
COSC252: Programming Languages:

Basic Semantics: Environments,
Names, Literals, Scope, …

Jeremy Bolton, PhD

Asst Teaching Professor

Outline

I. VERY Basic Semantics

I. Literals

II. Operations

Parsing

• Our heartless / soulless parser is simply a recognizer
– Identifies whether a sentence is in a language

• Whether a code file abides by the rules of a programming language

• Parse errors can be identified and described at this stage.

• Observe: Many implementations of parsers, e.g. c++ compiler, can
identify errors that are more closely related to semantics (as compared
to syntax)
– How is this done?

Attribute Grammars

• Attribute Grammars are an extended form of a CFG that can account
for “other rules” that can be determined statically, but cannot be
accounted for using standard CFGs. (Knuth)
– Compatibility and Reliability

• Examples (what types of errors can be identified statically, but not with
a standard CFG):
1. ID not in scope, not accessible

2. Multiple definitions in same scope

3. Type incompatibility
• Example: function returns a float but a Node* is expected

– These are errors that are not syntactic, but can be recognized statically (before
runtime).

Static Semantics

• Static Semantics are “syntax” rules that are partially related to semantics.
– “Static” as we can check the rules before runtime, during parsing

• Definitions
• Attribute is a characteristic of a terminal or non-terminal

• Semantic Rule Functions are associated with grammar rules

• Predicate functions: state the static semantic rules associated with a grammar rule

• Attribute Grammar is a CFG with the following:
– Attributes for a CFG symbol X, A(X)

– Semantic Rule Function: for each rule in the grammar, 𝑋0 → 𝑋1𝑋2…𝑋𝑛 a semantic rule S(𝑋0)
computes the attributes of 𝑋0 given the attributes of 𝑋1 𝑋2…𝑋𝑛 , S 𝑋0 =
𝑓(𝐴 𝑋0 , 𝐴 𝑋1 , … , 𝐴(𝑋𝑛)).

– Predicate function: is a Boolean expression on the attributes of a grammar. A false value of a
predicate function implies that a static semantics rule has been violated.

• A parse tree with an attributed grammar may have attributes, semantic rules, and a
predicate function associated with each node.

• If all the attribute values of a parse tree have been computed, the parse tree is said
to be fully attributed.

• Intrinsic attributes: are attributes of terminals – leaf nodes in a parse tree

Example: Attribute Grammar

• Attribute grammar to test for compatibility
– Attributes: expectedType, actualType

– Grammar:

1. <expr> -> < 𝑛𝑢𝑚1 >+< 𝑛𝑢𝑚2 >
1. Semantic Rule:

if < 𝑛𝑢𝑚1 >. 𝑎𝑐𝑡𝑢𝑎𝑙𝑇𝑦𝑝𝑒 == 𝑖𝑛𝑡 && < 𝑛𝑢𝑚2 >. 𝑎𝑐𝑡𝑢𝑎𝑙𝑇𝑦𝑝𝑒 == 𝑖𝑛𝑡
then < 𝑒𝑥𝑝𝑟 >. 𝑎𝑐𝑡𝑢𝑎𝑙𝑇𝑦𝑝𝑒 = 𝑖𝑛𝑡

else

then < 𝑒𝑥𝑝𝑟 >. 𝑎𝑐𝑡𝑢𝑎𝑙𝑇𝑦𝑝𝑒 = other

2. Predicate Rule:

< 𝑒𝑥𝑝𝑟 >. 𝑎𝑐𝑡𝑢𝑎𝑙𝑇𝑦𝑝𝑒 ==< 𝑒𝑥𝑝𝑟 >. 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑𝑇𝑦𝑝𝑒

2. <expr> -> <num>
1. Semantic Rule: < 𝑒𝑥𝑝𝑟 >. 𝑎𝑐𝑡𝑢𝑎𝑙𝑇𝑦𝑝𝑒 = < 𝑛𝑢𝑚 >. 𝑎𝑐𝑡𝑢𝑎𝑙𝑇𝑦𝑝𝑒
2. Predicate Rule: < 𝑒𝑥𝑝𝑟 >. 𝑎𝑐𝑡𝑢𝑎𝑙𝑇𝑦𝑝𝑒 ==< 𝑒𝑥𝑝𝑟 >. 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑𝑇𝑦𝑝𝑒

3. <num> -> 0 | 1 | …| 9
1. Semantic Rule: < 𝑣𝑎𝑟 >. 𝑎𝑐𝑡𝑢𝑎𝑙𝑇𝑦𝑝𝑒 = 𝑖𝑛𝑡

actualType = int actualType = int

actualType = int actualType = int

actualType = int

Example: Attribute Grammar

• Attribute grammar to test for compatibility
– Attributes: expectedType, actualType

– Grammar:

1. <expr> -> < 𝑣𝑎𝑟1 >+< 𝑣𝑎𝑟2 >
1. Semantic Rule:

if < 𝑣𝑎𝑟1 >. 𝑎𝑐𝑡𝑢𝑎𝑙𝑇𝑦𝑝𝑒 == 𝑖𝑛𝑡 && < 𝑣𝑎𝑟2 >. 𝑎𝑐𝑡𝑢𝑎𝑙𝑇𝑦𝑝𝑒 == 𝑖𝑛𝑡
then < 𝑒𝑥𝑝𝑟 >. 𝑎𝑐𝑡𝑢𝑎𝑙𝑇𝑦𝑝𝑒 = 𝑖𝑛𝑡

else

then < 𝑒𝑥𝑝𝑟 >. 𝑎𝑐𝑡𝑢𝑎𝑙𝑇𝑦𝑝𝑒 = other

2. Predicate Rule:

< 𝑒𝑥𝑝𝑟 >. 𝑎𝑐𝑡𝑢𝑎𝑙𝑇𝑦𝑝𝑒 ==< 𝑒𝑥𝑝𝑟 >. 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑𝑇𝑦𝑝𝑒

