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The Basics of Programming Languages

• Before we can learn about each of these steps, we will formalize 

the concepts and nomenclature



Overview:  Characterizing a Language

• Noam Chomsky 
– MIT Linguist

– Published work on categories of Languages / Grammars, 1950s

• Two categories are commonly used in Programming Languages

– Context-Free Languages 

» Often used to characterize programming language sentence structure

– Regular Languages

» Often used to characterize the structure of lexemes / tokens

• John Backus and Peter Naur developed a formal notation for 
generating a Context Free Language, (similar to the notation used by 
Chomsky)
– BNF (Bachus Naur Form)



Recall: Regular Languages

• Remember: Tokens are categories of lexemes and lexemes are 
terminals (the smallest syntactic unit)
– If the number of lexemes per token category are small, then we need only list 

them out. That is, there is no need to use a Regular Language to model all of the 
lexemes in the Token Class (Regular Language)  

• In our previous example, there were only 3 possible variable tokens.

• If a token class has many possible lexemes, then a formal rule system 
can be used to help define all possible lexemes (rather than list them all 
out!). For example, try listing out all possible variable names in C++. 

< 𝑣𝑎𝑟 > → 𝑥 𝑦 𝑧
Three lexemes 

Token



Overview: Regular Languages to define tokens.

• Could you use BNF to define the set of all possible variables or 

ints? YES. But instead we will use regular languages and regular 

expressions. (More on this later)

< 𝑠𝑡𝑚𝑡 > →< 𝑣𝑎𝑟 >= < 𝑒𝑥𝑝𝑟 >
< 𝑒𝑥𝑝𝑟 >→< 𝑡𝑒𝑟𝑚 > | < 𝑒𝑥𝑝𝑟 > + < 𝑡𝑒𝑟𝑚 > | < 𝑒𝑥𝑝𝑟 > − < 𝑡𝑒𝑟𝑚 >
< 𝑡𝑒𝑟𝑚 >→ < 𝑛𝑒𝑔 > | < 𝑡𝑒𝑟𝑚 > ∗ < 𝑛𝑒𝑔 > | < 𝑡𝑒𝑟𝑚 > / < 𝑛𝑒𝑔 >
< 𝑛𝑒𝑔 >→ < 𝑣𝑎𝑟 > | −< 𝑣𝑎𝑟 >
< 𝑣𝑎𝑟 > → 𝑠𝑒𝑒 𝑟𝑒𝑔𝑢𝑙𝑎𝑟 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑓𝑜𝑟 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠.
< 𝑖𝑛𝑡 > → 𝑠𝑒𝑒 𝑟𝑒𝑔𝑢𝑙𝑎𝑟 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑓𝑜𝑟 𝑖𝑛𝑡𝑒𝑔𝑒𝑟𝑠.

Groups of tokens
(sets of terminals)

We will use regular 
grammars to model 
these constructs

Groups of 
abstractions: 
compositions of 
terminals and 
nonterminals. We 
use CFGs to model 
these constructs.



Overview: Regular Languages

• Both context free languages and regular languages are useful in 
programming languages (Chomsky)

• We have seen that BNF is a great way to formalize context free 
grammars (to define a context free language)

• BNF defines sequences of tokens (sentences) for a languages.

• Regular languages are often used to model the tokens of a language

< 𝑠𝑡𝑚𝑡 > →< 𝑣𝑎𝑟 >= < 𝑒𝑥𝑝𝑟 >
< 𝑒𝑥𝑝𝑟 >→< 𝑡𝑒𝑟𝑚 > | < 𝑒𝑥𝑝𝑟 > + < 𝑡𝑒𝑟𝑚 > | < 𝑒𝑥𝑝𝑟 > − < 𝑡𝑒𝑟𝑚 >
< 𝑡𝑒𝑟𝑚 >→ < 𝑛𝑒𝑔 > | < 𝑡𝑒𝑟𝑚 > ∗ < 𝑛𝑒𝑔 > | < 𝑡𝑒𝑟𝑚 > / < 𝑛𝑒𝑔 >
< 𝑛𝑒𝑔 >→ < 𝑣𝑎𝑟 > | −< 𝑣𝑎𝑟 >
< 𝑣𝑎𝑟 > → 𝑥 𝑦 𝑧



Overview: Regular Languages

• Regular Languages used to model Tokens

• Regular Expression is a generator for a regular language (it defines a regular language)
– Consists of characters and regular operations

– Just as BNF is a generator and define a context free language. 

