
COSC252: Programming Languages:

Abstraction and OOP

Jeremy Bolton, PhD

Asst Teaching Professor

Copyright © 2015 Pearson. All rights reserved.

Copyright © 2015 Pearson. All rights reserved.

1-2

Topics

• The Concept of Abstraction
– Introduction to Data Abstraction

– Design Issues for Abstract Data Types

– Language Examples

– Parameterized Abstract Data Types

– Encapsulation Constructs
• Naming Encapsulations

• Object-Oriented Programming
– Design Issues for Object-Oriented Languages

– Examples for Object-Oriented Programming in C++

– Examples for Object-Oriented Programming in Java

• Implementation of Object-Oriented Constructs

Introduction

• Object-oriented programming languages began in the 1960s with

Simula

– Goals were to incorporate the notion of an object, with properties that

control its ability to react to events in predefined ways

– Factor in the development of abstract data type mechanisms

– Crucial to the development of the object paradigm itself

Programming Languages,
Third Edition

3

1-4

The Concept of Abstraction

• An abstraction is a view or representation of an entity that
includes only the most significant attributes

• The concept of abstraction is fundamental in programming (and
computer science)

• Nearly all programming languages support process abstraction
with subprograms

• Nearly all programming languages designed since 1980 support
data abstraction

1-5

Introduction to Data Abstraction

• An abstract data type is a user-defined data
type that satisfies the following two conditions:

1. The representation of objects of the type is hidden
from the program units that use these objects, so
the only operations possible are those provided in
the type's definition

2. The declarations of the type and the protocols of
the operations on objects of the type are
contained in a single syntactic unit. Other program
units are allowed to create variables of the defined
type.

1-6

Advantages of Data Abstraction

• Advantages the first condition

– Reliability--by hiding the data representations, user code

cannot directly access objects of the type or depend on the

representation, allowing the representation to be changed

without affecting user code

– Simplicity. Reduces the range of code and variables of

which the programmer must be aware

– Name conflicts are less likely

Advantages of Data Abstraction

• Advantages of the second condition

– Provides a method of program organization

– Aids modifiability (everything associated with a data structure is together)

– Separate compilation

Software Reuse and Independence

• Object-oriented programming languages satisfy three important

needs in software design:

– Need to reuse software components as much as possible

– Need to modify program behavior with minimal changes to existing code

– Need to maintain the independence of different components

• Abstract data type mechanisms can increase the independence of

software components by separating interfaces from

implementations

Programming Languages,
Third Edition

8

Software Reuse and Independence (cont’d.)

• Four basic ways a software component can be modified for reuse:

– Extension of the data or operations

– Redefinition of one or more of the operations

– Abstraction

– Polymorphism

• Extension of data or operations:

– Example: adding new methods to a queue to allow elements to be

removed from the rear and added to the front, to create a double-ended

queue or deque

Programming Languages,
Third Edition

9

Software Reuse and Independence (cont’d.)

• Redefinition of one or more of the operations:

– Example: if a square is obtained from a rectangle, area or perimeter

functions may be redefined to account for the reduced data needed

• Abstraction, or collection of similar operations from two different

components into a new component:

– Example: can combine a circle and rectangle into an abstract object called

a figure, to contain the common features of both, such as position and

movement

Programming Languages,
Third Edition

10

Software Reuse and Independence (cont’d.)

• Polymorphism, or the extension of the type of data that operations

can apply to:

– Examples: overloading and parameterized types

• Application framework: a collection of related software

resources (usually in object-oriented form) for developer use

– Examples: Microsoft Foundation Classes in C++ and Swing windowing

toolkit in Java

Programming Languages,
Third Edition

11

Software Reuse and Independence (cont’d.)

• Object-oriented languages have another goal:

– Restricting access to internal details of software components

• Mechanisms for restricting access to internal details have several

names:

– Encapsulation mechanisms

– Information-hiding mechanisms

Programming Languages,
Third Edition

12

1-13

Language Requirements for ADTs

• A syntactic unit in which to encapsulate the type definition

• A method of making type names and subprogram headers visible

to clients, while hiding actual definitions

• Some primitive operations must be built into the language

processor

1-14

Design Issues

• Can abstract types be parameterized?

