
COSC252: Programming Languages:  

Basic Semantics: Functions

Jeremy Bolton, PhD

Asst Teaching Professor



Copyright © 2015 Pearson. All rights reserved.

1-2

Topics

• Fundamentals of Subprograms

• Design Issues for Subprograms

• Local Referencing Environments

• Parameter-Passing Methods

• Parameters That Are Subprograms

• Calling Subprograms Indirectly

• Design Issues for Functions

• Overloaded Subprograms

• Generic Subprograms

• User-Defined Overloaded Operators

• Closures

• Coroutines



1-3

Fundamentals of Subprograms

• Each subprogram has a single entry point

• The calling program is suspended during execution of the called 

subprogram

• Control always returns to the caller when the called subprogram’s 

execution terminates



1-4

Basic Definitions

• A subprogram definition describes the interface to and the actions 
of the subprogram abstraction

• A subprogram call is an explicit request that the subprogram be 
executed

• A subprogram header is the first part of the definition, including the 
name, the kind of subprogram, and the formal parameters

• The parameter profile (aka signature) of a subprogram is the 
number, order, and types of its parameters

• The protocol is a subprogram’s parameter profile and, if it is a 
function, its return type



1-5

Basic Definitions (continued)

• Function declarations in C and C++ are often called prototypes

• A subprogram declaration provides the protocol, but not the body, of the 

subprogram

• A formal parameter is a dummy variable listed in the subprogram header and 

used in the subprogram

• An actual parameter (aka argument) represents a value or address used in 

the subprogram call statement



1-6

Actual/Formal Parameter 
Correspondence

• Positional
– The binding of actual parameters to formal parameters is by 

position: the first actual parameter is bound to the first formal 
parameter and so forth

– Simple and effective

– Ex:
• Def:  f(int x, int y)

• Invocation:  f(1, 1+4)

• Binds x to 1 and y to 5, in scope associated with function f

• Keyword
– The name of the formal parameter to which an actual parameter is 

to be bound is specified with the actual parameter

– Advantage: Parameters can appear in any order, thereby avoiding 
parameter correspondence errors

– Disadvantage: User must know the formal parameter’s names

– Example, Invocation: 
• f(“x”, 4, “y” 1+4)



1-7

Formal Parameter Default Values

• In certain languages (e.g., C++, Python, Ruby, PHP), formal 
parameters can have default values (if no actual parameter is 
passed)

– In C++, default parameters must appear last because parameters are 
positionally associated (no keyword parameters)

• Variable numbers of parameters
– C# methods can accept a variable number of parameters as 

long as they are of the same type—the corresponding formal 
parameter is an array preceded by params



1-8

Procedures and Functions 

• There are two** categories of subprograms

– Procedures are collection of statements

– Functions structurally resemble procedures but are 

semantically modeled on mathematical functions

• Map input to output

• They are expected to produce no side effects

• However, in practice, program functions have side effects



1-9

Design Issues for Subprograms

• Can subprogram definitions appear in other subprogram definitions? 

• What parameter passing methods are provided?

• Are parameter types checked?

• If subprograms can be passed as parameters and subprograms can be 

nested, what is the referencing environment of a passed subprogram?

• Are functional side effects allowed?

• What types and how many values can be returned from functions?

• Can subprograms be overloaded?
– How are overloaded functions resolved?

• Can subprogram be generic / template?



1-10

Local Referencing Environments

• Local variables can be stack-dynamic 

- Advantages

• Support for recursion

• Storage for locals is shared among some subprograms

– Disadvantages
• Allocation/de-allocation, initialization time

• Indirect addressing

• Local variables can be static
– Advantages and disadvantages are the opposite of those for stack-

dynamic local variables

– Does not permit recursion, since there is only one instance of a 
local variable (not multiple instances as needed for recursion)



Stack Dynamic Allocation and Recursion



Draw Scope (function chain) diagrams to trace the 
execution of a recursive function.

int f(int n)
{
// Assumes n is non-negative
int val = 1;
if (n == 0 || n == 1) // Base case -- stop 

repetition
return 1;

else // recursive case -- continue 
recursive call

return n * f(n - 1);
}

void main()
{f(3);}



Recursion (and non-recursion) and the Stack

int factorial(int n)

{

//Assumes non-negative n

int val = 1;

for (int i = n; i > 1; i--;) // 
repeatedly take product of values between 1 
and n

val = val * i;

return val;