• Regular Operations:
– Concatenation

– Repetition
Repeat 0 or more times:  *

Repeat 1 or more times:  + 

– Selection:   |

– Other common symbols used 
Optional:   ?

Any character:  .

Short hand for 1 element in a set:   [   ]



Where We
Are

Lexical Analysis

Syntax Analysis

SemanticAnalysis

IR Generation

IR Optimization

Code Generation

Optimization

Source  
Code

Machine  

Code



while (ip < z)

++ip;



+w h i l e ( i p < z ) \n\t + + i p ;

while (ip < z)

++ip;



+w h i l e ( i p < z ) \n\t + + i p ;

while (ip < z)

++ip;

T_While ( T_Ident < T_Ident ) ++ T_Ident

ip z ip



+w h i l e ( i p < z ) \n\t + + i p ;

T_While ( T_Ident < T_Ident ) ++ T_Ident

ip z ip

While

++<

Ident  

ip

Ident

z

Ident  

ip

while (ip < z)

++ip;



do[for] = new 0;



do[for] = new 0;

d o [ f o r ] = n e w 0 ;



T_Do [ T_For T_New T_IntConst

0

do[for] = new 0;

d o [ f o r ] = n e w 0 ;

] =



T_Do [ T_For T_New T_IntConst

0

d o [ f o r ] = n e w 0 ;

] =

do[for] = new 0;



Scanning a Source
File

( i < z ) \n \t + i p ;p + + +w h i l e ( 1 3 7 < i ) \n\t + + i ;
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Scanning a Source
File

( i < z ) \n \t + i p ;p + + +w h i l e ( 1 3 7 < i ) \n\t + + i ;



Scanning a Source
File

+

T_While

w h i l e ( 1 3 7 < i ) \n\t + + i ;



Scanning a Source
File

+

T_While

w h i l e ( 1 3 7 < i ) \n\t + + i ;

This is called a token . You can  

think o f i t as an enumerated type 

r ep resent ing what logical ent i t y we  

read ou t o f the source code .

T he piece of the or ig inal p rog r am  

f r o m which we made the token is

called a lexeme .



Scanning a Source
File
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Scanning a Source
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+

T_While

w h i l e ( 1 3 7 < i ) \n\t + + i ;



Scanning a Source
File

+

T_While

w h i l e ( 1 3 7 < i ) \n\t + + i ;

Sometimes we will discard a lexeme  

r at her t han sto r ing it f o r lat er use.

Her e, we ig nor e whit espace, since it   

has no bearing on the meaning o f   

the program.
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File
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Scanning a Source
File

+

T_While

w h i l e ( 1 3 7 < i ) \n\t + + i ;

( T_IntConst

137



Scanning a Source
File

+

T_While

w h i l e ( 1 3 7 < i ) \n\t + + i ;

( T_IntConst

137

Some tokens can have

a t t r ibutes that s tore  

ext r a in f or mat ion about   

the token . Here we  

s tore which in teger is  

represented.



Goals of Lexical
Analysis

● Convert from physical description of a  program  
into sequence of of tokens .
●

●

E a c h  token represents one logical piece of the source  
file – a keyword, the name of a  variable, etc.

E a c h  token is associated with a lexeme .

● The actual text of the token: “137,”  “int ,” etc.

● E a c h  token may have optional attributes .

●

●

Extra information derived from the text – perhaps a   
numeric value.

The token sequence will be used in the parser to  
recover the program structure.



Choosing
Tokens



What Tokens are Useful
Here?

for (int k = 0; k < myArray[5]; ++k) {  

cout << k << endl;

}



What Tokens are Useful
Here?

for (int k = 0; k < myArray[5]; ++k) {  

cout << k << endl;

}

{

}

;

<  

[

]

for  

int

<<

=  

(

)

++



What Tokens are Useful
Here?

for (int k = 0; k < myArray[5]; ++k) {  

cout << k << endl;

}

{

}

;

<  

[

]

for  

int

<<

=  

(

)

++

Identifier  

IntegerConstant



Choosing Good
Tokens

●

●

Very much dependent on the language.   

Typically:

●

●

●

●

Give keywords their own tokens.

Give different punctuation symbols their own  
tokens.

Group lexemes representing identifiers,  
numeric constants,  strings, etc .  into their own  
groups.