• What access controls are provided?

• Is the specification of the type physically separate from its

implementation?

1-15

Language Examples: C++ class

• Based on C struct type

• The class is the encapsulation device

• A class is a type

• All of the class instances of a class share a single copy of the member
functions

• Each instance of a class has its own copy of the class data members

• Instances can be static, stack dynamic, or heap dynamic

1-16

Language Examples: C++ (continued)

• Information Hiding

– Private clause for hidden entities

– Public clause for interface entities

– Protected clause for inheritance

1-17

Language Examples: C++ (continued)

• Constructors:

– Functions to initialize the data members of instances

– May also allocate storage if part of the object is heap-dynamic

– Can include parameters to provide parameterization of the objects

– Implicitly called when an instance is created

– Can be explicitly called

– Name is the same as the class name

1-18

Language Examples: C++ (continued)

• Destructors:

– Functions to cleanup after an instance is destroyed;

usually just to reclaim heap storage

– Implicitly called when the object’s lifetime ends

– Name is the class name, preceded by a tilde (~)

1-19

An Example in C++

class Stack {

private:

int *stackPtr, maxLen, topPtr;

public:

Stack() { // a constructor

stackPtr = new int [100];

maxLen = 99;

topPtr = -1;

};

~Stack () {delete [] stackPtr;};

void push (int number) {

if (topSub == maxLen)

cerr << ″Error in push - stack is full\n″;

else stackPtr[++topSub] = number;

};

void pop () {…};

int top () {…};

int empty () {…};

}

A Stack class header file:

Contains protocols / interface

// Stack.h - the header file for the Stack class

#include <iostream.h>

class Stack {

private: //** These members are visible only to other

//** members and friends

int *stackPtr;

int maxLen;

int topPtr;

public: //** These members are visible to clients

Stack(); //** A constructor

~Stack(); //** A destructor

void push(int);

void pop();

int top();

int empty();

}

1-20

The code file for Stack

// Stack.cpp - the implementation file for the Stack class

#include <iostream.h>

#include "Stack.h"

using std::cout;

Stack::Stack() { //** A constructor

stackPtr = new int [100];

maxLen = 99;

topPtr = -1;

}

Stack::~Stack() {delete [] stackPtr;}; //** A destructor

void Stack::push(int number) {

if (topPtr == maxLen)

cerr << "Error in push--stack is full\n";

else stackPtr[++topPtr] = number;

}

...

1-21

1-22

Summary of Abstraction

• The concept of ADTs and their use in program design was a milestone in the
development of languages

• Two primary features of ADTs are the packaging of data with their
associated operations and information hiding

• C++ data abstraction is provided by classes. Java’s data abstraction is
similar to C++

• C++, C#, Java, and Ruby provide naming encapsulations

1-23

Introduction OOP

• Many object-oriented programming (OOP) languages

– Some support procedural and data-oriented programming

(e.g., C++)

– Some are pure OOP language (e.g., Smalltalk & Ruby)

– Some functional languages support OOP, but they are not

discussed in this chapter

1-24

Object-Oriented Programming

• Three major language features (3 main benefits):

– Abstract data types

• Encapsulation

• Information hiding

– Inheritance

• Inheritance is the central theme in OOP and languages that support it

– Polymorphism

1-25

Inheritance

• Productivity increases can come from reuse
– ADTs are difficult to reuse—always need changes

– All ADTs are independent and at the same level

• Inheritance allows new classes defined in terms of existing
ones, i.e., by allowing them to inherit common parts

• Inheritance addresses both of the above concerns--reuse
ADTs after minor changes and define classes in a
hierarchy

1-26

Nomenclature: Object-Oriented Concepts

• ADTs are usually called (implemented as) classes

• Class instances are called objects

• A class that inherits is a derived class or a subclass

• The class from which another class inherits is a parent class or
superclass

• Subprograms that define operations on objects are called member
methods

1-27

Object-Oriented Concepts (continued)

• Calls to methods are called messages

• The entire collection of methods of an object is called its

message protocol or message interface

• Messages have two parts -- a method name and the destination

object

• In the simplest case, a class inherits all of the entities of its parent

1-28

Object-Oriented Concepts (continued)

• Inheritance can be complicated by access

controls to encapsulated entities

– A class can hide entities from its subclasses

• Besides inheriting methods as is, a class can

modify an inherited method

– The new one overrides the inherited one

– The method in the parent is overriden

Object-Oriented Concepts (continued)

• Three ways a class can differ from its parent:

1. The subclass can add variables and/or methods to those inherited from

the parent

2. The subclass can modify the behavior of one or more of its inherited

methods.

