
COSC252: Programming Languages:

Basic Semantics: Data Types…

Jeremy Bolton, PhD

Asst Teaching Professor

Copyright © 2015 Pearson. All rights reserved.

Common Types and Design Concerns

• Primitive Data Types

• Character String Types

• Enumeration Types

• Array Types

• Record Types

• List Types

• Union Types

• Pointer and Reference Types

• Type Checking

• Strong Typing

• Type Equivalence

• Why data types?

Introduction

• A data type defines a collection of data objects and a set of
predefined operations on those objects

• A descriptor is the collection of the attributes of a variable

• An object represents an instance of a user-defined (abstract
data) type

• One design issue for all data types: What operations are defined
and how are they specified?

What is Data?

• Data – information, facts, details, substance of conveyance.

– Generally stored or communicated via some media

– Information Theory: Information is the encoding of data.

• Digital or electric encoding

• A digital sequence

• How do types help?

Primitive Data Types

• Almost all programming languages provide a set of primitive data

types

• Primitive data types: Those not defined in terms of other data

types

• Some primitive data types are merely reflections of the hardware

• Others require only a little non-hardware support for their

implementation

Primitive Data Types: Integer

• Almost always an exact reflection of the hardware so the mapping

is trivial

• There may be as many as eight different integer types in a

language

• Java’s signed integer sizes: byte, short, int, long

1D16

Binary Representations

• Data is encoded into computers as binary string of various lengths
– Each bit (latch in hardware) can store a 0 or 1

– A byte is an 8 bit sequence

– Each unique binary string can be used to represent a different integer.

– However, binary strings can be used to represent various data.

• EG: binary strings as integers (polynomial expansion)
0001 11012

27(0)+ 26(0)+ 25(0)+ 24(1) + 23(1)+ 22(1)+ 21(0)+ 20(1) = 29

• Hexi-decimal Representation
161(1)+ 161(13) = 29

1D16
0001 11012

Data Types

• Binary strings interpreted differently based on data type
– Data type can be seen as a set of all possible values of some category; or more

generally a data type is a mapping from set of all valid binary strings (of some
length) to a value.

• Example: chars
– Assumes 8-bit

EG:
0100 0100 → ′𝐷′
0000 1010 → ′\n′

8

Integer Representation

• unsigned ints

– Unsigned ints are generally represented using the standard polynomial expansion of binary

sequences.

• ints are generally stored in “2’s complement” which allows for the representation of negative

integers and allows for an efficient implementation of arithmetic.

– Example (assuming 4-byte representation)

– Conversion to two’s complement of negative int

1. List binary representation of positive value.

2. Invert binary digits

3. Add 1

– Example: What is two’s complement representation of -67?

0000 0000 0000 0000 0000 0000 0100 0011, 0𝑥0043

1111 1111 1111 1111 1111 1111 1011 1100, 0𝑥𝐹𝐹𝐵𝐶

1111 1111 1111 1111 1111 1111 1011 1101, 0𝑥𝐹𝐹𝐵𝐷
0𝑥0043

Memory requirements of common primitive data types
(c++)

Type Name Bytes Other Names Range of Values

int 4 signed –2,147,483,648 to
2,147,483,647

unsigned int 4 unsigned 0 to 4,294,967,295

short 2 short int, signed short int –32,768 to 32,767

unsigned short 2 unsigned short int 0 to 65,535

long 4 long int, signed long int –2,147,483,648 to
2,147,483,647

unsigned long 4 unsigned long int 0 to 4,294,967,295

long long 8 none (but equivalent to
__int64)

–
9,223,372,036,854,775,80
8 to
9,223,372,036,854,775,80
7

short 2 short int, signed short int –32,768 to 32,767

bool 1 none false or true

char 1 none –128 to 127 by default
0 to 255 when compiled by
using

• Each data type may

have different

encoding schemes,

as noted previously.

• Different data types

may also have

notably different

lengths, or memory

requirements.

Low-Level Operations on Data

• Binary Operations

– Bit-wise Logical OR: |

– Bit-wise Logical AND: &

– Bit-wise Logical NOT: ~

– Bit-wise Logical XOR: ^

– Bit-wise shift left: <<

– Bit-wise shift right: >>

0110 0001 1101 0100

| 1011 1000 1110 0100

1111 1001 1111 0100

0110 0001 1101 0100

& 1011 1000 1110 0100

0010 0000 1100 0100

0011 1000 1110 0100 << 2

1110 0011 1001 0000

Conceptually: Directly operates on binary
sequence rather than “value”

Primitive Data Types: Floating Point

• Model real numbers, but only as approximations

• Languages for scientific use support at least two floating-point
types (e.g., float and double; sometimes more