Discard irrelevant information (whitespace,  
comments)



Thanks to Prof. AlexAiken

Scanning is
Hard

● C + + :  Nested template declarations

vector<vector<int>> myVector



Thanks to Prof. AlexAiken

Scanning is
Hard

● C + + :  Nested template declarations

vector < vector < int >> myVector



Thanks to Prof. AlexAiken

Scanning is
Hard

● C + + :  Nested template declarations

(vector < (vector < (int >> myVector)))



Thanks to Prof. AlexAiken

Scanning is
Hard

● C + + :  Nested template declarations

(vector < (vector < (int >> myVector)))

● Again,  can be difficult to determine  
where to split .



Thanks to Prof. AlexAiken

Scanning is
Hard

● PL/1: Keywords can be used as  
identifiers.



Thanks to Prof. AlexAiken

Scanning is
Hard
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IF THEN THEN THEN = ELSE; ELSE ELSE = IF
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Hard
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Thanks to Prof. AlexAiken

Scanning is
Hard

● PL/1: Keywords can be used as  
identifiers.

IF THEN THEN THEN = ELSE; ELSE ELSE = IF

● C a n  be difficult to determine how to label  
lexemes.



Challenges in
Scanning

• H ow do we determine which lexemes are  
associated with each token?

• When there are multiple ways we could  scan the 
input, how do we know which  one to pick?

• H ow do we address these concerns 
efficiently?



Associating Lexemes with
Tokens



Lexemes and
Tokens

●

●

• Tokens give a  way to categorize lexemes by  what 
information they provide.

• S o m e  tokens might be associated with only a   single
lexeme:

●

●

Tokens for keywords like if and whileprobably  
only match those lexemes exactly.

S o m e  tokens might be associated with lots of  
different lexemes:

● All variable names,  all possible numbers,  all  
possible strings, etc.



Sets  of
Lexemes

●

●

●

●

• Idea:  Associate a  set of lexemes with each  token.

• We might associate the “number”  token  with the 
set {  0, 1, 2, … ,  10, 11, 12, … }

• We might associate the “string” token  with the 
set {  "", "a", "b", "c", … }

• We might associate the token for the  keyword
while with the set { while } .



How do we describe which (potentially  
infinite) set of lexemes is associated 

with  each token type?



Formal
Languages

●

●

A formal language  is a  set of strings.

M a ny  infinite languages have finite descriptions:

●

●

●

Define the language using an automaton.   

Define the language using a grammar.

EG: Use a  regular expression.

●

●

We can use these compact descriptions of the  
language to define sets of strings.

Over the course of this class,  we will use all of  
these approaches.



Regular
Expressions

• Regu lar  expressions are a  family of  
descriptions that can be used to capture  certain 
languages (the regular  languages).

• Often provide a  compact and human- readable 
description of the language.

• U s e d  as the basis for numerous software  systems, 
including the flex tool we will  use in this course.



Atomic Regular
Expressions

●

●

●

The regular expressions we will use in  
this course begin with two simple  
building blocks.

The symbol ε is a  regular expression  
matches the empty string.

For any symbol a, the symbol a is a   
re g ular expression that just m atc hes a.



Compound Regular
Expressions

• If R1  and R2  are regular expressions, R 1 R 2  is a  regular  expression 

represents the concatenation of the  languages of R1  and R 2 .

• If R1  and R2  are regular expressions, R 1  | R 2  is a  regular  expression 

representing the union of R1  and R 2 .

• If R  is a  regular expression, R*  is a  regular expression for  the Kleene 
closure of R .

• If R  is a  regular expression, (R )  is a  regular expression  with the 
same meaning as R .



Operator
Precedence

●

●

Regular expression operator precedence  
is

(R)

R*  

R 1R 2

R1 | R2

S o  ab*c|d is parsed as ( ( a ( b * ) ) c ) |d



Simple Regular
Expressions

●

●

Suppose the only characters are 0 and1.

He re  is a  regular expression for strings containing
00 as a  substring:

(0 | 1)*00(0 | 1)*
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00 as a  substring:

(0 | 1)*00(0 | 1)*

11011100101
0000

11111011110011111
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Suppose the only characters are 0 and1.

He re  is a  regular expression for strings of length  
exactly four:

(0|1)(0|1)(0|1)(0|1)

0000
1010
1111
1000
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Suppose the only characters are 0 and1.

