COSC252: Programming Languages:

Formal Languages

Jeremy Bolton, PhD
Asst Teaching Professor

FORGETOW:
gUNI VERSIT Tg\c

Outline

Formal Perspective: review of languages and grammar

|. Regular Languages
|. Regular Expressions (Regular Grammars)
lI. Finite State Machines

. Context-Free Languages

|. BNF Productions (Regular Grammars)
. Push Down Automata

FEORGETOW:
gUZVI VERSI ZTIL:Z\C

Languages

* Alanguage L Is a set of sentences.

« A sentence Is a sequence of characters from some input alphabet
2

FEORGETOW:
gUZVI VERSI ZTIL:Z\C

FSM

 Afinite state machine Is a 5-tuple:
_ (Q’ Zr 6' quF)

— Q: finite set of all states

— X : alphabet (finite set of characters)
— §: state transition function, §: QxX — Q
— gy € Q: start state

— Fc Q: set of accepting state(s)

FEORGETOW:
gUZVI VERSI ZTIL:Z\C

RegEx

* R is aregular expression on input alphabet X, if R is ...
1. a€X,isaregular expression
2. The empty string € is a regular expression.

3. The regular expression that represents the empty language 6 is a regular
expression.

4. If Ry and R, are regular expressions, then R; | R, IS a regular expression
« selection

5. If Ry and R, are regular expressions, then R;R, IS a regular expression
e concatenation

6. If R, is a regular expression, then R; Is a regular expression
* repetition

FEORGETOW:
gUZVI VERSI ZTIL:Z\C

Regular Languages

 Alanguage L is a regular Language iff there exists a regular expression generator. A
language L is a regular Language iff there exists a finite state machine recognizer.

— Note: for each Regular Expression, that generates a regular language L, there exists a FSM that
recognizes L

— Note: for each FSM, that recognizes a regular language L, there exists a RegEx that generates L

— Regular Language Examples on alphabet £ = {0,1} (Can you find the corresponding regex and
fsm?):
« L ={s| for all sentences s that have exactly one 1}
» L ={s| the length of s is a multiple of 3}
+ L ={s| s starts and ends with the same symbol}

FEORGETOW:
gUZVI VERSI ZTIL:Z\C

CFG /BNF Production Set

* A context free grammar on an input alphabet X is a 4-tuple:
(N,%,R,S)
1. N: a set of non-terminals (variables representing abstractions)
2. X:.Input alphabet (a set of terminals)

3. R: afinite set of rules consisting of a nonterminal production (non-
terminal followed by its production rule: a sequence of terminals and
non-terminals)

4. S € N: start symbol

FEORGETOW:
gUZVI VERSI ZTIL:Z\C

Pushdown Automaton

* A Pushdown Automaton is a 6-tuple (Q,%,T, 4, qq, F)
— Q: set of states
— X : Input alphabet
— I' : stack alphabet (and operation)
— §: Qx2xI" —» QxI' , Transition function
— (o € Q : start state
— F c Q : accept state(s)

FEORGETOW:
gUZVI VERSI ZTIL:Z\C

CFL

A language L is a Context Free Language iff there exists a context free grammar (BNF)
generator. A language L is a Context Free Language iff there exists a pushdown automaton
recognizer.

— Note: for each CFG, that generates a CFL L, there exists a PDA that recognizes L
— Note: for each PDA, that recognizes a CFL L, there exists a CFG that generates L

— CFL Examples on alphabet X = {0,1} (Can you find the corresponding CFG and-PDA?):
« L ={s| for all sentences s that have exactly one 1}
» L ={s| nzeros followed by n ones}
* L ={s| nzeros followed by 2n ones}

FEORGETOW:
gUZVI VERSI ZTIL:Z\C

Language Hierarchy

* Venn Diagram

* The set of all context free languages
IS a super set of the set of all regular

languages. N rlL-
— A CFG can generate anything a RegEXx
can generate ... and more | @
GEORGETOWIN_,

UNIVERSITY

LR and LL grammars

« Languages can be categorized by their
recognizers (parsers)

— LL grammars generate languages that can be
recognized by a Top Down Parser

— LR grammars generate languages that can be
recognized by a Bottom Up Parser

— We can further specify a these grammars by
how many lookaheads are needed to
recognize the language correctly. This extra
information also indicates the “complexity” of
the parse.

* LL(k) : Language can be recognized by a Top
Down parser with k lookaheads

* LR(k) : Language can be recognized by a Bottom
Up parser with k lookaheads.
— Note: The set of languages generated by
LR(k) grammars is a super set of languages
generated by an LL(k) grammar, for all k.

Grammars Categorized by “Parse-ability”

Find the LL(k) and LR(k) grammar classification for the following
grammars. That is, given G generates L, find the smallest k; and
kysuchthat, L € LL(k;) and L € LR (k)

G;:
E->T+E|T —E|T
T - id

G,:

E —» TE'

E' - +TE'| —TE'|e
T - id

FEORGETOW:
gUZVI VERSI ZTIL:Z\C

Grammars Categorized by Parse-ability

Find the LL(k) and LR(k) grammar classification for the following grammars. That is, given G generates L , find the smallest
k, and kqysuch that, L € LL(k,) and L € LR (k;)

Ga:

A - aB
B - bC
C—-b

G,

A - aB
B-C
C-bjc

Gs:

E-E—T|T

T - (F)T|id|(E)
F-id

FEORGETOW:
gUZVI VERSI ZTIL:Z\C

Example: Parsing c-style casts

<exp> — <exp>'-' <sub_exp>
| <sub_exp>

<sub_exp> - '(' <type_name>")' <sub_exp>
| <id>
| <literal>
| '(<exp>")’

<type name> - id

| ... <other_type descriptions>

The problem is that the first <id> in "(<id>) <id>" is a <type_name>, but in "(<id>) - <id>" it is an <exp>, and the two must be
reduced differently when the ")" is seen but before the "-" or second <id> has been seen by an LR(1) parser.

FEORGETOW:
gUZVI VERSI ZTIL:Z\C

Example: Parameter Lists

« Example Usage
— void foo(int a, int b, float c, float d);

— void foo (int a, b, float c, d);

<header> —» <type_name> <id>'(' <params>"')"
| <type_name> <id>"("")" "} Notice that after a “<ids>," the next symbols can be "a
b" (ais a type_name, b is a parameter name of type a) or
"a," or "a)" (ais a parameter name of the current type),
but an LR(1) parser can't see far enough ahead to decide
<params > — <param> whether the "," is part of a "params" (in which case the
| <params>"," <param> preceding “<ids>" must be reduced to a "param"), or part

of a bigger "ids".

<type_name> — <id>
| ... <other_descriptions>

<param> — <type name> <ids>

<ids> — <id>
| <ids>"',' <id>

FEORGETOW:
gUZVI VERSI ZTIL:Z\C

Appendix

