

COSC252: Programming Languages:

Formal Languages

Jeremy Bolton, PhD Asst Teaching Professor

Outline

I. Formal Perspective: review of languages and grammar

- I. Regular Languages
 - I. Regular Expressions (Regular Grammars)
 - II. Finite State Machines
- II. Context-Free Languages
 - I. BNF Productions (Regular Grammars)
 - II. Push Down Automata

Languages

- A language L is a set of sentences.
- A sentence is a sequence of characters from some input alphabet $\boldsymbol{\Sigma}$

FSM

- A finite state machine is a 5-tuple:
 - $(\mathsf{Q}, \Sigma, \delta, q_0, F)$
 - Q: finite set of all states
 - $-\Sigma$: alphabet (finite set of characters)
 - $-\delta$: state transition function, $\delta: Qx\Sigma \rightarrow Q$
 - $-q_0 \in Q$: start state
 - $F \subset Q$: set of accepting state(s)

RegEx

- R is a regular expression on input alphabet Σ , if R is \ldots
 - 1. $a \in \Sigma$, is a regular expression
 - 2. The empty string ϵ is a regular expression.
 - 3. The regular expression that represents the empty language θ is a regular expression.
 - 4. If R_1 and R_2 are regular expressions, then $R_1 \mid R_2$ is a regular expression
 - selection
 - 5. If R_1 and R_2 are regular expressions, then R_1R_2 is a regular expression
 - concatenation
 - 6. If R_1 is a regular expression, then R_1^* is a regular expression
 - repetition

Regular Languages

- A language L is a regular Language iff there exists a regular expression generator. A language L is a regular Language iff there exists a finite state machine recognizer.
 - Note: for each Regular Expression, that generates a regular language L, there exists a FSM that recognizes L
 - Note: for each FSM, that recognizes a regular language L, there exists a RegEx that generates L
 - Regular Language Examples on alphabet $\Sigma = \{0,1\}$ (Can you find the corresponding regex and fsm?):
 - L = {s| for all sentences s that have exactly one 1}
 - L = {s| the length of s is a multiple of 3}
 - L = {s| s starts and ends with the same symbol}

CFG /BNF Production Set

- A context free grammar on an input alphabet Σ is a 4-tuple:
 (N, Σ, R, S)
 - 1. N: a set of non-terminals (variables representing abstractions)
 - 2. Σ : input alphabet (a set of terminals)
 - 3. R: a finite set of rules consisting of a nonterminal production (nonterminal followed by its production rule: a sequence of terminals and non-terminals)
 - 4. $S \in N$: start symbol

Pushdown Automaton

- A Pushdown Automaton is a 6-tuple $(Q, \Sigma, \Gamma, \delta, q_0, F)$
 - Q: set of states
 - $-\Sigma$: input alphabet
 - $-\Gamma$: stack alphabet (and operation)
 - $-\delta: Qx\Sigma x\Gamma \rightarrow Qx\Gamma$, Transition function
 - $-q_0 \in Q$: start state
 - $F \subset Q$: accept state(s)

CFL

- A language L is a Context Free Language iff there exists a context free grammar (BNF) generator. A language L is a Context Free Language iff there exists a pushdown automaton recognizer.
 - Note: for each CFG, that generates a CFL L, there exists a PDA that recognizes L
 - Note: for each PDA, that recognizes a CFL L, there exists a CFG that generates L
 - CFL Examples on alphabet $\Sigma = \{0,1\}$ (Can you find the corresponding CFG and PDA?):
 - L = {s| for all sentences s that have exactly one 1}
 - L = {s| n zeros followed by n ones}
 - L = {s| n zeros followed by 2n ones}

Language Hierarchy

- Venn Diagram
- The set of all context free languages is a super set of the set of all regular languages.
 - A CFG can generate anything a RegEx can generate ... and more

LR and LL grammars

- Languages can be categorized by their recognizers (parsers)
 - LL grammars generate languages that can be recognized by a Top Down Parser
 - LR grammars generate languages that can be recognized by a Bottom Up Parser
 - We can further specify a these grammars by how many lookaheads are needed to recognize the language correctly. This extra information also indicates the "complexity" of the parse.
 - LL(k) : Language can be recognized by a Top Down parser with k lookaheads
 - LR(k) : Language can be recognized by a Bottom Up parser with k lookaheads.
 - Note: The set of languages generated by LR(k) grammars is a super set of languages generated by an LL(k) grammar, for all k.

Grammars Categorized by "Parse-ability"

• Find the LL(k) and LR(k) grammar classification for the following grammars. That is, given G generates L, find the smallest k_1 and k_1 such that, $L \in LL(k_1)$ and $L \in LR(k_2)$

•
$$G_1$$
:
 $E \rightarrow T + E \mid T - E \mid T$
 $T \rightarrow id$

• G_2 : $E \rightarrow TE'$ $E' \rightarrow +TE' | -TE' | \epsilon$ $T \rightarrow id$

Grammars Categorized by Parse-ability

- Find the LL(k) and LR(k) grammar classification for the following grammars. That is, given G generates L, find the smallest k_1 and k_1 such that, $L \in LL(k_1)$ and $L \in LR(k_2)$
- $G_3:$ $A \rightarrow aB$ $B \rightarrow bC$ $C \rightarrow b$
- $G_4:$ $A \rightarrow aB$ $B \rightarrow C$ $C \rightarrow b \mid c$

• G_5 : $E \rightarrow E - T \mid T$ $T \rightarrow (F)T \mid id \mid (E)$ $F \rightarrow id$

Example: Parsing c-style casts

```
<exp> → <exp> '-' <sub_exp>
| <sub_exp>
<sub_exp> → '(' <type_name> ')' <sub_exp>
| <id>
| <id>
| <literal>
| '(' <exp> ')'
<type_name> → id
| ... <other_type_descriptions>
```

The problem is that the first <id> in "(<id>) <id>" is a <type_name>, but in "(<id>) - <id>" it is an <exp>, and the two must be reduced differently when the ")" is seen but before the "-" or second <id> has been seen by an LR(1) parser.

Example: Parameter Lists

- Example Usage
 - void foo(int a, int b, float c, float d);
 - void foo (int a, b, float c, d);

```
<header> → <type_name> <id> '(' <params> ')' ';'
| <type_name> <id> '(' ')' ';'
```

```
<type_name> → <id>
| ... <other_descriptions>
```

```
<params > → <param>
| <params> ',' <param>
```

<param $> \rightarrow <$ type_name> <ids>

 $\langle ids \rangle \rightarrow \langle id \rangle$ $|\langle ids \rangle ', \langle id \rangle$ Notice that after a "<ids> ," the next symbols can be "a b" (a is a type_name, b is a parameter name of type a) or "a ," or "a)" (a is a parameter name of the current type), but an LR(1) parser can't see far enough ahead to decide whether the "," is part of a "params" (in which case the preceding "<ids>" must be reduced to a "param"), or part of a bigger "ids".

Appendix

GEORGETOWN UNIVERSITY