• IEEE Floating-Point

Standard 754

−1 𝑠𝑖𝑔𝑛 1 + σ𝑖=1
52 𝑏52−𝑖2

−𝑖 2𝑒−1023

Primitive Data Types: Complex

• Some languages support a complex type, e.g., C99, Fortran, and

Python

• Each value consists of two floats, the real part and the imaginary

part

• Literal form (in Python):

(7 + 3j), where 7 is the real part and 3 is the imaginary part

Primitive Data Types: Decimal

• For business applications (money)

– Essential to COBOL

– C# offers a decimal data type

• Store a fixed number of decimal digits, in coded form (BCD)

• Advantage: accuracy

• Disadvantages: limited range, wastes memory

– Why?

Challenge

• Design a BCD data type (for currency)

– Remember: a data type is simply a mapping from a domain (binary

sequences of a specific length) to a range (value or interpretation)

10.5

120.10

Primitive Data Types: Boolean

• Simplest of all

• Range of values: two elements, one for “true” and one for “false”

• Could be implemented as bits, but often as bytes

– Advantage: readability

Primitive Data Types: Character

• Stored as numeric codings

• Most commonly used coding: ASCII

• An alternative, 16-bit coding: Unicode (UCS-2)

– Includes characters from most natural languages

– Originally used in Java

– C# and JavaScript also support Unicode

• 32-bit Unicode (UCS-4)

– Supported by Fortran, starting with 2003

Character String Types

• Values are sequences of characters

• Design issues:

– Is it a primitive type or just a special kind of array?

– Should the length of strings be static or dynamic?

Character String Type in Certain
Languages

• C and C++

– Not primitive

– Use char arrays and a library of functions that provide operations

• Fortran and Python

– Primitive type with assignment and several operations

• Java
– Primitive via the String class

• Perl and Ruby

- Provide built-in pattern matching, using regular

expressions

Character String Length Options

• Static: Java’s String class

– immutable

• Limited Dynamic Length: C and C++

– In these languages, a special character is used to indicate the end of a

string’s characters, rather than maintaining the length

– mutable

• Dynamic (no maximum): SNOBOL4, Perl, JavaScript

Character String Type Evaluation

• Considerations:

– Aid to writability

– As a primitive type with static length, they are inexpensive to provide--why

not have them?

– Dynamic length is nice, but is it worth the expense?

Character String Implementation

• Static length: compile-time descriptor

• Limited dynamic length: may need a run-time descriptor for length

(but not in C and C++)

• Dynamic length: need run-time descriptor; allocation/deallocation

is the biggest implementation problem

Compile- and Run-Time Descriptors

Compile-time
descriptor for
static strings

Run-time
descriptor for
limited dynamic
strings

Enumeration Types

• All possible values, which are named constants, are provided in
the definition

• C# example
enum days {mon, tue, wed, thu, fri, sat, sun};

• Design issues
– Is an enumeration constant allowed to appear in more than one type

definition, and if so, how is the type of an occurrence of that constant
checked?

– Are enumeration values coerced to integer?

– Any other type coerced to an enumeration type?

Evaluation of Enumerated Type

• Aid to readability, e.g., no need to code a color as a number

• Aid to reliability, e.g., compiler can check:

– operations (don’t allow colors to be added)

– No enumeration variable can be assigned a value outside its defined

range

– C# and Java 5.0 provide better support for enumeration than C++

because enumeration type variables in these languages are not coerced

into integer types

Array Types

• An array is a homogeneous aggregate of data elements in which

an individual element is identified by its position in the aggregate,

relative to the first element.

Array Design Issues

• What types are legal for subscripts?

• Are subscripting expressions in element references

range checked?

• When are subscript ranges bound?

• When does allocation take place?

• Are ragged or rectangular multidimensional arrays

allowed, or both?

• What is the maximum number of subscripts?

• Can array objects be initialized?

• Are any kind of slices supported?

Array Indexing

• Indexing (or subscripting) is a mapping from indices to elements
array_name (index_value_list) an element

• Index Syntax

– Fortran and Ada use parentheses

• Ada explicitly uses parentheses to show uniformity between array references and

function calls because both are mappings

– Most other languages use brackets

Arrays Index (Subscript) Types

• FORTRAN, C: integer only

• Java: integer types only

• Index range checking

- C, C++, Perl, and Fortran do not specify

range checking

- Java, ML, C# specify range checking

Subscript Binding and Array Categories

• Static: subscript ranges are statically bound and storage

allocation is static (before run-time)

– Advantage: efficiency (no dynamic allocation)