3. The parent class can define some of its variables or methods to have

private access, which means they will not be visible in the subclass

1-29

1-30

Object-Oriented Concepts (continued)

• There are two kinds of variables in a class:
– Class variables (static) – one per class

– Instance variables – one per object

• There are two kinds of methods in a class:
– Class methods – accept messages to the class

– Instance methods – accept messages to objects

• Single vs. Multiple Inheritance: design concerns!

• One disadvantage of inheritance for reuse:
– Creates interdependencies among classes that complicate maintenance

1-31

Dynamic Binding

• A polymorphic variable can be defined in a class that is
able to reference (or point to) objects of the class and
objects of any of its descendants

• When a class hierarchy includes classes that override
methods and such methods are called through a
polymorphic variable, the binding to the correct method
will be dynamic

• Allows software systems to be more easily extended
during both development and maintenance

1-32

Dynamic Binding Concepts

• Using abstraction concept

• An abstract method is one that does not include a definition (it
only defines a protocol)

• An abstract class is one that includes at least one virtual method

• An abstract class cannot be instantiated

1-33

Design Issues for OOP Languages

• The Exclusivity of Objects

• Are subclasses subtypes?

• Single and Multiple Inheritance

• Object Allocation and Deallocation

• Dynamic and Static Binding

• Nested Classes

• Initialization of Objects

1-34

The Exclusivity of Objects

• Everything is an object
– Advantage - elegance and purity

– Disadvantage - slow operations on simple objects (primitives)

• Include an imperative-style typing system for primitives but make everything
else objects
– Advantage - fast operations on simple objects and a relatively small typing system

– Disadvantage - still some confusion because of the two type systems

1-35

Are Subclasses Subtypes?

• Does an “is-a” relationship hold between a parent class object
and an object of the subclass?
– If a derived class is-a parent class, then objects of the derived class

must behave the same as the parent class object

• A derived class is a subtype if it has an is-a relationship with its
parent class
– Subclass can only add variables and methods and override inherited

methods in “compatible” ways

– Principle of substitution: a variable can be substituted for that of an
ancestor class

• Subclasses inherit implementation; subtypes inherit interface
and behavior

1-36

Single and Multiple Inheritance

• Multiple inheritance allows a new class to inherit from two or more
classes

• Disadvantages of multiple inheritance:
– Language and implementation complexity (in part due to name collisions)

– Potential inefficiency - dynamic binding costs more with multiple inheritance (but
not much)

– Class C inherits from A and B ?!

• Advantage: flexibility
– Sometimes it is quite convenient and valuable

A B

C

1-37

Allocation and DeAllocation of Objects

• From where are objects allocated?
– Options

• Allocated on the run-time stack

• Explicitly create on the heap (via new)

– If they are all heap-dynamic, references can be uniform thru a
pointer or reference variable

• Simplifies assignment - dereferencing can be implicit (Java)

– If objects are stack dynamic, there is a problem with regard to
subtypes – object slicing

• What if C objects contain more attributes that B objects

• Is deallocation explicit or implicit on heap?
– Explicit: user error concerns

– Implicit: garbage collection overhead

B

C

Object Slicing Example

• If an object is allocated on the stack, there are memory allocation

concerns associated with polymorphic behavior.

– More specifically: this occurs when handling the variable as opposed to a

pointer to the variable

– Account a;

– SavingsAcct s;

– a = s; // copy s to a, what

1-39

Dynamic and Static Binding

• Dynamic dispatch: polymorphic methods

• Should all binding of messages to methods be dynamic?

