics are defined only for syntactically correct constructs

• Nonterminal symbols can be replaced by single letters

Programming Languages,
Third Edition

33

A Sample Small Language (cont’d.)

• Nonterminal symbols can be replaced by single letters

– May be thought to represent strings of tokens or nodes in a parse tree

• Such a syntactic specification is sometimes called an abstract

syntax

Programming Languages,
Third Edition

34

A Sample Small Language (cont’d.)

• Abstract syntax for our sample language:

Programming Languages,
Third Edition

35

A Sample Small Language (cont’d.)

• To define the semantics of each symbol, we define the semantics

of each right-hand side of the abstract syntax rules in terms of the

semantics of their parts

– Thus, syntax-directed semantic definitions are recursive in nature

• Tokens in the grammar are enclosed in quotation marks

Programming Languages,
Third Edition

36

Operational Semantics

• Operational semantics specify how an arbitrary program is to be

executed on a machine whose operation is completely known

• Definitional interpreters or compilers: translators for the

language written in the machine code of the chosen machine

• Operational semantics can define the behavior of programs in

terms of an abstract machine

Programming Languages,
Third Edition

37

Operational Semantics (cont’d.)

• Reduction machine: an abstract machine whose control
operates directly on a program to reduce it to its semantic “value”

• Example: reduction of the expression (3+4)*5

• To specify the operational semantics, we give reduction rules
that specify how the control reduces constructs of the language to
a value

Programming Languages,
Third Edition

38

Logical Inference Rules

• Inference rules in logic are written in the form:

– If the premise is true, the conclusion is also true

• Inference rule for the commutative property of addition:

• Inference rules are used to express the basic rules of

prepositional and predicate calculus:

Programming Languages,
Third Edition

39

Logical Inference Rules (cont’d.)

• Axioms: inference rules with no premise

– They are always true

– Example:

– Axioms can be written as an inference rule with an empty premise:

– Or without the horizontal line:

Programming Languages,
Third Edition

40

Reduction Rules
for Integer Arithmetic Expressions

• Structured operational semantics: the notational form for

writing reduction rules that we will use

• Semantics rules are based on the abstract syntax for expressions:

• The notation states that expression E reduces to

expression E1 by some reduction rule

Programming Languages,
Third Edition

41

Reduction Rules for Expressions

1. Collect all rules for reducing

digits to values in this one rule

– All are axioms

Programming Languages,
Third Edition

42

Reduction Rules for Expressions (cont’d.)

2. Collect all rules for reducing numbers to values in this one rule

– All are axioms

Programming Languages,
Third Edition

43

10.

11.

12.

13.

14.

Reduction Rules for Expressions (cont’d.)

3.

4.

5.

6.

7.

8.

9.

Programming Languages,
Third Edition

44

Reduction Rules for Expressions (cont’d.)

• Rules 1 through 6 are all axioms

• Rules 1 and 2 express the reduction of digits and numbers to
values
– Character ‘0’ (a syntactic entity) reduces to the value 0 (a semantic

entity)

• Rules 3 to 5 allow an expression consisting of two values and an
operator symbol to be reduced to a value by applying the
appropriate operation whose symbol appears in the expression

• Rule 6 says parentheses around an expression can be dropped

Programming Languages,
Third Edition

45

Reduction Rules for Expressions (cont’d.)

• The rest of the reduction rules are inferences that allow the

reduction machine to combine separate reductions together to

achieve further reductions

• Rule 14 expresses the general fact that reductions can be

performed stepwise (sometimes called the transitivity rule for

reductions)

Programming Languages,
Third Edition

46

Reduction Rules for Expressions (cont’d.)

• Applying these reduction rules to the expression:

• First reduce the expression: 3 + 4:

• Thus, by rule 14, we have:

Programming Languages,
Third Edition

47

Reduction Rules for Expressions (cont’d.)

• Continuing:

• Now reduce the expression 2*(3+4) as follows:

• And finally:

Programming Languages,
Third Edition

48

Environments and Assignment

• Abstract syntax for our sample language:

Programming Languages,
Third Edition

49

Environments and Assignment (cont’d.)

• We want to extend the operational semantics to include
environments and assignments

• Must include the effect of assignments on the storage of the
abstract machine

• Our view of storage: an environment that is a function from
identifiers to integer values (including the undefined value):

• The notation indicates that expression E is evaluated in
the presence of environment Env

Programming Languages,
Third Edition

50

Environments and Assignment (cont’d.)