He re  is a  regular expression for strings of length  
exactly four:

(0|1)(0|1)(0|1)(0|1)

0000
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1000



Simple Regular
Expressions
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Suppose the only characters are 0 and1.

He re  is a  regular expression for strings of length  
exactly four:

(0|1){4}

0000
1010
1111
1000



Simple Regular
Expressions

●

●

Suppose the only characters are 0 and1.

He re  is a  regular expression for strings of length  
exactly four:

(0|1){4}

0000
1010
1111
1000



Simple Regular
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Suppose the only characters are 0 and1.

He re  is a  regular expression for strings that  
contain at most one zero:



Simple Regular
Expressions

●

●

Suppose the only characters are 0 and1.

He re  is a  regular expression for strings that  
contain at most one zero:

1*(0 | ε)1*



Simple Regular
Expressions

●

●

Suppose the only characters are 0 and1.

He re  is a  regular expression for strings that  
contain at most one zero:

1*(0 | ε)1*



Simple Regular
Expressions

●

●

Suppose the only characters are 0 and1.

He re  is a  regular expression for strings that  
contain at most one zero:

1*(0 | ε)1*

11110111
111111
0111

0



Simple Regular
Expressions

●

●

Suppose the only characters are 0 and1.

He re  is a  regular expression for strings that  
contain at most one zero:

1*(0 | ε)1*

11110111
111111
0111

0



Simple Regular
Expressions

●

●

Suppose the only characters are 0 and1.

He re  is a  regular expression for strings that  
contain at most one zero:

1*0?1*

11110111
111111
0111

0



Applied Regular
Expressions

●

●

Suppose our alphabet is a, @ ,  and ., where a

represents “some letter.”

A regular expression for email addresses is

aa* (.aa*)* @ aa*.aa* (.aa*)*
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aa* (.aa*)* @ aa*.aa* (.aa*)*

cs143@cs.stanford.edu 
first.middle.last@mail.site.org 
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A regular expression for email addresses is

aa* (.aa*)* @ aa*.aa* (.aa*)*  
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●

Suppose our alphabet is a, @ ,  and ., where a

represents “some letter.”

A regular expression for email addresses is

a+ (.aa*)* @ aa*.aa* (.aa*)*

cs143@cs.stanford.edu 
first.middle.last@mail.site.org 

barack.obama@whitehouse.gov

mailto:cs143@cs.stanford.edu
mailto:first.middle.last@mail.site.org
mailto:barack.obama@whitehouse.gov


Applied Regular
Expressions

●

●

Suppose our alphabet is a, @ ,  and ., where a

represents “some letter.”

A regular expression for email addresses is

a+ (.a+)* @ a+.a+ (.a+)*

cs143@cs.stanford.edu 
first.middle.last@mail.site.org 

barack.obama@whitehouse.gov
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Suppose our alphabet is a, @ ,  and ., where a

represents “some letter.”

A regular expression for email addresses is

a+ (.a+)* @ a+.a+ (.a+)*

cs143@cs.stanford.edu 
first.middle.last@mail.site.org 
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Applied Regular
Expressions

●

●

Suppose our alphabet is a, @ ,  and ., where a

represents “some letter.”

A regular expression for email addresses is

a+ (.a+)* @ a+ (.a+)+

cs143@cs.stanford.edu 
first.middle.last@mail.site.org 

barack.obama@whitehouse.gov

mailto:cs143@cs.stanford.edu
mailto:first.middle.last@mail.site.org
mailto:barack.obama@whitehouse.gov


Applied Regular
Expressions

●

●

Suppose our alphabet is a, @ ,  and ., where a

represents “some letter.”

A regular expression for email addresses is

a+(.a+)*@a+(.a+)+

cs143@cs.stanford.edu 
first.middle.last@mail.site.org 

barack.obama@whitehouse.gov

mailto:cs143@cs.stanford.edu
mailto:first.middle.last@mail.site.org
mailto:barack.obama@whitehouse.gov


Applied Regular
Expressions

●

●

Suppose that our alphabet is all AS C I I   
characters.

A regular expression for even numbers is

(+|-)?(0|1|2|3|4|5|6|7|8|9)*(0|2|4|6|8)



Applied Regular
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●

●

Suppose that our alphabet is all AS C I I   
characters.

A regular expression for even numbers is

(+|-)?(0|1|2|3|4|5|6|7|8|9)*(0|2|4|6|8)

42
+1370
-3248

-9999912



Applied Regular
Expressions

●

●

Suppose that our alphabet is all AS C I I   
characters.

