COSC252: Programming Languages:

Basic Semantics: Functions

Jeremy Bolton, PhD
Asst Teaching Professor

FORGETOW:
gUNI VERSIT Tg\c

Topics

Fundamentals of Subprograms
Design Issues for Subprograms
Local Referencing Environments
Parameter-Passing Methods
Parameters That Are Subprograms
Calling Subprograms Indirectly
Design Issues for Functions
Overloaded Subprograms

Generic Subprograms
User-Defined Overloaded Operators
Closures

Coroutines

1-2

FEORGETOW:
gUZVI VERSI ZTIL:Z\C

Copyright © 2015 Pearson. All rights reserved.

Fundamentals of Subprograms

Each subprogram has a single entry point

The calling program is suspended during execution of the called
subprogram

Control always returns to the caller when the called subprogram’s
execution terminates

_ FEORGETOW,
- gw\IIVERSITiz\C

Basic Definitions

A subprogram definition describes the interface to and the actions
of the subprogram abstraction

A subprogram call is an explicit request that the subprogram be
executed

A subprogram header is the first part of the definition, including the
name, the kind of subprogram, and the formal parameters

The parameter profile (aka signature) of a subprogram is the
number, order, and types of its parameters

The protocol is a subprogram’s parameter profile and, if it is a
function, its return type

_ EORGETOW,
e gw\IIVERSITiz\C

Basic Definitions (continued)

Function declarations in C and C++ are often called prototypes

A subprogram declaration provides the protocol, but not the body, of the
subprogram

A formal parameter is a dummy variable listed in the subprogram header and
used in the subprogram

An actual parameter (aka argument) represents a value or address used In
the subprogram call statement

FEORGETOW:
gUZVI VERSI ZTIL:Z\C

1-5

Actual/Formal Parameter
Correspondence

 Positional

— The binding of actual parameters to formal parameters is by

position: the first actual parameter is bound to the first formal
parameter and so forth

— Simple and effective

— EX
« Def: f(intx, inty)
* Invocation: f(1, 1+4)
 Binds xto 1 and y to 5, in scope associated with function f

« Keyword
— The name of the formal parameter to which an actual parameter is
to be bound is specified with the actual parameter

— Advantage: Parameters can appear in any order, thereby avoiding
parameter correspondence errors
— Disadvantage: User must know the formal parameter’s names

— Example, Invocation:
o ("X, 4,y 1+4)

_ EORGETOW,
e gw\IIVERSITiz\C

Formal Parameter Default Values

* |In certain languages (e.g., C++, Python, Ruby, PHP), formal
parameters can have default values (if no actual parameter is
passed)

— In C++, default parameters must appear last because parameters are
positionally associated (no keyword parameters)

» Variable numbers of parameters

— C# methods can accept a variable number of parameters as
long as they are of the same type—the corresponding formal
parameter is an array preceded by params

_ FEORGETOW,
v gw\IIVERSITiz\C

Procedures and Functions

* There are two** categories of subprograms

— Procedures are collection of statements

— Functions structurally resemble procedures but are
semantically modeled on mathematical functions
« Map input to output
« They are expected to produce no side effects
« However, in practice, program functions have side effects

_ EORGETOW.
e gw\IIVERSITiz\C

Design Issues for Subprograms

Can subprogram definitions appear in other subprogram definitions?
What parameter passing methods are provided?
Are parameter types checked?

If subprograms can be passed as parameters and subprograms can be
nested, what is the referencing environment of a passed subprogram?

Are functional side effects allowed?
What types and how many values can be returned from functions?

Can subprograms be overloaded?
— How are overloaded functions resolved?

Can subprogram be generic / template?