– If none are, you lose the advantages of dynamic binding

– If all are, it is inefficient

• Maybe the design should allow the user to specify

1-40

Support for OOP in C++

• Inheritance

– A class need not be the subclass of any class

– Access controls for members are

– Private (visible only in the class and friends) (disallows

subclasses from being subtypes)

– Public (visible in subclasses and clients)

– Protected (visible in the class and in subclasses, but not

clients)

1-41

Support for OOP in C++ (continued)

• In addition, the subclassing process can be declared with access

controls (private or public), which define potential changes in

access by subclasses

– Private derivation - inherited public and protected members are private in

the subclasses

– Public derivation public and protected members are also public and

protected in subclasses

1-42

Inheritance Example in C++

class base_class {

private:

int a;

float x;

protected:

int b;

float y;

public:

int c;

float z;

};

class subclass_1 : public base_class { … };

// In this one, b and y are protected and

// c and z are public

class subclass_2 : private base_class { … };

// In this one, b, y, c, and z are private,

// and no derived class has access to any

// member of base_class

1-43

Support for OOP in C++ (continued)

• Multiple inheritance is supported

– If there are two inherited members with the same name, they can both be
referenced using the scope resolution operator (::)

class Thread { ... }

class Drawing { ... }

class DrawThread : public Thread, public Drawing { … }

1-44

Support for OOP in C++ (continued)

• Dynamic Binding
– A method can be defined to be virtual, which means that they can be called

through polymorphic variables and dynamically bound to messages

– A pure virtual function has no definition at all

– A class that has at least one pure virtual function is an abstract class

• Implications:
– Upon method invocation

1. Determine the actual type of the calling object

2. Determine which method is actually being invoked based on class def or inheretence
hierarchy

3. Invoke method

Support for OOP in C++ (continued)

class Shape {

public:

virtual void draw() = 0;

...

};

class Circle : public Shape {

public:

void draw() { ... }

...

};

class Rectangle : public Shape {

public:

void draw() { ... }

...

};

class Square : public Rectangle {

public:

void draw() { ... }

...

};

1-45

Square* sq = new Square;

Rectangle* rect = new Rectangle;

Shape* ptr_shape;

ptr_shape = sq; // points to a Square

ptr_shape ->draw(); // Dynamically

// bound to draw in Square

rect->draw(); // Statically bound to

// draw in Rectangle

Support for OOP in C++ (continued)

• If objects are allocated on the stack, it is quite different!!

Square sq; // Allocates a Square object from the stack

Rectangle rect; // Allocates a Rectangle object from the stack

rect = sq; // Copies the data member values from sq object

rect.draw(); // Calls the draw from Rectangle

1-46

1-47

Support for OOP in C++ (continued)

• Evaluation
– C++ provides extensive access controls (unlike

Smalltalk)

– C++ provides multiple inheritance

– In C++, the programmer must decide at design time
which methods will be statically bound and which
must be dynamically bound

• Static binding is faster!

– Smalltalk type checking is dynamic (flexible, but
somewhat unsafe)

– Because of interpretation and dynamic binding,
Smalltalk is ~10 times slower than C++

Implementing OO Constructs

• Two interesting and challenging parts

– Storage structures for instance variables

– Dynamic binding of messages to methods

• Your projects will have similar concerns!

1-48

Implementing Objects: Instance Data Storage

• Class instance records (CIRs) store the state of an object
– Static (built at compile time)

– A template or “cookie-cutter” pattern for all instances of a class.

• If a class has a parent, the subclass instance variables are added to
the parent CIR

• Because CIR is static, access to all instance variables is done as it is in
records
– Efficient

1-49

Dynamic Binding of Methods Calls

• Methods in a class that are statically bound need not be involved
in the CIR; methods that will be dynamically bound must have
entries in the CIR
– Calls to dynamically bound methods can be connected to the

corresponding code thru a pointer in the CIR
• CIR may store pointers to all dynamically bound methods (inefficient, unnecessary

repetition)

• The storage structure is sometimes called virtual method tables (vtable)

• V-table: a table of pointers to all dynamic methods for a particular (sub)class

• Method calls can be represented as offsets from the beginning of the vtable

1-50

1-51

Summary

• OO programming involves three fundamental concepts:
– ADTs, inheritance, dynamic binding

• Major design issues: exclusivity of objects, subclasses and subtypes, type
checking and polymorphism, single and multiple inheritance, dynamic
binding, explicit and implicit de-allocation of objects, and nested classes

• Implementing OOP involves some new data structures
– CIRs

– v-tables

Appendix: More OOP Examples

Copyright © 2015 Pearson. All rights reserved.