• Now our reduction rules change to include environments

• Example: rule 7 with environments becomes:

– This states that if E reduces to E1 in the presence of Env, then E ‘+’ E2

reduces to E1 ‘+’ E2 in the same environment

Programming Languages,
Third Edition

51

Environments and Assignment (cont’d.)

• The one case of evaluation that explicitly involves the environment is
when an expression is an identifier I, giving a new rule:

15.

This states that if the value of identifier I is V in Env, then I reduces to V in the

presence of Env

• Next, we add assignment statements and statement sequences to the

reduction rules

Programming Languages,
Third Edition

52

Environments and Assignment (cont’d.)

• Statements must reduce to environments instead of integer

values, since they create and change environments, giving this

rule:

16.

This states that the assignment of the value V to I in Env reduces to a

new environment where I is equal to V

• Reduction of expressions within assignments uses this rule:

17.

Programming Languages,
Third Edition

53

Environments and Assignment (cont’d.)

• A statement sequence reduces to an environment formed by

accumulating the effect of each assignment, giving this rule:

18.

• Finally, a program is a statement sequence with no prior

environment, giving this rule:

19.

It reduces to the effect it has on the empty starting environment

Programming Languages,
Third Edition

54

Environments and Assignment (cont’d.)

• Rules for reducing identifier expressions are completely

analogous to those for reducing numbers

• Sample program to be reduced to an environment:

• To simplify the reduction, we will suppress the use of quotes to

differentiate between syntactic and semantic entities

Programming Languages,
Third Edition

55

Environments and Assignment (cont’d.)

• First, by rule 19, we have:

• Also, by rules 3, 17, and 16:

• Then by rule 18:

Programming Languages,
Third Edition

56

Environments and Assignment (cont’d.)

• Similarly, by rules 15, 9, 5, 17, and 16:

• Then by rule 18 :

• Finally, by a similar application of rules:

Programming Languages,
Third Edition

57

Control

• Next we add if and while statements, with this abstract syntax:

• Reduction rules for if statements include:

20.

Programming Languages,
Third Edition

58

Control (cont’d.)

Programming Languages,
Third Edition

59

21.

22.

• Reduction rules for while statements include:

23.

24.

Implementing Operational Semantics in a
Programming Language

• It is possible to implement operational semantic rules directly as a

program to get an executable specification

• This is useful for two reasons:

– Allows us to construct a language interpreter directly from a formal

specification

– Allows us to check the correctness of the specification by testing the

resulting interpreter

• A possible Prolog implementation for the reduction rules of our

sample language will be used

Programming Languages,
Third Edition

60

Implementing Operational Semantics in a
Programming Language (cont’d.)

• Example: 3*(4+5) in Prolog:

• Example: this program:

– Can be represented in Prolog as:

• This is actually a tree representation, and no parentheses are
necessary to express grouping

Programming Languages,
Third Edition

61

Implementing Operational Semantics in a
Programming Language (cont’d.)

• We can write reduction rules (ignoring environment rules for the

moment)

• A general reduction rule for expressions:

– Where X is any arithmetic expression (in abstract syntax) and Y is the

result of a single reduction step applied to X

• Example:

– Rule 3 can be written as:

Programming Languages,
Third Edition

62

Implementing Operational Semantics in a
Programming Language (cont’d.)

• Rule 7 becomes:

• Rule 10 becomes:

• Rule 14 presents a problem if written as:

– Infinite recursive loops will result

• Instead, write rule 14 as two rules:

Programming Languages,
Third Edition

63

Implementing Operational Semantics in a
Programming Language (cont’d.)

• Now extend to environments and control: a pair <E|Env> can be

thought of as a configuration and written in Prolog as
config(E,Env)

• Rule 15 then becomes:

– Where atom(I) tests for a variable and lookup operation finds values in

an environment

Programming Languages,
Third Edition

64

Implementing Operational Semantics in a
Programming Language (cont’d.)