_ EORGETOW.
e gw\IIVERSITiz\C

Local Referencing Environments

* Local variables can be stack-dynamic

- Advantages

e Support for recursion

« Storage for locals is shared among some subprograms
— Disadvantages

* Allocation/de-allocation, initialization time

 Indirect addressing

 Local variables can be static

— Advantages and disadvantages are the opposite of those for stack-
dynamic local variables

— Does not permit recursion, since there is only one instance of a
local variable (not multiple instances as needed for recursion)

_ EORGETOW,
0 gw\IIVERSITiz\C

Stack Dynamic Allocation and Recursion

Base of Stack

Stac lyna Vanabi

o K rh NHE

Sto! here. There may
/ nany instances of the sam

ariable currently alive In

diffi it stack fr

main f f f
Current top of Stack. /

The runtime stack maintains a Base of Heap.
frame of memory for each

function invocation. Each

frame holds local

(stack-dynamic) variables

associated with corresponding

function invocation.

FEORGETOW:
glﬂVIVERSI 7*1'2(

Draw Scope (function chain) diagrams to trace the
execution of a recursive function.

{f(3);}

ﬂ:
AT 25 (iad)

Recursion (and non-recursion) and the Stack

int factorial(int n)

{

//Assumes non-negative n

int val = 1;

for (int i =n; 1 > 1; i--3) //
repeatedly take product of values between 1
and n

val = val * i;

return val;

}

int factorial(int n)
{
// Assumes n is non-negative
int val = 1;
if (n == || n ==1) // Base case --
stop repetition
return 1;

else // recursive case -- continue
recursive call

return n * factorial(n - 1);

}

o))~ Vetr= e
w{1A|TL#;

J;ﬁa{’rﬁf(iq\ N

Cecucsiye

Local Referencing Environments: Examples

In most contemporary languages, locals are stack dynamic
In C, locals are by default stack dynamic, but can be declared static

The methods of C++, Java, Python, and C# only have stack dynamic
locals

In Lua, all implicitly declared variables are global; local variables are
declared with 10ca1 and are stack dynamic

_ FEORGETOW,
o gw\IIVERSITiz\C

Semantic Models of Parameter Passing

* In mode (input)
« Out mode (output)
— Simply a container for a return value

* |nout mode (input and output)
— EG pass-by-reference

_ FEORGETOW,
e gw\IIVERSITiz\C

Models of Parameter Passing

Caller Callee
(sub (a, b, c)) Call (procedure sub (x, y, z))
/ \ X
In mode
Return
///f
/ \ y
Out mode Call
/
< e
Inout mode Return
1-16 GEORGETOWIN_

UNIVERSITY

Pass-by-Value (In Mode)

« The value of the actual parameter is used to initialize
the corresponding formal parameter
— Normally implemented by copying

— Can be implemented by transmitting an access path but not
recommended (enforcing write protection is not easy)

— Disadvantages (if by physical move): additional storage is
required (stored twice) and the actual move can be costly (for
large parameters)

— Disadvantages (if by access path method): must write-protect in
the called subprogram and accesses cost more (indirect
addressing)

_ FEORGETOW,
o gw\IIVERSITiz\C

Pass-by-Result (Out Mode)

 When a parameter Is passed by result, no value
IS transmitted to the subprogram; the

corresponding formal parameter acts as a local
variable; its value is transmitted to caller’s
actual parameter when control is returned to the
caller, by physical move
— Require extra storage location and copy operation

« Potential problems:

— sub(pl, pl); Whichever formal parameter is copied
back will represent the current value of »:

— sub(list[sub], sub); Compute address of list[sub] at
the beginning of the subprogram or end?

_ EORGETOW.
e gw\IIVERSITiz\C

Pass-by-Reference (Inout Mode)

Pass an access path
Also called pass-by-sharing

Advantage: Passing process Is efficient (no copying and no
duplicated storage)

Disadvantages
— Slower accesses (compared to pass-by-value) to formal parameters
— Potentials for unwanted side effects

— Unwanted aliases
— fun(total, total); fun(list([i], list[]j]; fun(list[i], 1)

FEORGETOW:
gUZVI VERSI ZTIL:Z\C

1-19

Pass-by-Name (Inout Mode)

By textual substitution

Formals are bound to an access method at the time
of the call, but actual binding to a value or address
takes place at the time of a reference or assignment

Allows flexibility in late binding

Implementation requires that the referencing
environment of the caller is passed with the
parameter, so the actual parameter address can be
calculated