1-53

Support for OOP in Java

• Because of its close relationship to C++, focus is on the

differences from that language

• General Characteristics

– All data are objects except the primitive types

– All primitive types have wrapper classes that store one data

value

– All objects are heap-dynamic, are referenced through reference
variables, and most are allocated with new

– A finalize method is implicitly called when the garbage

collector is about to reclaim the storage occupied by the object

1-54

Support for OOP in Java (continued)

• Inheritance

– Single inheritance supported only, but there is an

abstract class category that provides some of the
benefits of multiple inheritance (interface)

– An interface can include only method declarations

and named constants, e.g.,

public interface Comparable <T> {

public int comparedTo (T b);

}

– Methods can be final (cannot be overriden)

- All subclasses are subtypes

1-55

Support for OOP in Java (continued)

• Dynamic Binding

– In Java, all messages are dynamically bound to
methods, unless the method is final (i.e., it cannot

be overriden, therefore dynamic binding serves no

purpose)

– Static binding is also used if the methods is static or

private both of which disallow overriding

1-56

Support for OOP in Java (continued)

• Nested Classes

– All are hidden from all classes in their package, except for the

nesting class

– Nonstatic classes nested directly are called innerclasses

• An innerclass can access members of its nesting class

• A static nested class cannot access members of its nesting class

– Nested classes can be anonymous

– A local nested class is defined in a method of its nesting class

• No access specifier is used

1-57

Support for OOP in Java (continued)

• Evaluation

– Design decisions to support OOP are similar to C++

– No support for procedural programming

– No parentless classes

– Dynamic binding is used as “normal” way to bind method calls to method

definitions

– Uses interfaces to provide a simple form of support for multiple inheritance

1-58

Language Examples: C#

• Based on C++ and Java

• Adds two access modifiers, internal and

protected internal

• All class instances are heap dynamic

• Default constructors are available for all

classes

• Garbage collection is used for most heap

objects, so destructors are rarely used

• structs are lightweight classes that do not

support inheritance

1-59

Language Examples: C# (continued)

• Common solution to need for access to data

members: accessor methods (getter and

setter)

• C# provides properties as a way of

implementing getters and setters without

requiring explicit method calls

1-60

C# Property Example

public class Weather {

public int DegreeDays { //** DegreeDays is a property

get {return degreeDays;}

set {

if (value < 0 || value > 30)

Console.WriteLine(

"Value is out of range: {0}", value);

else degreeDays = value;}

}

private int degreeDays;

...

}

...

Weather w = new Weather();

int degreeDaysToday, oldDegreeDays;

...

w.DegreeDays = degreeDaysToday;

...

oldDegreeDays = w.DegreeDays;

1-61

Language Examples – Objective-C

• Interface containers
@interface class-name: parent-class {

instance variable declarations

}

method prototypes
@end

• Implementation containers

@implementation class-name

method definitions
@end

• Classes are types

Language Examples – Objective-C
(continued)

• Method prototypes form
(+ | -) (return-type) method-name [: (formal-parameters)];

- Plus indicates a class method

- Minus indicates an instance method

- The colon and the parentheses are not included
when there are no parameters

- Parameter list format is different

- If there is one parameter (name is meth1:)
-(void) meth1: (int) x;

- For two parameters

-(int) meth2: (int) x second: (float) y;

- The name of the method is meth2::

1-62

Language Examples – Objective-C
(continued)

• Method call syntax

[object-name method-name];

Examples:
[myAdder add1: 7];

[myAdder add1: 7: 5: 3];

- For the method:
-(int) meth2: (int) x second: (float) y;

the call would be like the following:
[myObject meth2: 7 second: 3.2];