• Rule 16 becomes:

– Where update inserts the new value V for I into Env, yielding Env1

• Any dictionary structure for which lookup and update can be

defined can be used to represent an environment in this code

Programming Languages,
Third Edition

65

Denotational Semantics

• Specifies semantics in terms of functions from programs and program
constructs to semantics

• Observations:
– Formal specification based on recursive function theory

– Most rigorous

– Most widely used

• Basic Idea
– Define functions that map programming

constructs to mathematical constructs. If we

can formalize the semantics using mathematical

constructs, we can then define a formal semantics

for a language

Denotational Semantics

• A denotational semantics consists of

1. A syntactic domain: grammar productions

2. Semantic domain: sets on which the semantic functions take their values

3. Semantic functions: mapping from productions to values

Denotational Semantics

• Denotational semantics use functions to describe the semantics of

a programming language

– A function associates semantic values to syntactically correct constructs

• Example: a function that maps an integer arithmetic expression to

its value:

– Syntactic domain: domain of a semantic function

– Semantic domain: range of a semantic function, which is a mathematical

structure

Programming Languages,
Third Edition

68

Denotational Semantics (cont’d.)

• Example: val(2+3*4) = 14

– Set of integers is the semantic domain

– val maps the syntactic construct 2+3*4 to the semantic value 14; it denotes the
value 14

• A program can be viewed as something that receives input and
produces output

• Its semantics can be represented by a function:

– Semantic domain is a set of functions from input to output

– Semantic value is a function

Programming Languages,
Third Edition

69

Denotational Semantics (cont’d.)

• Since semantic domains are often functional domains, and values of

semantic functions will be functions themselves, we will assume the

symbol “” is right associative and drop the parentheses:

• Three parts of a denotational definition of a program:

– Definition of the syntactic domains

– Definition of the semantic domains

– Definition of the semantic functions themselves (sometimes called valuation

functions)

Programming Languages,
Third Edition

70

Syntactic Domains

• Syntactic domains:

– Are defined in denotational definition using notation similar to abstract

syntax

– Are viewed as sets of syntax trees whose structure is given by grammar

rules that recursively define elements of the set

• Example:

Programming Languages,
Third Edition

71

Semantic Domains

• Semantic domains: sets in which semantic functions take their

values

– Like syntactic domains but may also have additional mathematical

structure, depending on use

• Example: integers have arithmetic operations

• Such domains are algebras, which are specified by listing their

functions and properties

– Denotational definition of semantic domains lists the sets and operations

but usually omits the properties of the operations

Programming Languages,
Third Edition

72

Semantic Domains (cont’d.)

• Domains sometimes need special mathematical structures that

are the subject of domain theory

– Term domain is sometimes reserved for an algebra with the structure of a

complete partial order

– This structure is needed to define the semantics of recursive functions and

loops

• Example: semantic domain of the integers:

Programming Languages,
Third Edition

73

Semantic Functions

• Semantic function: specified for each syntactic domain

• Each function is given a different name based on its associated

syntactic domain, usually with boldface letters

• Example: value function from the syntactic domain Digit to the

integers:

Programming Languages,
Third Edition

74

Semantic Functions (cont’d.)

• Value of a semantic function is specified recursively on the trees

of syntactic domains using the structure of grammar rules

• Semantic equation corresponding to each grammar rule is given

• Example: grammar rule for digits:

– Gives rise to syntax tree nodes:

Programming Languages,
Third Edition

75

Semantic Functions (cont’d.)

• Example (cont’d.):
– Semantic function D is defined by these semantic equations representing

the value of each leaf:

– This notation is shorted to the following:

– Double brackets [[…]] indicate that the argument is a syntactic entity
consisting of a syntax tree node with the listed arguments as children

Programming Languages,
Third Edition

76

Semantic Functions (cont’d.)

• Example: semantic function from numbers to integers:

– Is based on the syntax:

– And is given by these equations:

– Where [[ND]] refers to the tree node

– And [[D]] refers to the node

Programming Languages,
Third Edition

77

Denotational Semantics of Integer Arithmetic
Expressions

Programming Languages,
Third Edition

78

Denotational Semantics of Integer Arithmetic
Expressions (cont’d.)

• Using these equations to obtain the semantic value of an

expression, we compute or more precisely,

Programming Languages,
Third Edition

79

Environments and Assignments

• First extension to our sample language adds identifiers,

assignment statements, and environments

• Environments are functions from identifiers to integers (or

undefined)

• Set of environments becomes a new semantic domain:

Programming Languages,
Third Edition

80

Environments and Assignments (cont’d.)