Used in Algol

_ FEORGETOW,
20 gw\IIVERSITiz\C

Pass by Name Example

Procedure Definition: - Textually x and y do not dependent, so the
procedure swap (a, b); o
integer a, b, temp; late binding does not affect the expected
begin result

temp = a;

a:.=b;

b:=temp
end; Note that the i and x[i] parameters are not

evaluated before function execution. Instead

Execute: swap(X, y): . .
P, 9) they are textually substituted into the

temp = X;

X:=Y; function definition and replace aand b
y:=temp correspondingly. The parameters are finally
Execute: swap(i, X[i]): evaluated when referenced or assigned.
temp = 1i;

I = X][i];

X[i] ;= temp

.OO0SU000E . SoCCCEED

FEORGETOW:
glﬂVIT/.ERSI Tl'g('

Implementing Parameter-Passing Methods

* In most languages parameter communication takes place thru the
run-time stack

« Pass-by-reference are the simplest to implement; only an address
IS placed in the stack

FEORGETOW:
gUZVI VERSI ZTIL:Z\C

1-22

Implementing Parameter-Passing Methods

* In most languages parameter communication takes place thru the
run-time stack

« Pass-by-reference are the simplest to implement; only an address
IS placed in the stack

FEORGETOW:
gUZVI VERSI ZTIL:Z\C

1-23

Implementing Parameter-Passing Methods

main Stack function sub
_________ At start i
w ® > Valueofa |[«------ - Ref. to a
p 2 < Atend e Value of b | ® Assign to b
ittt Atstart
Y At end Valueofc [~~~ ~~~ - Re:f. toe
< ® < e Assign to c
_________ Address (at start) > Code
z ~ 777 * Address (@) & | —— - —— - - Ref.tod
Code
A

Function header: void sub (int a, int b, int c, int d)
Function call in main: sub (w, x, vy, z)
(pass w by value, x by result, v by value-result, z by reference)

_ EORGETOW,
o gUZVIVERSITl'g\C

Parameter Passing Methods of Major
Languages

c C
— Pass-by-value
— Pass-by-reference is achieved by using pointers as parameters

e C++
— A special pointer type called reference type for pass-by-reference

« Java
— All primitive parameters are passed are passed by value
— Object parameters are passed by reference

_ EORGETOW,
e gw\IIVERSITiz\C

Parameter Passing Methods of Major
Languages (continued)

Fortran 95+
- Parameters can be declared to be in, out, or inout mode

C#

- Default method: pass-by-value

— Pass-by-reference is specified by preceding both a formal
parameter and its actual parameter with ref

PHP: very similar to C#, except that either the actual or

the formal parameter can specify ref

Python and Ruby use pass-by-assignment (all data
values are objects); the actual is assigned to the formal

FEORGETOW:
gUZVI VERSI ZTIL:Z\C

1-26

Type Checking Parameters

Considered very important for reliability

FORTRAN 77 and original C: none

Pascal and Java: it is always required

ANSI C and C++: choice is made by the user

Some languages Perl, JavaScript, and PHP do not require type checking

In Python and Ruby, variables do not have types (objects do), so parameter
type checking is not possible

_ EORGETOW,
e gw\IIVERSITiz\C

Multidimensional Arrays as Parameters: C++

* If a multidimensional array is passed to a subprogram
and the subprogram is separately compiled, the
compiler needs to know the declared size of that array

to build the storage mapping function
— Programmer is required to include the declared sizes of all but
the first subscript in the actual parameter

 |n General, stack allocation concerns*

« Remedies
— Arrays are by default pass by reference in C++*

— Use/pass pointer and pass dimensions as arg

_ FEORGETOW,
e gw\IIVERSITiz\C

Multidimensional Arrays as Parameters:
Java and C#

* Arrays are objects; they are all single-dimensioned, but the
elements can be arrays

« Each array inherits a named constant (1ength INn Java, rength IN C#)

that is set to the length of the array when the array object is
created

_ EORGETOW.
e gw\IIVERSITiz\C

Design Considerations for Parameter Passing

« Two Important considerations
— Efficiency
— One-way or two-way data transfer

 But the above considerations are in conflict

— Good programming suggest limited access to variables, which means
one-way whenever possible

— But pass-by-reference is more efficient to pass structures of significant
size

_ EORGETOW.
o gw\IIVERSITiz\C

Parameters that are Subprogram
Names

« Itis sometimes convenient to pass subprogram
names as parameters

* |ssues:
1. Are parameter types checked?

