
COSC252: Programming Languages:

Runtime Stack and Scope

Jeremy Bolton, PhD

Asst Teaching Professor

Copyright © 2015 Pearson. All rights reserved.

1-2

Topics

• The General Semantics of Calls and Returns

• Implementing “Simple” Subprograms (no runtime stack – no recursion)

• Implementing Subprograms with Stack-Dynamic Local Variables

• Nested Subprograms

• Blocks

• Implementing Dynamic Scoping

1-3

The General Semantics of Calls and
Returns

• The subprogram call and return operations of a
language are together called its subprogram
linkage

• General semantics of calls to a subprogram
– Parameter passing methods

– Stack-dynamic allocation of local variables

– Save the execution status of calling program

– Transfer of control and arrange for the return

– If subprogram nesting is supported, access to
nonlocal variables must be arranged

1-4

The General Semantics of Calls and
Returns

• General semantics of subprogram returns:

– In mode and inout mode parameters must have their values

returned

– Deallocation of stack-dynamic locals

– Restore the execution status

– Return control to the caller

1-5

Implementing “Simple” Subprograms

• Be simple:
– NO stack-dynamic variables.

• Call Semantics:

1. Save the execution status of the caller

2. Pass the parameters

3. Pass the return address to the called

4. Transfer control to the called

1-6

Implementing “Simple” Subprograms
(continued)

• Return Semantics:
1. If pass-by-value-result or out mode parameters are

used, move the current values of those parameters
to their corresponding actual parameters

2. If it is a function, move the functional value to a
place the caller can get it

3. Restore the execution status of the caller

4. Transfer control back to the caller

• Required storage:
– Status information, parameters, return address

(return control), return value for functions,
temporaries

1-7

Implementing “Simple” Subprograms
(continued)

• Two separate parts: the actual code and the

non-code part (local variables and data that can

change)

• The format, or layout, of the non-code part of an

executing subprogram is called an activation

record

• An activation record instance is a concrete

example of an activation record (the collection

of data for a particular subprogram activation)

1-8

An Activation Record for “Simple”
Subprograms

1-9

Implementing Subprograms with Stack-
Dynamic Local Variables

• More complex activation record

– The compiler must generate code to cause implicit

allocation and deallocation of local variables

– Recursion supported (adds the possibility of multiple

simultaneous activations of a subprogram)

1-10

Typical Activation Record for a Language
with Stack-Dynamic Local Variables

1-11

Implementing Subprograms with Stack-Dynamic
Local Variables: Activation Record

• The activation record format is static, but its size may be
dynamic

• The dynamic link points to the top of an instance of the
activation record of the caller

• An activation record instance is dynamically created
when a subprogram is called

• Activation record instances reside on the run-time stack

• The Environment Pointer (EP) must be maintained by
the run-time system. It always points at the base of the
activation record instance of the currently executing
program unit

1-12

An Example: C Function

void sub(float total, int part)

{

int list[5];

float sum;

…

}

Revised Semantic Call/Return Actions

• Caller Actions:
– A function is invoked: allocate and load new stack frame
1. Create an activation record instance

2. Save the execution status of the current program unit

3. Compute and pass the parameters

4. Pass the return address to the called

5. Transfer control to the called

• Prologue actions of the callee:
– Load new runtime environment before execution begins

6. Save the old EP in the stack as the dynamic link and create the new value

7. Allocate local variables

1-13

Revised Semantic Call/Return Actions
(continued)

• Epilogue actions of the called :

– Called function terminates: deallocate stack frame and return control

8. If there are pass-by-value-result or out-mode parameters, the current values of those

parameters are moved to the corresponding actual parameters

9. If the subprogram is a function, its value is moved to a place accessible to the caller

10. Restore the stack pointer by setting it to the value of the current EP-1 and set the EP to

the old dynamic link

11. Restore the execution status of the caller

12. Transfer control back to the caller

1-14

An Example Without Recursion

void fun1(float r) {

int s, t;

...

fun2(s);

...

}

void fun2(int x) {

int y;

...

fun3(y);

...

}

void fun3(int q) {

...

}

void main() {

float p;

...

fun1(p);

...

}

main calls fun1
fun1 calls fun2
fun2 calls fun3

1-16

Dynamic Chain and Local Offset

• The collection of dynamic links in the stack at a given

time is called the dynamic chain, or call chain

• Local variables can be accessed by their offset from the

beginning of the activation record, whose address is in

the EP. This offset is called the local_offset

• The local_offset of a local variable can be determined by

the compiler at compile time

1-17

An Example With Recursion

int factorial (int n) {

if (n <= 1) return 1;

else return (n * factorial(n - 1));

}

void main() {

int value;

value = factorial(3);

}

Stacks for calls to factorial

1-18

int factorial (int n) {

if (n <= 1) return 1;

else return (n * factorial(n - 1));

}

void main() {

int value;

value = factorial(3);

}

Stacks for returns from
factorial

1-19

Scoping: How is scope maintained

• Scope: the accessibility of a variable or more generally the context in which
an identifier is valid

• Static Scope
– Parent scope in lexical sense – where the identifier is textually defined.