• Fixed stack-dynamic: subscript ranges are statically bound, but

the allocation is done at declaration time

– Advantage: space efficiency

Subscript Binding and Array Categories
(continued)

• Fixed heap-dynamic: similar to fixed stack-dynamic: storage

binding is dynamic but fixed after allocation (i.e., binding is done

when requested and storage is allocated from heap, not stack)

• Heap-dynamic: binding of subscript ranges and storage allocation

is dynamic and can change any number of times

– Advantage: flexibility (arrays can “grow” or “shrink” during program

execution)

Subscript Binding and Array Categories
(continued)

• C and C++ arrays that include static modifier are

static

• C and C++ arrays without static modifier are

fixed stack-dynamic

• C and C++ provide fixed heap-dynamic arrays

• C# includes a second array class ArrayList that

provides fixed heap-dynamic

• Perl, JavaScript, Python, and Ruby support heap-

dynamic arrays

Array Initialization

• Some language allow initialization at the time of storage allocation

– C, C++, Java, C# example
int list [] = {4, 5, 7, 83}

– Character strings in C and C++
char name [] = ″freddie″;

– Arrays of strings in C and C++
char *names [] = {″Bob″, ″Jake″, ″Joe″];

– Java initialization of String objects
String[] names = {″Bob″, ″Jake″, ″Joe″};

Heterogeneous Arrays

• A heterogeneous array is one in which the elements need not be

of the same type

• Supported by Perl, Python, JavaScript, and Ruby

Array Initialization

• C-based languages
– int list [] = {1, 3, 5, 7}

– char *names [] = {″Mike″, ″Fred″, ″Mary Lou″};

• Python

– List comprehensions

list = [x ** 2 for x in range(12) if x % 3 == 0]

puts [0, 9, 36, 81] in list

Arrays Operations

• APL provides the most powerful array processing
operations for vectors and matrixes as well as unary
operators (for example, to reverse column elements)

• Python’s array assignments, but they are only reference
changes. Python also supports array catenation and
element membership operations

• Ruby also provides array catenation

Rectangular and Jagged Arrays

• A rectangular array is a multi-dimensioned array in which all of the
rows have the same number of elements and all columns have
the same number of elements

• A jagged matrix has rows with varying number of elements
– Possible when multi-dimensioned arrays actually appear as arrays of

arrays

• C, C++, and Java support jagged arrays

• F# and C# support rectangular arrays and jagged arrays

Accessing Multi-dimensioned Arrays

• Two common ways:

– Row major order (by rows) – used in most languages

– Column major order (by columns) – used in Fortran

– A compile-time descriptor

for a multidimensional

array

Row Major
vs Col. Major

Row Major vs Col. Major

• Traversals may be

slowed if multi-

dimensional arrays

are traversed poorly.

– Delays can be

caused by memory

paging delays,

caching delays, and

potentially indexing

arithmetic.

Code Example: Row Major vs Col. Major

// Efficient Traversal for Row -Major

for (int i = 0;i< numRows; i++)
for (int j = 0; j < numCols; j++)

c[i][j] = i + j;

// Efficient Traversal for Col-Major

for (int j = 0;j< numCols; j++)
for (int i = 0; i < numRows; i++)

c[i][j] = i + j;

Locating an Element in a Multi-
dimensioned Array

•General format (Assuming Row Major storage)
–Example c++ (assumes indexing starts at 0, though image
shows 1)

array[i][j]

* (array + i *numCols+ j)

Compile-Time Descriptors

Single-dimensioned array Multidimensional array

Record Types

• A record is a possibly heterogeneous aggregate

of data elements in which the individual

elements are identified by names

• Design issues:

– What is the syntactic form of references to the field?

– Are elliptical references allowed

Evaluation and Comparison to Arrays

• Records are used when collection of data values is
heterogeneous

• Access to array elements is much slower than access to record
fields, because subscripts are dynamic (field names are static)

• Dynamic subscripts could be used with record field access, but it
would disallow type checking and it would be much slower

Implementation of Record Type

Offset address relative to
the beginning of the records
is associated with each field

List Types

• Python Lists

– The list data type also serves as Python’s arrays

– Unlike Scheme, Common Lisp, ML, and F#, Python’s

lists are mutable

– Elements can be of any type

– Create a list with an assignment

myList = [3, 5.8, "grape"]

List Types (continued)

• Python Lists (continued)

– List elements are referenced with subscripting, with

indices beginning at zero

x = myList[1] Sets x to 5.8

– List elements can be deleted with del

del myList[1]

– List Comprehensions – derived from set notation

[x * x for x in range(6) if x % 3 == 0]

range(12) creates [0, 1, 2, 3, 4, 5, 6]

Constructed list: [0, 9, 36]

Unions Types

• A union is a type whose variables are allowed to

store different type values at different times

during execution

• Design issue

– Should type checking be required?