• In denotational semantics, the value undef is called bottom, from

the theory of partial orders, and is denoted by the symbol

• Semantic domains with this value are called lifted domains and

are subscripted with the symbol

• The initial environment defined previously can now be defined as:

• Semantic value of an expression becomes a function from

environments to integers:

Programming Languages,
Third Edition

81

Environments and Assignments (cont’d.)

• The value of an identifier is its value in the environment provided
as a parameter:

• For a number, the environment is immaterial:

• For statements and statement lists, the semantic values are
functions from environments to environments
– The “&” notation is used to add values to functions that we have used in

previous sections

Programming Languages,
Third Edition

82

Programming Languages,
Third Edition

83

Programming Languages,
Third Edition

84

Programming Languages,
Third Edition

85

Denotational Semantics
of Control Statements

• if and while statements have this abstract syntax:

• Denotational semantics is given by a function from environments

to environments:

• Semantic function of the if statement:

Programming Languages,
Third Edition

86

Denotational Semantics
of Control Statements (cont’d.)

• Semantic function for the while statement is more difficult

– Can construct a function as a set by successively extending it to a least-

fixed-point solution, the “smallest” solution satisfying the equation

– Here, F will be a function on the semantic domain of environments

• Must also deal with nontermination in loops by assigning the

“undefined” value

Programming Languages,
Third Edition

87

Denotational Semantics
of Control Statements (cont’d.)

• The domain of environments becomes a lifted domain:

• Semantic function for statements is defined as:

Programming Languages,
Third Edition

88

Implementing Denotational Semantics in a
Programming Language

• We will use Haskell for a possible implementation of the

denotational functions of the sample language

• Abstract syntax of expressions:

• We ignore the semantics of numbers and simply let values be

integers

Programming Languages,
Third Edition

89

Implementing Denotational Semantics in a
Programming Language (cont’d.)

• Assume we have defined an Environment type with a lookup and

update operation

• The E evaluation function can be defined as:

Programming Languages,
Third Edition

90

Another: Denotation Semantics Example

• Example Grammar (includes int
definition)

• 𝐸 → 𝐸1" + "𝐸2 𝐸1" − " 𝐸2 𝐸1"∗" 𝐸2| 𝑁

• 𝑁 → 𝑁𝐷 | 𝐷

• 𝐷 → "0" "1" "2"|… |"9“

• Semantic Domains:
– Domain: Integer

– Operations:

• +: 𝐼𝑛𝑡𝑒𝑔𝑒𝑟 𝑋 𝐼𝑛𝑡𝑒𝑔𝑒𝑟 → 𝐼𝑛𝑡𝑒𝑔𝑒𝑟

• −: 𝐼𝑛𝑡𝑒𝑔𝑒𝑟 𝑋 𝐼𝑛𝑡𝑒𝑔𝑒𝑟 → 𝐼𝑛𝑡𝑒𝑔𝑒𝑟

• ∗: 𝐼𝑛𝑡𝑒𝑔𝑒𝑟 𝑋 𝐼𝑛𝑡𝑒𝑔𝑒𝑟 → 𝐼𝑛𝑡𝑒𝑔𝑒𝑟

• Semantic Functions:
– Eval_D: Digit => Integer

Eval_D[“0”] = 0

Eval_D[“1”] = 1

…

– Eval_N: Number => Integer
Eval_N[ND] = 10*Eval_N[N] + Eval_D[D]

Eval_N[ND] = 10*Eval_N[N] + Eval_N[D]

Eval_N[D] = Eval_D[D]

– Eval_E: Expression => Integer
Eval_E[𝐸1" + "𝐸2] = Eval_E[𝐸1] + Eval_E[𝐸2]
Eval_E[𝑁] = Eval_N[N]

Denotation Semantics: Example with runtime
environment

• Environment is often formalized as a parameter to the
semantic functions

• Example Grammar (includes int definition)
• S→ 𝐼𝐷" = "𝐸;

• 𝐸 → 𝐸1" + "𝐸2 𝐸1" − " 𝐸2 𝐸1"∗" 𝐸2| 𝑁

• 𝑁 → 𝑁𝐷 | 𝐷

• 𝐷 → "0" "1" "2"| … |"9“
• ID → {[a-z]}

• Semantic Domains:
– Domain: Set of all Enviroments

• 𝐸𝑛𝑣𝑖𝑟𝑜𝑚𝑒𝑛𝑡 = 𝐼𝐷 → 𝐼𝑛𝑡𝑒𝑔𝑒𝑟

– Domain: Integer

– Operations:

• +: 𝐼𝑛𝑡𝑒𝑔𝑒𝑟 𝑋 𝐼𝑛𝑡𝑒𝑔𝑒𝑟 → 𝐼𝑛𝑡𝑒𝑔𝑒𝑟

• −: 𝐼𝑛𝑡𝑒𝑔𝑒𝑟 𝑋 𝐼𝑛𝑡𝑒𝑔𝑒𝑟 → 𝐼𝑛𝑡𝑒𝑔𝑒𝑟

• ∗: 𝐼𝑛𝑡𝑒𝑔𝑒𝑟 𝑋 𝐼𝑛𝑡𝑒𝑔𝑒𝑟 → 𝐼𝑛𝑡𝑒𝑔𝑒𝑟

• Semantic Functions:

– Eval_SEnv [S]: S => Environment
• Eval_SEnv [S] = Env ∪ (ID, Eval_EEnv [E])

– Eval_D: Digit => Integer
Eval_DEnv[“0”] = 0

Eval_DEnv [“1”] = 1

…

– Eval_N: Number => Integer
Eval_NEnv [ND] = 10*Eval_NEnv [N] + Eval_DEnv [D]

Eval_NEnv [ND] = 10*Eval_NEnv [N] + Eval_NEnv [D]

Eval_NEnv [D] = Eval_DEnv [D]

– Eval_E: Expression => Integer
Eval_EEnv [𝐸1" + "𝐸2] = Eval_EEnv [𝐸1] + Eval_EEnv [𝐸2]
Eval_EEnv [𝑁] = Eval_NEnv [N]

Axiomatic Semantics

• Formalizes semantics via mathematical logic

• Has no model for the state of the machine

• Generally used to determine algorithm correctness, or other

characteristics / constraints related to an algorithm

• Observations: generally not a comprehensive specification for

semantics

– Preconditions

– Postconditions

Axiomatic Semantics

• Axiomatic semantics: define the semantics of a program,
statement, or language construct by describing the effect its
execution has on assertions about the data manipulated by the
program

• Elements of mathematical logic are used to specify the semantics,
including logical axioms

• We consider logical assertions to be statements about the
behavior of the program that are true or false at any moment
during execution

Programming Languages,
Third Edition

94

Axiomatic Semantics (cont’d.)

• Preconditions: assertions about the situation just before

execution

• Postconditions: assertions about the situation just after

execution

• Standard notation is to write the precondition inside curly brackets

just before the construct and write the postcondition similarly just

after the construct:

or

Programming Languages,
Third Edition

95

Axiomatic Semantics (cont’d.)

• Example:

– Semantics become:

• Such pre- and postconditions are often capable of being tested for

validity during execution, as a kind of error checking

– Conditions are usually Boolean expressions

• In C, can use the assert.h macro library for checking assertions

Programming Languages,
Third Edition

96

Axiomatic Semantics (cont’d.)

• An axiomatic specification of the semantics of the language
construct C is of the form
– Where P and Q are assertions

– If P is true just before execution of C, then Q is true just after execution of C

• This representation of the action of C is not unique and may not
completely specify all actions of C

• Goal-oriented activity: way to associate to C a general relation
between precondition P and postcondition Q
– Work backward from the goal to the requirements

Programming Languages,
Third Edition

97

Axiomatic Semantics (cont’d.)

Programming Languages,
Third Edition

98

• There is one precondition P that is the most general or
weakest assertion with the property that

• Called the weakest precondition of postcondition Q
and construct C

• Written as

• Can now restate the property as

Axiomatic Semantics (cont’d.)

• We define the axiomatic semantics of language construct C as the

function from assertion to assertion

– Called a predicate transformer: takes a predicate as argument and

returns a predicate result

– Computes the weakest precondition from any postcondition

• Example assignment can now be restated as:

Programming Languages,
Third Edition

99

General Properties of wp

• Predicate transformer has certain properties that are true
for almost all language constructs C

• Law of the Excluded Miracle:

– There is nothing a construct C can do that will make false into true

• Distributivity of Conjunction:

• Law of Monotonicity:

Programming Languages,
Third Edition

100

General Properties of wp (cont’d.)