A regular expression for even numbers is

(+|-)?(0|1|2|3|4|5|6|7|8|9)*(0|2|4|6|8)

42
+1370
-3248

-9999912



Applied Regular
Expressions

●

●

Suppose that our alphabet is all AS C I I   
characters.

A regular expression for even numbers is

(+|-)?[0123456789]*[02468]

42
+1370
-3248

-9999912



Applied Regular
Expressions

●

●

Suppose that our alphabet is all AS C I I   
characters.

A regular expression for even numbers is

(+|-)?[0-9]*[02468]

42
+1370
-3248

-9999912



Matching Regular
Expressions



Implementing Regular
Expressions

●

●

• Regular  expressions can  be implemented  using 
finite automata .

• There are two main kinds of finite  automata:

●

●

NFA s  (nondeterministic finite automata),  
which we'll see in a  second, and

DFAs  (deterministic finite automata), which  
we'll see later.

● Automata are best explained by example. . .



" "start

A,B,C,...,Z

A Simple
Automaton



" "start

A,B,C,...,Z

Each circle is a s ta te o f the

auto mato n. T he auto mato n' s  

conf igurat ion is determined  

by what s t a t e ( s ) i t is in .

A Simple
Automaton



" "start

A,B,C,...,Z

These arrows are called

transitions . The automaton  

chang es which sta t e ( s) it is in  

by fol lowing transit ions.

A Simple
Automaton



" "start

A,B,C,...,Z

A Simple
Automaton

" H E Y A "



" "start

A,B,C,...,Z
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0 1 1 1 0 1
Since we are in at least  

one accep t ing sta t e , the

automaton accepts.
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These are called ε - t rans i t ions . These  

t r ansit ions ar e f ollo wed aut omat i cally and  

without consuming any inpu t .
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Simulating an
NFA

●

●

Keep track of a  set of states,  initially the start  
state and everything reachable by ε-moves.

For each character in the input:

●

●

● Maintain a  set of next states,  initially empty.  

For each current state:

– Follow all transitions labeled with the current letter.

– Add these states to the set of new states.

Add every state reachable by an ε-move to the set of  
next states.

● Complexity:  O(mn2) for strings of length m and  
automata with n states.



From Regular Expressions to
NFAs

●

●

There is a  (beautiful!) procedure from converting a   
regular expression to an N FA .

Associate each regular expression with an N FA  with  
the following properties:

●

●

●

There is exactly one accepting state.

There are no transitions out of the accepting state.   

There are no transitions into the starting state.

● These restrictions are stronger than necessary, but make the  
construction easier.

start
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• H ow do we determine which lexemes are  
associated with each token?

• When there are multiple ways we could  scan the 
input, how do we know which  one to pick?

• H ow do we address these concerns  
efficiently?
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Conflict
Resolution

●

●

●

• Assume all tokens are specified as  regular
expressions.

• Algorithm: Left-to-right scan .   Tiebreaking rule 

one: Max ima l munch .

● Always match the longest possible prefix of  
the remaining text .
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Implementing Maximal
Munch

●

●

Given a  set of regular expressions, how  
can we use them to implement maximum  
munch?

Idea:

●

●

●

Convert expressions to NFAs .

Run all NFAs  in parallel,  keeping track of the  
last match.

When all automata get  stuck,  report the last  
match and restart the search at that point.
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Summary of Conflict
Resolution

●

●

●

●

●

Construct an automaton for each regular  
expression.

M e r g e  them into one automaton by  
adding a  new start state.

S c a n  the input, keeping track of the last  
known match.

Break ties by choosing higher-
precedence matches.

H ave a  catch-all rule to handle errors.
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D FA
s

●

●

• The automata we've seen so far have all  been 
N FAs.

• A DFA is like an N FA ,  but with tighter  
restrictions:

●

●

Every state must have exactly one

transition defined for every letter.

ε-moves are not allowed.
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Speeding up
Matching

●

●

●

In the worst-case, an N FA with n states  
takes time O(mn2) to match a  string of  
length m . (Can you guess why . .?)

DFAs,  on the other hand,  take only O(m).

There is another (beautiful!) algorithm to  
convert NFAs to DFAs.

Lexical  
Specification

Regular  
Expressions

NFA DFA
Table-Driven  

DFA



Subset
Construction

●

●

●

●

N FA s can be in many states at once,  while  
DFAs can only be in a  single state at a time.