– How is allocation size determined?

Discriminated vs. Free Unions

• C and C++ provide union constructs in which there is no language

support for type checking; the union in these languages is called

free union

• Type checking of unions require that each union include a type

indicator called a discriminant

– Supported by ML, Haskell, and F#

Evaluation of Unions

• Free unions are unsafe

– Do not allow type checking

• Java and C# do not support unions

– Reflective of growing concerns for safety in programming language

Pointer and Reference Types

• A pointer type variable has a range of values that consists of

memory addresses and a special value, nil

• Provide the power of indirect addressing

• Provide a way to manage dynamic memory

• A pointer can be used to access a location in the area where

storage is dynamically created (usually called a heap)

Design Issues of Pointers

• What are the scope of and lifetime of a pointer variable?

• What is the lifetime of a heap-dynamic variable?

• Are pointers restricted as to the type of value to which they can
point?

• Are pointers used for dynamic storage management, indirect
addressing, or both?

• Should the language support pointer types, reference types, or
both?

Pointer Operations

• Two fundamental operations: assignment and dereferencing

• Assignment is used to set a pointer variable’s value to some
useful address

• Dereferencing yields the value stored at the location represented
by the pointer’s value
– Dereferencing can be explicit or implicit

– C++ uses an explicit operation via *

j = *ptr

sets j to the value located at ptr

Pointer Assignment Illustrated

The assignment operation j = *ptr

Pointer Arithmetic in C and C++

float stuff[100];

float *p;

p = stuff;

*(p+5) is equivalent to stuff[5] and p[5]

*(p+i) is equivalent to stuff[i] and p[i]

Problems with Pointers

• Dangling pointers (dangerous)

– A pointer points to a heap-dynamic variable that has been

deallocated

• Lost heap-dynamic variable (memory leak)

– An allocated heap-dynamic variable that is no longer accessible

to the user program (often called garbage)

• Pointer p1 is set to point to a newly created heap-dynamic

variable

• Pointer p1 is later set to point to another newly created heap-

dynamic variable

• The process of losing heap-dynamic variables is called memory

leakage

Dangling Pointer “Solutions”

• Tombstone: extra heap cell that is a pointer to the heap-dynamic variable

– The actual pointer variable points only at tombstones

– When heap-dynamic variable de-allocated, tombstone remains but set to nil

– Costly in time and space

. Locks-and-keys: Pointer values are represented as (key, address) pairs

– Heap-dynamic variables are represented as variable plus cell for integer lock value

– When heap-dynamic variable allocated, lock value is created and placed in lock cell and

key cell of pointer

Heap Management (garbage collection)

• Strategies for memory leak

• A very complex run-time process

• Two approaches to reclaim garbage

– Reference counters (eager approach): reclamation is gradual

– Mark-sweep (lazy approach): reclamation occurs when the list of variable

space becomes empty

Reference Counter

• Reference counters: maintain a counter in every

cell that store the number of pointers currently

pointing at the cell

– Disadvantages: space required, execution time

required,

– Advantage: it is intrinsically incremental, so

significant delays in the application execution are

avoided

Mark-Sweep

• The run-time system allocates storage cells as

requested and disconnects pointers from cells as

necessary; mark-sweep then begins

– Every heap cell has an extra bit used by collection algorithm

– All cells initially set to garbage

– All pointers traced into heap, and reachable cells marked as

not garbage

– All garbage cells returned to list of available cells

– Disadvantages: in its original form, it was done too

infrequently. When done, it caused significant delays in

application execution. Contemporary mark-sweep algorithms

avoid this by doing it more often—called incremental mark-

sweep

Type Checking (Segue to Expr Eval)

• Type checking is the activity of ensuring that the operands of an operator are of compatible

types

– Generalize the concept of operands and operators to include subprograms and assignments

• A compatible type is one that is either legal for the operator, or is allowed under language

rules to be implicitly converted, by compiler- generated code, to a legal type

– This automatic conversion is called a coercion.

• A type error is the application of an operator to an operand of an inappropriate type

Type Checking (continued)

• If all type bindings are static, nearly all type checking can be static

• If type bindings are dynamic, type checking must be dynamic

• A programming language is strongly typed if type errors are

always detected

• Advantage of strong typing: allows the detection of the misuses of

variables that result in type errors

Strong Typing

• Language examples:

– C and C++ are not: parameter type checking can be avoided; unions are

not type checked

– Java and C# are, almost (because of explicit type casting)

• Coercion rules strongly affect strong typing--they can weaken it

considerably (C++)