• Distributivity of Disjunction:

• The last two properties regard implication operator “” and “or”
operator with equality if C is deterministic

• The question of determinism adds complexity

– Care must be taken when talking about any language construct

Programming Languages,
Third Edition

101

Axiomatic Semantics
of the Sample Language

• The specification of the semantics of expressions alone is not

commonly included in an axiomatic specification

• Assertions in an axiomatic specificator are primarily statements

about the side effects of constructs

– They are statements involving identifiers and environments

Programming Languages,
Third Edition

102

Axiomatic Semantics
of the Sample Language (cont’d.)

• Abstract syntax for which we will define the wp operator:

• The first two rules do not need separate specifications

– The wp operator for program P is the same as for its associated

statement-list L

Programming Languages,
Third Edition

103

Axiomatic Semantics
of the Sample Language (cont’d.)

• Statement-lists: for lists of statements separated by a semicolon,

we have:

– The weakest precondition of a series of statements is the composition of

the weakest preconditions of its parts

• Assignment statements: definition of wp is:

– is the assertion Q, with E replacing all free occurrences of the

identifier I in Q

Programming Languages,
Third Edition

104

Axiomatic Semantics
of the Sample Language (cont’d.)

• Recall that an identifier I is free in a logical assertion Q if it is not
bound by either the existential quantifier “there exists” or the
universal quantifier “for all”

• says that for Q to be true after the assignment
I:=E, whatever Q says about I must be true about E before the
assignment is executed

• If statements: our semantics of the if statement state that the
expression is true if it is greater than 0 and false otherwise

Programming Languages,
Third Edition

105

Axiomatic Semantics
of the Sample Language (cont’d.)

• Given the if statement:

• The weakest precondition is defined as:

• While statements: executes as long as E>0

• Must give an inductive definition based on the number of times
the loop executes

• Let be a statement that the loop executes I
times and terminates satisfying Q

Programming Languages,
Third Edition

106

Axiomatic Semantics
of the Sample Language (cont’d.)

• Then

• And

• Continuing, we have in general that:

• Now we define:

Programming Languages,
Third Edition

107

Axiomatic Semantics
of the Sample Language (cont’d.)

• Note that this definition of the semantics of the while requires that

the loop terminates

• A non-terminating loop always has false as its weakest

precondition (it can never make a postcondition true)

• These semantics for loops are difficult to use in the area of

proving correctness of programs

Programming Languages,
Third Edition

108

Proofs of Program Correctness

• The major application of axiomatic semantics is as a tool for

proving correctness of programs

• Recall that C satisfies a specification provided

• To prove correctness:

1. Compute wp from the axiomatic semantics and general properties of wp

2. Show that

Programming Languages,
Third Edition

109

Proofs of Program Correctness (cont’d.)

• To show that a while-statement is correct, we only need an

approximation of its weakest precondition, that is some assertion
W such that

• If we can show that PW, we have also shown the correctness of

{P} while… {Q}, since PW and Wwp(while…,Q) imply that
Pwp(while…,Q)

Programming Languages,
Third Edition

110

Proofs of Program Correctness (cont’d.)

• Given the loop we need to find an assertion W such
that these conditions are true:

– Every time the loop executes, W continues to be true by condition (a)

– When the loop terminates, (b) says Q must be true

– (c) implies that W is the required approximation for

Programming Languages,
Third Edition

111

Proofs of Program Correctness (cont’d.)

• An assertion W satisfying condition (a) is called a loop invariant for

the loop, since a repetition of the loop leaves W true

– In general, loops have many invariants W

– Must find an appropriate W that also satisfies conditions (b) and (c)

Programming Languages,
Third Edition

112

Axiomatic Semantics

• Logical assertions (predicates) are denoted in braces

{preconditions}

statements

{postconditions}

• Example

{x > 0}

sum = x + 1

{sum > 1}

Axiomatic Semantics

• Axiomatic semantic specification

– Can we use axiomatic semantics to specify a language

• Look at {P} C {Q}

– We can attempt to specify C via the pre condition P and the post condition

Q. P -> Q. However, in general, this will not uniquely specify C.

– However, we can use this logical framework to determine what

preconditions are necessary to achieve some postcondition.