1-63

Language Examples – Objective-C
(continued)

• Constructors are called initializers – all they do is initialize

variables

– Initializers can have any name – they are always called explicitly

– Initializers always return self

• Objects are created by calling alloc and the constructor

Adder *myAdder = [[Adder alloc] init];

• All class instances are heap dynamic

1-64

Language Examples – Objective-C
(continued)

• To import standard prototypes (e.g., i/o)

#import <Foundation/Foundation.h>

• The first thing a program must do is allocate and initialize a pool

of storage for its data (pool’s variable is pool in this case)
NSAutoreleasePool * pool =

[[NSAutoreleasePool alloc] init];

• At the end of the program, the pool is released with:
[pool drain];

1-65

Language Examples – Objective-C
(continued)

• Information Hiding
– The directives @private and @public are used to

specify the access of instance variables.

– The default access is protected (private in C++)

– There is no way to restrict access to methods

– The name of a getter method is always the name of
the instance variable

– The name of a setter method is always the word set
with the capitalized variable’s name attached

– If the getter and setter for a variable does not impose
any constraints, they can be implicitly generated
(called properties)

1-66

Language Examples – Objective-C
(continued)

// stack.m – interface and implementation for a simple stack

#import <Foundation/Foundation.h>

@interface Stack: NSObject {

int stackArray[100], stackPtr,maxLen, topSub;

}

-(void) push: (int) number;

-(void) pop;

-(int) top;

-(int) empty;

@end

@implementation Stack

-(Stack *) initWith {

maxLen = 100;

topSub = -1;

stackPtr = stackArray;

return self;

}

1-67

Language Examples – Objective-C
(continued)

// stack.m – continued

-(void) push: (int) number {

if (topSub == maxLen)

NSLog(@″Error in push – stack is full″);

else

stackPtr[++topSub] = number;

...

}

1-68

Language Examples – Objective-C
(continued)

• An example use of stack.m
– Placed in the @implementation of stack.m

int main (int argc, char *argv[]) {

int temp;

NSAutoreleasePool *pool = [[NSAutoreleasePool alloc] init];

Stack *myStack = [[Stack alloc] initWith];

[myStack push: 5];

[myStack push: 3];

temp = [myStack top];

NSLog(@″Top element is: %i″, temp);

[myStack pop];

temp = [myStack top];

NSLog(@″Top element is: %i″, temp);

temp = [myStack top];

myStack pop];

[myStack release];

[pool drain];

return 0;

}

1-69

1-70

Support for OOP in C#

• General characteristics

– Support for OOP similar to Java

– Includes both classes and structs

– Classes are similar to Java’s classes

– structs are less powerful stack-dynamic constructs (e.g., no inheritance)

1-71

Support for OOP in C# (continued)

• Inheritance

– Uses the syntax of C++ for defining classes

– A method inherited from parent class can be replaced in the derived class
by marking its definition with new

– The parent class version can still be called explicitly with the prefix base:

base.Draw()

- Subclasses are subtypes if no members of the

parent class is private

- Single inheritance only

1-72

Support for OOP in C#

• Dynamic binding

– To allow dynamic binding of method calls to methods:

• The base class method is marked virtual

• The corresponding methods in derived classes are marked
override

– Abstract methods are marked abstract and must be

implemented in all subclasses

– All C# classes are ultimately derived from a single
root class, Object

1-73

Support for OOP in C# (continued)

• Nested Classes

– A C# class that is directly nested in a nesting class behaves like a Java

static nested class

– C# does not support nested classes that behave like the non-static

classes of Java

1-74

Support for OOP in C#

• Evaluation

– C# is a relatively recently designed C-based OO language

– The differences between C#’s and Java’s support for OOP are relatively

minor

1-75

Support for OOP in Ruby

• General Characteristics
– Everything is an object

– All computation is through message passing

– Class definitions are executable, allowing secondary definitions to add members to
existing definitions

– Method definitions are also executable

– All variables are type-less references to objects

– Access control is different for data and methods
• It is private for all data and cannot be changed