}

int factorial(int n)
{
// Assumes n is non-negative
int val = 1;
if (n == 0 || n == 1) // Base case --

stop repetition
return 1;

else // recursive case -- continue 
recursive call

return n * factorial(n - 1);
}



Local Referencing Environments: Examples

• In most contemporary languages, locals are stack dynamic

• In C, locals are by default stack dynamic, but can be declared static

• The methods of C++, Java, Python, and C# only have stack dynamic 
locals

• In Lua, all implicitly declared variables are global; local variables are 
declared with local and are stack dynamic

1-14



1-15

Semantic Models of Parameter Passing

• In mode (input)

• Out mode (output)

– Simply a container for a return value

• Inout mode (input and output)

– EG pass-by-reference



1-16

Models of Parameter Passing



1-17

Pass-by-Value (In Mode)

• The value of the actual parameter is used to initialize 

the corresponding formal parameter

– Normally implemented by copying

– Can be implemented by transmitting an access path but not 

recommended (enforcing write protection is not easy)

– Disadvantages (if by physical move): additional storage is 

required (stored twice) and the actual move can be costly (for 

large parameters)

– Disadvantages (if by access path method): must write-protect in 

the called subprogram and accesses cost more (indirect 

addressing)



1-18

Pass-by-Result (Out Mode)

• When a parameter is passed by result, no value 
is transmitted to the subprogram; the 
corresponding formal parameter acts as a local 
variable; its value is transmitted to caller’s 
actual parameter when control is returned to the 
caller, by physical move
– Require extra storage location and copy operation

• Potential problems:
– sub(p1, p1); whichever formal parameter is copied 

back will represent the current value of p1

– sub(list[sub], sub); Compute address of list[sub] at 
the beginning of the subprogram or end?



1-19

Pass-by-Reference (Inout Mode)

• Pass an access path

• Also called pass-by-sharing

• Advantage: Passing process is efficient (no copying and no 

duplicated storage)

• Disadvantages

– Slower accesses (compared to pass-by-value) to formal parameters

– Potentials for unwanted side effects 

– Unwanted aliases 
– fun(total, total);  fun(list[i], list[j];  fun(list[i], i);



1-20

Pass-by-Name (Inout Mode)

• By textual substitution

• Formals are bound to an access method at the time 

of the call, but actual binding to a value or address 

takes place at the time of a reference or assignment

• Allows flexibility in late binding

• Implementation requires that the referencing 

environment of the caller is passed with the 

parameter, so the actual parameter address can be 

calculated

• Used in Algol



Pass by Name Example

Procedure Definition:

procedure swap (a, b);

integer a, b, temp;

begin

temp := a;

a := b;

b:= temp

end;

Execute:  swap(x, y):

temp := x;

x := y;

y := temp

Execute: swap(i, x[i]):

temp := i;

i := x[i];

x[i] := temp

Textually x and y do not dependent, so the 
late binding does not affect the expected 
result

Note that the i and x[i] parameters are not
evaluated before function execution. Instead 
they are textually substituted into the 
function definition and replace a and b 
correspondingly. The parameters are finally 
evaluated when referenced or assigned. 

4 5 6 7 8 9 1 2

i: 2

x: 1 2 3 4 5 2 7 8

i: 6

x:



1-22

Implementing Parameter-Passing Methods

• In most languages parameter communication takes place thru the 

run-time stack

• Pass-by-reference are the simplest to implement; only an address 

is placed in the stack



1-23

Implementing Parameter-Passing Methods

• In most languages parameter communication takes place thru the 

run-time stack

• Pass-by-reference are the simplest to implement; only an address 

is placed in the stack



Implementing Parameter-Passing Methods

1-24

Function header:  void sub(int a, int b, int c, int d)

Function call in main: sub(w, x, y, z)
(pass w by value, x by result, y by value-result, z by reference)



1-25

Parameter Passing Methods of Major 
Languages

• C

– Pass-by-value

– Pass-by-reference is achieved by using pointers as parameters

• C++

– A special pointer type called reference type for pass-by-reference

• Java

– All primitive parameters are passed are passed by value

– Object parameters are passed by reference



1-26

Parameter Passing Methods of Major 
Languages (continued)

• Fortran 95+

- Parameters can be declared to be in, out, or inout mode

• C#

- Default method: pass-by-value

– Pass-by-reference is specified by preceding both a formal 
parameter and its actual parameter with ref