Axiomatic Semantics: Example

• Note that there are many assertions P, with property {P}C{Q}

• Example

{P}

sum = x + 1

{sum > 1}

P could be x > 0, or x > 1, or x > 2, …

It is often desired to know the most general assertion or weakest precondition P
of postcondition Q given programming construct C, such that {P}C{Q}. Also
written wp(C,Q)

Weakest Precondition

• Example
– What is the weakest precondition P

1. {P}

y = x – 7

{y < 0}

2. wp(x = x + 5 , x = 10)

3. {P}

y = 1/x

{y > 5}

Weakest Precondition

• Statement Lists
– wp(L1;L2, Q) = wp(L1, wp(L2,Q))

• Example
{P}

y = x + 5

z = y * 2

{z < 0}

wp(y = x+5; z = y * 2, Q) = wp(y = x + 5, wp(z = y * 2 , z<0))

= wp(y = x + 5, y < 0)

= x < -5

Exercise: Try the following

1. {P}

y = x + 5

z = y / 2

{z < 0}

2. {P}

y = 5 * x

z = y / 2

{1 > z > 0}

Axiomatic Semantics for proof of program correctness

• Program correctness idea. Assume we have an assertion of the form {P} C {Q}. If we can show that P implies wp(C,{Q}),
then we can conclude that the assertion {P} C {Q} is true.

– Set up. Define Q to assure that program is “correct”.

– Next, either confirm some P implies wp(C,{Q}) , or solve for P = wp(C,{Q})

• Prove the following is swap algorithm is correct.
swapXY:

t = x

x = y

y = t

• Using the weakest precondition to show that {P} C {Q},
{x = X, y = Y}

t = x

x = y

y = t

{y = X, x = Y}

wp(t=x;x=y;y=t, {y=X, x=Y}) = wp(t=x;x=y, wp(y=t, {y=X, x=Y}))

= wp(t=x, wp(x=y, {t = X, x=Y}))

= wp(t=x, {t = X, y = Y}))

= {x = X, y = Y}

Appendix

Operational Semantics: Simple Expressions Example

– CFG:

• <e> -> < 𝑛1 > +< 𝑛2 >

• <n> -> 0 | 1 | 2 | … | 9

– Semantic rules: as Reduction rules and logic rules

• “0” => 0 (binary representation of zero) , string zero reduced to value zero

• “1” => 1 (binary representation of one)

• …

• “9” => 9 (binary representation of nine)

• 𝑋1"+"𝑋2 => X1 + 𝑋2 (addition of X1 𝑎𝑛𝑑 𝑋2) , two values combined by “+” reduces to addition of the two values

•
𝑛⇒𝑛1

𝑛 "+"𝑛2⇒𝑛1"+"𝑛2
if n resolves to 𝑛1 then 𝑛 " + "𝑛2 resolves to 𝑛1" + "𝑛2

•
𝑛⇒𝑛1

𝑋+𝑛1⇒𝑋 "+"𝑛
if n resolves to 𝑛1 then X " + "𝑛1 resolves to X " + "𝑛

Operational Semantics: Runtime Environment
Example

• To make assignments we must specify our runtime environment

– 𝐸𝑛𝑣: 𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑟𝑠 → 𝑣𝑎𝑙𝑢𝑒𝑠

• CFG:
• <s> => <v> = <e> ;

• <e> => < 𝑛1 > +< 𝑛2 >
• <n> => 0 | 1 | 2 | … | 9 | <id>

• <id> => x | y | z

– We can modify our previous rules to include the idea of environment.

•
𝑛⇒𝑛1

𝑛 "+"𝑛2⇒𝑛1"+"𝑛2
if n resolves to 𝑛1 then 𝑛 " + "𝑛2 resolves to 𝑛1" + "𝑛2

•
𝑛 𝐸𝑛𝑣 ⇒{𝑛1|𝐸𝑛𝑣}

{𝑛 +𝑛2 𝐸𝑛𝑣 ⇒{𝑛1"+"𝑛2|𝐸𝑛𝑣}
if n resolves to 𝑛1 given runtime environment Env, then then

𝑛 " + "𝑛2 resolves to 𝑛1" + "𝑛2 given runtime environment Env.

Operational Semantics: Runtime Environment
Example

• Using this notation, we can use operational semantics to

determine how to evaluate an identifier and how to assign values

to an identifier
𝐸𝑛𝑣 𝑖𝑑 =𝑋

{𝑖𝑑 𝐸𝑛𝑣 ⇒{𝑋|𝐸𝑛𝑣}

if id maps to X given the mapping, then id evaluates to X in the environment

{𝑖𝑑 "=" V | Env} => Env = Env ∪ 𝑖𝑑, 𝑉

add mapping of id to V to the environment