• Methods can be either public, private, or
protected

• Method access is checked at runtime

– Getters and setters can be defined by shortcuts

1-76

Support for OOP in Ruby (continued)

• Inheritance
– Access control to inherited methods can be different

than in the parent class

– Subclasses are not necessarily subtypes

• Dynamic Binding
– All variables are typeless and polymorphic

• Evaluation
– Does not support abstract classes

– Does not fully support multiple inheritance

– Access controls are weaker than those of other
languages that support OOP

Support for OOP in Objective-C

• Like C++, Objective-C adds support for OOP to
C

• Design was at about the same time as that of
C++

• Largest syntactic difference: method calls

• Interface section of a class declares the
instance variables and the methods

• Implementation section of a class defines the
methods

• Classes cannot be nested

1-77

Support for OOP in Objective-C
(continued)

• Inheritance
– Single inheritance only

– Every class must have a parent

– NSObject is the base class

@interface myNewClass: NSObject { … }

…

@end

– Because all public members of a base class are also public in

the derived class all subclasses are subtypes

– Any method that has the same name, same return type, and

same number and types of parameters as an inherited method

overrides the inherited method

– An overriden method can be called through super

– All inheritance is public (unlike C++)

1-78

Support for OOP in Objective-C
(continued)

• Inheritance (continued)

• Objective-C has two approaches besides subclassing to

extend a class

– A category is a secondary interface of a class that contains

declarations of methods (no instance variables

#import ″Stack.h″

@interface Stack (StackExtend)

-(int) secondFromTop;

-(void) full;

@end

– A category is a mixin – its methods are added to the parent

class

– The implementation of a category is in a separate
implementation: @implementation Stack (StackExtend)

1-79

Support for OOP in Objective-C
(continued)

• Inheritance (continued)

– The other way to extend a class: protocols

– A protocol is a list of method declarations

@protocol MatrixOps

-(Matrix *) add: (Matrix *) mat;

-(Matrix *) subtract: (Matrix *) mat;

@optional

-(Matrix *) multiply: (Matrix *) mat;

@end

– MatrixOps is the name of the protocol

– The add and subtract methods must be implemented by class

that uses the protocol

– A class that adopts a protocol must specify it

@interface MyClass: NSObject <YourProtocol>

1-80

Support for OOP in Objective-C
(continued)

• Dynamic Binding

– Different from other OOP languages – a polymorphic variable is of type id

– An id type variable can reference any object

– The run-time system keeps track of the type of the object that an id type

variable references

– If a call to a method is made through an id type variable, the binding to

the method is dynamic

1-81

Support for OOP in Objective-C
(continued)

• Evaluation

– Support is adequate, with the following deficiencies:

– There is no way to prevent overriding an inherited method

– The use of id type variables for dynamic binding is overkill – these

variables could be misused

– Categories and protocols are useful additions

1-82

1-83

Support for OOP in Smalltalk

• Smalltalk is a pure OOP language

– Everything is an object

– All objects have local memory

– All computation is through objects sending messages

to objects

– None of the appearances of imperative languages

– All objected are allocated from the heap

– All deallocation is implicit

- Smalltalk classes cannot be nested in other

classes

Support for OOP in Smalltalk (continued)

• Inheritance

– A Smalltalk subclass inherits all of the instance variables, instance

methods, and class methods of its superclass

– All subclasses are subtypes (nothing can be hidden)

– All inheritance is implementation inheritance

– No multiple inheritance

1-84

1-85

Support for OOP in Smalltalk (continued)

• Dynamic Binding

– All binding of messages to methods is dynamic

• The process is to search the object to which the message is

sent for the method; if not found, search the superclass, etc.

up to the system class which has no superclass

– The only type checking in Smalltalk is dynamic and

the only type error occurs when a message is sent to

an object that has no matching method

1-86

Support for OOP in Smalltalk (continued)

• Evaluation of Smalltalk
– The syntax of the language is simple and regular

– Good example of power provided by a small
language

– Slow compared with conventional compiled
imperative languages

– Dynamic binding allows type errors to go undetected
until run time

– Introduced the graphical user interface

– Greatest impact: advancement of OOP

