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I. Formal Perspective: review of languages and grammar

I. Regular Languages

I. Regular Expressions (Regular Grammars)

II. Finite State Machines

II. Context-Free Languages

I. BNF Productions (Regular Grammars)

II. Push Down Automata 



Languages

• A language L is a set of sentences.

• A sentence is a sequence of characters from some input alphabet 

Σ



FSM

• A finite state machine is a 5-tuple:

– (Q, Σ, 𝛿, 𝑞0, 𝐹)

– Q: finite set of all states

– Σ : alphabet (finite set of characters)

– 𝛿: state transition function, 𝛿: 𝑄𝑥Σ → Q

– 𝑞0 ∈ 𝑄: start state

– F⊂ 𝑄: set of accepting state(s)  



RegEx

• R is a regular expression on input alphabet Σ , if R is …
1. 𝑎 ∈ Σ , is a regular expression

2. The empty string 𝜖 is a regular expression.

3. The regular expression that represents the empty language 𝜃 is a regular 
expression.

4. If 𝑅1 and 𝑅2 are regular expressions, then 𝑅1 | 𝑅2 is a regular expression
• selection

5. If 𝑅1 and 𝑅2 are regular expressions, then 𝑅1𝑅2 is a regular expression
• concatenation

6. If 𝑅1 is a regular expression, then 𝑅1
∗ is a regular expression

• repetition



Regular Languages 

• A language L is a regular Language iff there exists a regular expression generator. A 

language L is a regular Language iff there exists a finite state machine recognizer. 

– Note: for each Regular Expression, that generates a regular language L, there exists a FSM that 

recognizes L

– Note: for each FSM, that recognizes a regular language L, there exists a RegEx that generates L

– Regular Language Examples on alphabet Σ = 0,1 (Can you find the corresponding regex and 

fsm?):
• L = {s| for all sentences s that have exactly one 1}

• L = {s| the length of s is a multiple of 3}

• L = {s| s starts and ends with the same symbol}



CFG /BNF Production Set

• A context free grammar on an input alphabet Σ is a 4-tuple: 

𝑁, Σ, 𝑅, 𝑆

1. N: a set of non-terminals (variables representing abstractions)

2. Σ: input alphabet (a set of terminals)

3. R: a finite set of rules consisting of a nonterminal production (non-

terminal followed by its production rule: a sequence of terminals and 

non-terminals)

4. S ∈ 𝑁: start symbol



Pushdown Automaton

• A Pushdown Automaton is a 6-tuple (𝑄, Σ, Γ, 𝛿, 𝑞0, 𝐹)

– Q: set of states

– Σ : input alphabet

– Γ : stack alphabet (and operation)

– 𝛿:𝑄𝑥Σ𝑥Γ → 𝑄𝑥Γ ,  Transition function

– q0 ∈ 𝑄 ∶ start state

– 𝐹 ⊂ 𝑄 : accept state(s)



CFL

• A language L is a Context Free Language iff there exists a context free grammar (BNF) 

generator. A language L is a Context Free Language iff there exists a pushdown automaton 

recognizer. 

– Note: for each CFG, that generates a CFL L, there exists a PDA that recognizes L

– Note: for each PDA, that recognizes a CFL L, there exists a CFG that generates L

– CFL Examples on alphabet Σ = 0,1 (Can you find the corresponding CFG and PDA?):
• L = {s| for all sentences s that have exactly one 1}

• L = {s| n zeros followed by n ones}

• L = {s| n zeros followed by 2n ones}



Language Hierarchy

• Venn Diagram

• The set of all context free languages 

is a super set of the set of all regular 

languages.

– A CFG can generate anything a RegEx

can generate … and more



LR and LL grammars

• Languages can be categorized by their 
recognizers (parsers)
– LL grammars generate languages that can be 

recognized by a Top Down Parser

– LR grammars generate languages that can be 
recognized by a Bottom Up Parser

– We can further specify a these grammars by 
how many lookaheads are needed to 
recognize the language correctly. This extra 
information also indicates the “complexity” of 
the parse.

• LL(k) : Language can be recognized by a Top 
Down parser with k lookaheads

• LR(k) : Language can be recognized by a Bottom 
Up parser with k lookaheads.

– Note: The set of languages generated by 
LR(k) grammars is a super set of languages 
generated by an LL(k) grammar, for all k.



Grammars Categorized by “Parse-ability”

• Find the LL(k) and LR(k) grammar classification for the following 
grammars. That is, given G generates L , find the smallest 𝑘1 and 
𝑘1such that, 𝐿 ∈ 𝐿𝐿(𝑘1) and 𝐿 ∈ 𝐿𝑅(𝑘2)

• G1:
𝐸 → 𝑇 + 𝐸 𝑇 − 𝐸 𝑇
𝑇 → 𝑖𝑑

• G2:
𝐸 → 𝑇𝐸′
𝐸′ → +𝑇𝐸′ −𝑇𝐸′ 𝜖
𝑇 → 𝑖𝑑

LL( 2 )
LR( 1 )

LL( 1 )
LR( 1 ) : generally need a lookahead with any epsilon rules



Grammars Categorized by Parse-ability

• Find the LL(k) and LR(k) grammar classification for the following grammars. That is, given G generates L , find the smallest 
𝑘1 and 𝑘1such that, 𝐿 ∈ 𝐿𝐿(𝑘1) and 𝐿 ∈ 𝐿𝑅(𝑘2)

• G3:
𝐴 → 𝑎𝐵
𝐵 → 𝑏𝐶
𝐶 → 𝑏

• G4:
𝐴 → 𝑎𝐵
𝐵 → 𝐶
𝐶 → 𝑏 | c

• G5:
E → 𝐸 − 𝑇 | 𝑇
𝑇 → 𝐹 𝑇 𝑖𝑑 𝐸
F → 𝑖𝑑

LL( 0 )
LR( 0 )

LL( 1 )
LR( 0 )

LL( ? )
LR( 2 ) : Looking at “( F”, we cannot determine to reduce 
unless we lookahead to see what follows the “)”



Example: Parsing c-style casts

<exp> → <exp> '-' <sub_exp>

| <sub_exp>

<sub_exp> → '(' <type_name> ')' <sub_exp>

| <id>

| <literal>

| '(' <exp> ')'

<type_name> → id

| … <other_type_descriptions>

The problem is that the first <id> in "( <id> ) <id>" is a <type_name>, but in "( <id> ) - <id>" it is an <exp>, and the two must be 
reduced differently when the ")" is seen but before the "-" or second <id> has been seen by an LR(1) parser.



Example: Parameter Lists

• Example Usage
– void foo(int a, int b, float c, float d);

– void foo (int a, b, float c, d);

<header> → <type_name> <id> '(' <params> ')‘ ‘;’

| <type_name> <id> '(' ')‘ ‘;’

<type_name> → <id>

| … <other_descriptions>

<params > → <param>

| <params> ',' <param>

<param> → <type_name> <ids>

<ids> → <id>

| <ids> ',' <id>

Notice that after a “<ids> ," the next symbols can be "a 
b" (a is a type_name, b is a parameter name of type a) or 
"a ," or "a )" (a is a parameter name of the current type), 
but an LR(1) parser can't see far enough ahead to decide 
whether the "," is part of a "params" (in which case the 
preceding “<ids>" must be reduced to a "param"), or part 
of a bigger "ids".



Appendix