2. What is the correct referencing environment for a
subprogram that was sent as a parameter?

_ EORGETOW.
o gw\IIVERSITiz\C

Parameters that are Subprogram
Names: Referencing Environment

« Shallow binding: The environment of the call statement that
enacts the passed subprogram
- Most natural for dynamic-scoped

languages

« Deep binding: The environment of the definition of the passed
subprogram
- Most natural for static-scoped languages

* Ad hoc binding: The environment of the call statement that
passed the subprogram

_ EORGETOW.
e gw\IIVERSITiz\C

Bindings

Javascript Example from text:
function subl()

{ varx;
function sub2() * subl calls sub3 which calls sub4 by the call
{ alert(x); // creates a dialog box with the value of x statement, sub4(sub?2).
J#
Eusztr'in sub3(* sub4() subsequently calls sub2().
X =3;
sub4(sub2); * The environment of the execution of sub2() in this
i? . case can be one of the following three:
{ucc:r'in subd(subx) 1. that of sub4(): Shallow Binding.
X = 4 x=4
subx(); // calling the passed subprogram which is a parameter. 2. that of sub1(): Deep Binding.
% : x=1
x=1; . . .
sub3(): 3. that of sub3(): Ad Hoc Binding.
) x=3.
GEORGETOWIN_

UNIVERSITY

Calling Subprograms Indirectly

« Usually when there are several possible subprograms to be called
and the correct one on a particular run of the program is not know
until execution (e.g., event handling and GUIs)

* In C and C++, such calls are made through function pointers

_ EORGETOW,
o gw\IIVERSITiz\C

/I Note our user-defined comparison is the third parameter
void selectionSort(int *array, int size|, bool (*comparisonFcn)(int, int))

{

C++ Example: functions as arguments

/I Step through each element of the array
for (int startindex = O; startindex < size; ++startindex)

{

/I bestindex is the index of the smallest/largest element we've encountered so far.
int bestindex = startindex;
/I Look for smallest/largest element remaining in the array (starting at startindex+1)
for (int currentindex = startindex + 1; currentindex < size; ++currentindex)
{
I'If the current element is smaller/larger than our previously found smallest
if (comparisonFcn(array[bestindex], array[currentindex])) // COMPARISON DONE HERE
/I This is the new smallest/largest number for this iteration
bestindex = currentindex;
}
/I Swap our start element with our smallest/largest element
std::swap(array[startindex], array[bestindex]);

bool ascending(int x, inty)

{

return x > y; // swap if the first element is greater than the second

}

bool descending(int x, int y)

{

return x <y; // swap if the second element is greater than the first

}

/I This function prints out the values in the array
void printArray(int *array, int size)
{
for (int index=0; index < size; ++index)
std::cout << array[index] <<"";
std::cout << '\n';

}
int main()

{
intarray[9] ={3,7,9,5,6,1,8,2,4};

/I Sort the array in descending order using the descending() function
selectionSort(array, 9, descending);

printArray(array, 9);

/I Sort the array in ascending order using the ascending() function
selectionSort(array, 9

printArray(array, 9);

return 0;

GEORGETOWN(,
Example taken from learncpp UNIVERSITY

Design Issues for Functions

« Are side effects allowed?