– Each scope must have link to parent scope
• A tree: one link per scope to parent

• Dynamic Scope
– Parent scope in dynamic sense (sequence of function calls)

• What is the scope of the calling function

• Can be maintained directly using the dynamic link of the runtime stack

1-21

Static Scoping

• A static chain is a chain of static links that connects
certain activation record instances

• The static link in an activation record instance for
subprogram A points to one of the activation record
instances of A's static parent

• The static chain from an activation record instance
connects it to all of its static ancestors

• Static_depth is an integer associated with a static scope
whose value is the depth of nesting of that scope

Static Scoping (continued)

• The chain_offset or nesting_depth of a nonlocal reference is the difference
between the static_depth of the reference and that of the scope when it is
declared

• A reference to a variable can be represented by the pair:

(chain_offset, local_offset),

where local_offset is the offset in the activation

record of the variable being referenced

1-22

1-23

Statics Scope Design Concern : Nested Subprograms

• If embedded functions (embedded scopes) are not permitted, static scope
is fairly easy to implement

• Some non-C-based static-scoped languages (e.g., Fortran 95+, Ada,
Python, JavaScript, Ruby, and Lua) use stack-dynamic local variables and
allow subprograms to be nested

• All variables that can be non-locally accessed reside in some activation
record instance in the stack

• The process of locating a non-local reference:
1. Find the correct activation record instance
2. Determine the correct offset within that activation record instance

1-24

Example JavaScript Program

function main(){

var x;

function bigsub() {

var a, b, c;

function sub1 {

var a, d;

a = b + c; -------------------------------1

...

} // end of sub1

function sub2(x) {

var b, e;

function sub3() {

var c, e;

...

sub1();

...

e = b + a; ------------------------------2

} // end of sub3 ...

sub3();

...

a = d + e; --------------------------------3

} // end of sub2

...

sub2(7);

...

} // end of bigsub

...

bigsub();

...

} // end of main

1-25

Example JavaScript Program
(continued)

• Call sequence for main

main calls bigsub

bigsub calls sub2

sub2 calls sub3

sub3 calls sub1

1-26

Static Chain Maintenance

• At the call,

- The activation record instance must be built

- The dynamic link is just the old stack top pointer

- The static link must point to the most recent ari of the static parent

- Two methods:

1. Search the dynamic chain

2. Treat subprogram calls and

definitions like variable references

and definitions

1-27

Evaluation of Static Chains

• Problems:

1. A nonlocal areference is slow if the

nesting depth is large

2. Time-critical code is difficult:

a. Costs of nonlocal references are

difficult to determine

b. Code changes can change the

nesting depth, and therefore the cost

1-28

Blocks

• Blocks are user-specified local scopes for variables

• An example in C

{int temp;

temp = list [upper];

list [upper] = list [lower];

list [lower] = temp

}

• The lifetime of temp in the above example begins when control enters the
block

• An advantage of using a local variable like temp is that it cannot interfere
with any other variable with the same name

1-29

Static Scope Design Concern: Implementing Blocks

• Two Methods:

1. Treat blocks as parameter-less subprograms that are always called from

the same location

– Every block has an activation record; an instance is created every time the block is

executed

2. Since the maximum storage required for a block can be statically

determined, this amount of space can be allocated after the local

variables in the activation record

1-30

Implementing Dynamic Scoping

• Deep Access: non-local references are found by searching the
activation record instances on the dynamic chain
- Length of the chain cannot be statically

determined
- Every activation record instance must

have variable names

• Shallow Access: put locals in a central place
– One stack for each variable name

– Central table with an entry for each variable name

1-31

Using Shallow Access to Implement
Dynamic Scoping

void sub3() {

int x, z;

x = u + v;

…

}

void sub2() {

int w, x;

…

}

void sub1() {

int v, w;

…

}

void main() {

int v, u;

…

}

More scope examples:
Simple Static Scope Example

• Static Scope Variable resolution
• Search current scope
• If not found, search enclosing (parent)

scope.

• Output
2
3

Static vs. Dynamic Scope Example

• Dynamic Scope Variable resolution
• Search current scope.
• If not found, search scope of the caller

(and, repeat as necessary).

• Static Scope Output
2
2

• Dynamic Scope Output
3
4

1-34

Summary

• Subprogram linkage semantics requires many
steps by the implementation

• Simple subprograms have relatively basic
actions

• Stack-dynamic languages are more complex
and more versatile

• Subprograms with stack-dynamic local variables
and nested subprograms have two components
– actual code

– activation record (potentially multiple active
instances)

1-35

Summary

• Activation record instances contain formal parameters and local
variables among other things

• Static chains are the primary method of implementing accesses to
non-local variables in static-scoped languages with nested
subprograms

• Access to non-local variables in dynamic-scoped languages can
be implemented by use of the dynamic chain or thru some central
variable table method