2. <expr> -> <var>
1. Semantic Rule: < 𝑒𝑥𝑝𝑟 >. 𝑎𝑐𝑡𝑢𝑎𝑙𝑇𝑦𝑝𝑒 = < 𝑣𝑎𝑟 >. 𝑎𝑐𝑡𝑢𝑎𝑙𝑇𝑦𝑝𝑒
2. Predicate Rule: < 𝑒𝑥𝑝𝑟 >. 𝑎𝑐𝑡𝑢𝑎𝑙𝑇𝑦𝑝𝑒 ==< 𝑒𝑥𝑝𝑟 >. 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑𝑇𝑦𝑝𝑒

3. <var> -> x | y | z
1. Semantic Rule: < 𝑣𝑎𝑟 >. 𝑎𝑐𝑡𝑢𝑎𝑙𝑇𝑦𝑝𝑒 = 𝑠𝑦𝑚𝑏𝑜𝑙𝑇𝑎𝑏𝑙𝑒𝐿𝑜𝑜𝑘𝑢𝑝(< 𝑣𝑎𝑟 >. 𝑙𝑒𝑥𝑒𝑚𝑒)

actualType = int actualType = int

actualType = int actualType = int

actualType = int

Dynamic Semantics

• After lexical and syntactic analysis,

semantic analysis is performed

– Application of meaning to an input sentence

Semantics: Compiler vs Interpreter

Compiler
Interpreter

Token Sequence

Parse Tree

Semantics at different levels of the computer
abstraction

• Application of Semantics: Compiler vs.
Interpreter
– Compiler

• A compiler often translates source code to
machine code. Thus communicating at the lowest
level of the abstraction.

• Thus the application of semantics is the creation
of machine code (to be performed by the
computer)

– Interpreter
• The interpreter is a running program that

“simulates” the execution of the source code. It
interprets the commands in the source code and
then directly performs those commands (or
commands similar to those which are available).

• Thus application of semantics is the execution of
interpreted commands.

• Examples to come …

Application of Semantics

• Most programming languages allow programmers to interact with a
computer at a highly abstract level.
– The underlying machine has various low-level components: CPU, memory, …

– Most programming languages operate at a higher level of the computing abstraction.
• For example: the abstraction for a memory location is a variable.

• Operating at this level of the abstraction conceals low level details from the programmer which
eases the programming burden.

– However, concept of semantics, is intrinsically defined in terms of the state of the
machine.

• Yes – the goal of a programming language is to communicate with a machine – give precise
instruction.

– Intuitively, the instruction must therefore be in

1. In a format understandable to the machine

2. Performable by the machine

Semantics of tokens

• Application of semantics is often referred to as evaluation.

• Example literal:
– What is the semantics of “1”?

– Conceptually the string “1” refers to the quantity 1.

– Semantic application (evaluation) of “1” in a computer, refers to the binary
representation of “1” in a computer.

• Load Register with 0000 0000 …. 0001

• Example:
– What is ‘c’?

– Conceptually: the character c

– Semantic application (evaluation) in a computer, refers to the binary
representation of ‘c’

Type Binding

• A literal is bound to an attribute at binding time

– Static binding: binding occurs before runtime

– Dynamic binding: binding occurs during runtime

• C++ Example:

– 0;

– type of 0 is bound statically (at compile time).

Semantics: from lexemes to abstractions

• In most languages
– Each lexeme, syntactic unit, of a language has

intrinsic meaning (semantics)

– This semantics of an input sentence is generally
determined in terms of the semantics of the lexemes
of the input.

• But How?

– The application of semantics is driven by the BNF
productions. This also implies that all characteristics
of a language not specified by the BNF, must be
specified in the application of semantics.

– It is intuitive that semantics are applied based on
BNF. Meaning is applied to the lexemes directly, and
meaning is assigned to non-terminal constructs in
terms of the meaning of its constituents

• Meaning is propagated up the parse tree

Semantics Example

• What is the meaning of “3 + 5”?

– What is the meaning of “3” ?
• Lexeme “3” is the 3 symbol.

• Semantics of “3”: the number 3

• Semantics in the context of

Computer PL: binary rep of 3

– What is the meaning of “+” ?
• Lexeme “+” is the plus symbol.

• Semantics of “+”: addition operation

• Semantics in the context of

Computer PL: a specific ALU operation

– What is the meaning of “5” ?

Semantic Specification

• Semantic Specification determines how meaning is applied to a sentence of
a language
– A universally standardized form of semantic specification does not exist, but there are 3

general categories
• Operational Semantics: describes the semantics of a language in terms of the state of the underlying

machine

• Denotational Semantics: describes the semantics of a language in terms of functions defined on
programs and program constructs

• Axiomatic Semantics: Uses mathematical logic to formalize characteristics of a program.

• Properties of a good semantic specification
– It must be complete. Each input program that abides by the syntax should have

appropriate semantics as defined by the specification

– It must be consistent. Each input program must not have two conflicting semantics.

Appendix