— Should parameters always be in-mode to reduce side effect
(like Ada)

 What types of return values are allowed?
— Most imperative languages restrict the return types
— C allows any type except arrays and functions
— C++islike C but also allows user-defined types

— Java and C# methods can return any type (but because
methods are not types, they cannot be returned)

— Python and Ruby treat methods as first-class objects, so they
can be returned, as well as any other class

— Lua allows functions to return multiple values

_ EORGETOW,
o gw\IIVERSITiz\C

Overloaded Subprograms

An overloaded subprogram is one that has the same name as another
subprogram in the same referencing environment

— Every version of an overloaded subprogram has a unique protocol

C++, Java, C#, and Ada include predefined overloaded subprograms

In Ada, the return type of an overloaded function can be used to
disambiguate calls (thus two overloaded functions can have the same
parameters)

Ada, Java, C++, and C# allow users to write multiple versions of
subprograms with the same name

_ EORGETOW.
o gw\IIVERSITiz\C

Generic Subprograms

A generic or polymorphic subprogram takes parameters of different types on
different activations. Three categories

1. Overloaded subprograms provide ad hoc polymorphism

2. Subtype polymorphism means that a variable of type T can access any
object of type T or any type derived from T (OOP languages)

3. A subprogram that takes a generic parameter that is used in a type
expression that describes the type of the parameters of the subprogram
provides parametric polymorphism
- A cheap compile-time substitute for dynamic binding

_ EORGETOW,
o gw\IIVERSITiz\C

Generic Subprograms (continued)

e C++

— Versions of a generic subprogram are created
implicitly when the subprogram is named in a call or
when its address is taken with the & operator

— Generic subprograms are preceded by a template
clause that lists the generic variables, which can be
type names or class names

template <class Type>
Type max (Type first, Type second) {
return first > second ? first : second;

}

_ EORGETOW,
o gw\IIVERSITiz\C

User-Defined Overloaded Operators

« Operators can be overloaded in Ada, C++, Python, and Ruby
« A Python example

def add (self, second) :
return Complex (self.real + second.real,
self.imag + second.imag)

Use: To compute x + y, x. add (y)

_ EORGETOW,
0 gw\IIVERSITiz\C

Closures

* Aclosure is a subprogram and the referencing

environment where 1t was defined

— The referencing environment is needed if the subprogram can
be called from any arbitrary place in the program

— A static-scoped language that does not permit nested
subprograms doesn’t need closures

— Closures are only needed if a subprogram can access variables
In nesting scopes and it can be called from anywhere

— To support closures, an implementation may need to provide
unlimited extent to some variables (because a subprogram may
access a nonlocal variable that is normally no longer alive)

_ EORGETOW,
o gw\IIVERSITiz\C

Summary

A subprogram definition describes the actions
represented by the subprogram

Subprograms can be either functions or procedures

Local variables in subprograms can be stack-dynamic or
static

Three models of parameter passing: in mode, out mode,
and inout mode

Some languages allow operator overloading
Subprograms can be generic

A closure is a subprogram and its ref. environment

A coroutine is a special subprogram with multiple entries

_ EORGETOW,
o gw\IIVERSITiz\C

Coroutines

Only Lua fully supports co-routines

A coroutine is a subprogram that has multiple entries and controls
them itself — supported directly in Lua

Also called symmetric control: caller and called coroutines are on a
more equal basis

A coroutine call is named a resume

The first resume of a coroutine Is to its beginning, but subsequent
calls e{_nter at the point just after the last executed statement in the
coroutine

Coroutines repeatedly resume each other, possibly forever

Coroutines provide quasi-concurrent execution of program units
(the coroutines); their execution is interleaved, but not overlapped

_ EORGETOW,
o gw\IIVERSITiz\C

Coroutines Illustrated: Possible Execution
Controls

-

A

resume
from master

)
°
resume
®
.
)
resume
)
®
°
)

resume

B <

B <«_

B_._.---

B

-._./"—._—

e
P

®

— — resume A
vl .

[

®

— resume A

e & o o

(a)

EORGETOWN_
UNIVERSITY

Coroutines Illustrated: Possible Execution
Controls

resume >
from master

resume B
. —, resume A

® []
resume B

(b)
_ EORGETOW,
o glﬂVIVERSITIg\C’

Coroutines Illustrated: Possible Execution
Controls with Loops

resume >
from master >

e o o o o o
o
\J

e o o o o

g
resume B T~

L]
L]
- S
.--"-_
| > resume A

: Subsequent :
\ . resume . J

_ EORGETOW,
e glﬂVIVERSITl'g\C