• PHP: very similar to C#, except that either the actual or 

the formal parameter can specify ref

• Python and Ruby use pass-by-assignment (all data 

values are objects); the actual is assigned to the formal



1-27

Type Checking Parameters

• Considered very important for reliability

• FORTRAN 77 and original C: none

• Pascal and Java: it is always required

• ANSI C and C++: choice is made by the user

• Some languages Perl, JavaScript, and PHP do not require type checking

• In Python and Ruby, variables do not have types (objects do), so parameter 

type checking is not possible



1-28

Multidimensional Arrays as Parameters: C++

• If a multidimensional array is passed to a subprogram 
and the subprogram is separately compiled, the 
compiler needs to know the declared size of that array 
to build the storage mapping function
– Programmer is required to include the declared sizes of all but 

the first subscript in the actual parameter

• In General, stack allocation concerns*

• Remedies
– Arrays are by default pass by reference in C++*

– Use/pass pointer and pass dimensions as arg



1-29

Multidimensional Arrays as Parameters: 
Java and C#

• Arrays are objects; they are all single-dimensioned, but the 

elements can be arrays

• Each array inherits a named constant (length in Java, Length in C#) 

that is set to the length of the array when the array object is 

created



1-30

Design Considerations for Parameter Passing

• Two important considerations

– Efficiency

– One-way or two-way data transfer

• But the above considerations are in conflict

– Good programming suggest limited access to variables, which means 

one-way whenever possible

– But pass-by-reference is more efficient to pass structures of significant 

size



1-31

Parameters that are Subprogram 
Names

• It is sometimes convenient to pass subprogram 

names as parameters

• Issues:

1. Are parameter types checked?

2. What is the correct referencing environment for a 

subprogram that was sent as a parameter?



1-32

Parameters that are Subprogram 
Names: Referencing Environment

• Shallow binding: The environment of the call statement that 
enacts the passed subprogram
- Most natural for dynamic-scoped

languages

• Deep binding: The environment of the definition of the passed 
subprogram
- Most natural for static-scoped languages

• Ad hoc binding: The environment of the call statement that 
passed the subprogram



Bindings

• function sub1()

• {  var x;

• function sub2()

• {  alert(x);  // creates a dialog box with the value of x

• };

• function sub3()

• {  var x;

• x = 3;

• sub4(sub2);

• };

• function sub4(subx)

• {  var x;

• x = 4;

• subx(); // calling the passed subprogram which is a parameter.

• };

• x = 1;

• sub3();

• }; 

Javascript Example from text: 

• sub1 calls sub3 which calls sub4 by the call 
statement, sub4(sub2).

• sub4() subsequently calls sub2().

• The environment of the execution of sub2() in this 
case can be one of the following three:

1. that of sub4(): Shallow Binding.
x=4

2. that of sub1(): Deep Binding.
x=1

3. that of sub3(): Ad Hoc Binding.
x=3.



Calling Subprograms Indirectly

• Usually when there are several possible subprograms to be called 

and the correct one on a particular run of the program is not know 

until execution (e.g., event handling and GUIs)

• In C and C++, such calls are made through function pointers

1-34



C++ Example: functions as arguments

• // Note our user-defined comparison is the third parameter

• void selectionSort(int *array, int size, bool (*comparisonFcn)(int, int))

• {

• // Step through each element of the array

• for (int startIndex = 0; startIndex < size; ++startIndex)

• {

• // bestIndex is the index of the smallest/largest element we've encountered so far.

• int bestIndex = startIndex;

• // Look for smallest/largest element remaining in the array (starting at startIndex+1)

• for (int currentIndex = startIndex + 1; currentIndex < size; ++currentIndex)

• {

• // If the current element is smaller/larger than our previously found smallest

• if (comparisonFcn(array[bestIndex], array[currentIndex])) // COMPARISON DONE HERE

• // This is the new smallest/largest number for this iteration

• bestIndex = currentIndex;

• }

• // Swap our start element with our smallest/largest element

• std::swap(array[startIndex], array[bestIndex]);

• }

• }

• bool ascending(int x, int y)

• {

• return x > y; // swap if the first element is greater than the second

• }

•

• // Here is a comparison function that sorts in descending order

• bool descending(int x, int y)

• {

• return x < y; // swap if the second element is greater than the first

• }

•

• // This function prints out the values in the array

• void printArray(int *array, int size)

• {

• for (int index=0; index < size; ++index)

• std::cout << array[index] << " ";

• std::cout << '\n';

• }

•

• int main()

• {

• int array[9] = { 3, 7, 9, 5, 6, 1, 8, 2, 4 };

•

• // Sort the array in descending order using the descending() function

• selectionSort(array, 9, descending);

• printArray(array, 9);

•

• // Sort the array in ascending order using the ascending() function

• selectionSort(array, 9, ascending);

• printArray(array, 9);

•

• return 0;

• }

Example taken from learncpp



Design Issues for Functions

• Are side effects allowed?

– Should parameters always be in-mode to reduce side effect 

(like Ada)

• What types of return values are allowed?

– Most imperative languages restrict the return types

– C allows any type except arrays and functions

– C++ is like C but also allows user-defined types

– Java and C# methods can return any type (but because 

methods are not types, they cannot be returned)

– Python and Ruby treat methods as first-class objects, so they 

can be returned, as well as any other class

– Lua allows functions to return multiple values

1-36



1-37

Overloaded Subprograms

• An overloaded subprogram is one that has the same name as another 
subprogram in the same referencing environment
– Every version of an overloaded subprogram has a unique protocol

• C++, Java, C#, and Ada include predefined overloaded subprograms 

• In Ada, the return type of an overloaded function can be used to 
disambiguate calls (thus two overloaded functions can have the same 
parameters)

• Ada, Java, C++, and C# allow users to write multiple versions of 
subprograms with the same name



1-38

Generic Subprograms

• A generic or polymorphic subprogram takes parameters of different types on 
different activations. Three categories

1. Overloaded subprograms provide ad hoc polymorphism

2. Subtype polymorphism means that a variable of type T can access any 
object of type T or any type derived from T (OOP languages)

3. A subprogram that takes a generic parameter that is used in a type 
expression that describes the type of the parameters of the subprogram 
provides parametric polymorphism
- A cheap compile-time substitute for dynamic binding



Generic Subprograms (continued)

• C++

– Versions of a generic subprogram are created 

implicitly when the subprogram is named in a call or 

when its address is taken with the & operator

– Generic subprograms are preceded by a template

clause that lists the generic variables, which can be 

type names or class names

template <class Type>

Type max(Type first, Type second) {

return first > second ? first : second;

}

1-39



1-40

User-Defined Overloaded Operators

• Operators can be overloaded in Ada, C++, Python, and Ruby

• A Python example
def __add__ (self, second) :

return Complex(self.real + second.real, 

self.imag + second.imag)

Use: To compute x + y, x.__add__(y)



Closures

• A closure is a subprogram and the referencing 

environment where it was defined
– The referencing environment is needed if the subprogram can 

be called from any arbitrary place in the program

– A static-scoped language that does not permit nested 

subprograms doesn’t need closures

– Closures are only needed if a subprogram can access variables 

in nesting scopes and it can be called from anywhere

– To support closures, an implementation may need to provide 

unlimited extent to some variables (because a subprogram may 

access a nonlocal variable that is normally no longer alive)

1-41



1-42

Summary

• A subprogram definition describes the actions 
represented by the subprogram

• Subprograms can be either functions or procedures

• Local variables in subprograms can be stack-dynamic or 
static

• Three models of parameter passing: in mode, out mode, 
and inout mode

• Some languages allow operator overloading

• Subprograms can be generic

• A closure is a subprogram and its ref. environment

• A coroutine is a special subprogram with multiple entries



1-43

Coroutines

• Only Lua fully supports co-routines

• A coroutine is a subprogram that has multiple entries and controls 
them itself – supported directly in Lua

• Also called symmetric control: caller and called coroutines are on a 
more equal basis

• A coroutine call is named a resume

• The first resume of a coroutine is to its beginning, but subsequent 
calls enter at the point just after the last executed statement in the 
coroutine

• Coroutines repeatedly resume each other, possibly forever

• Coroutines provide quasi-concurrent execution of program units 
(the coroutines); their execution is interleaved, but not overlapped



1-44

Coroutines Illustrated: Possible Execution 
Controls



1-45

Coroutines Illustrated: Possible Execution 
Controls



1-46

Coroutines Illustrated: Possible Execution 
Controls with Loops