Key idea: M a k e  the DFA s imulate the  

NFA .

Have the states of the DFA correspond to  
the sets of states of the N FA .

Transitions between states of DFA  
correspond to transitions between sets of  
states in the N FA .
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Note

• Many programming Languages make us of whitespace to clearly 

separate many lexemes.

• Hint: We can account for this by defining a whitespace token
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Lexical  analysis splits input text into tokens
holding a  lexeme and an attribute .

Lexemes are sets of strings often defined  
with regular expressions .

Regular  expressions can  be converted to
NFA s  and from there to DFAs .

Max imal -munch  using an automaton allows  
for fast scanning.

Not  all tokens come directly from the source  
code.
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Revisit Compilers and Interpreters

• Both Compilers and Interpreters require lexical and syntactic analysis
– Compilers then translate

– Interpreters then “simulate”

• Generally Lexical Analysis is separated from syntactic analysis 
– Simplicity: more reliable and structured

– Efficiency: lexical analysis (and syntactic analysis) can be optimized

– Portability: modularity and reusability

• We have learned about some of the theoretical constructs related to 
lexical and syntactic analysis – now lets look at their implementations



Lexer aka Tokenizer

• Lexical Analysis
– First step in interpretation / compilation 

– Goal: identify (recognize) and categorize tokens

• Other implementation details to consider:
• Comments

• Spaces (white space)

• “unseen” characters

• Building a Lexer
1. Use a pre-existing tool: e.g. lex or flex

2. DIYS: A FSM is a blue print for the your tokenizer.
• For simplicity and clear design: 1 FSM per Token (lexeme group)

Next token is: 25 Next lexeme is (

Next token is: 11 Next lexeme is sum

Next token is: 21 Next lexeme is +

Next token is: 10 Next lexeme is 47

Next token is: 26 Next lexeme is )

Next token is: 24 Next lexeme is /

Next token is: 11 Next lexeme is total

Next token is: -1 Next lexeme is EOF



Lexer Code (Generic Example)

tokenList lex(char* input)

{

int pos = 0;

tokenList tokens;

token newToken;

while(input[pos] != ‘EOF’){

charClass c = getNextNonBlank( pos, input);

swich(c){

case ALPHA: newToken = lexId( input, pos ); break;

case DIGIT: newToken = lexNum( input, pos ); break;

case SPECIAL: newToken = lexSpecial( input, pos ); break;

}

tokenList.addToBack(newToken);

//cout << ‘Next Token Category is ’ << newToken.cat << ‘. Lexeme is ‘<< newToken.lex << endl;

}

return tokenList;



Lex an Identifier (example)

token lexVar( char* input, int &pos ){

char lexeme[35];

int length = 0;

lexeme[length++] = input[pos++];

charClass c = getNextChar( pos, input);

while(c == ALPHA || c == DIGIT){

lexeme[length++] = input[pos++];

charClass c = getNextChar( pos, input);

}

return lexeme;

} // A very basic tokenizer … you should also include the token category in the token object

What does RegEx or FSM look like? Can we use the RegEx or FSM as a blueprint to design our 
lexer?



One more example to try (before parsers)

• Example: 

– Construct a regex to generate a language of binary strings that consists of 

n 0s followed by n 1s, where n is a non-neg integer:  0n1n

• Construct the corresponding FSM as a recognizer



Ex (cont)

• Observations and Follow-up:
– We cannot build a FSM for 0n1n , for an arbitrary non-neg n.  (not finite … proof by 

contradiction)

– (But I thought for every RegEx Generator there exists a FSM Recognizer)
• Yes …

• This implies 0n1n is not a RegEx!

• Why not – Note that regular expressions consist of input alphabet elements combined with the regular 
operators

– Regular Operators

» * arbitrary repetition

» concatenation

» | selection

– This is not very intuitive since we can build an FSM for 
• 0n1n , where n = 1

• 0n1n , where n = 2

• Given our selection operator we can build an FSM for 0111 | 0212

• In fact we can build an FSM as long as we bound n: 0n1n , where 0 ≤ n ≤ 100
• But we cannot build one for any arbitrary n.



Appendix



FSM example

• FSM to recognize (a | b) c*

• Nodes are states

• Edges indicate next character in 
left to right sequential scan

• The graph is traversed, 
beginning at start state. When a 
new character is encountered 
during scan, you traverse to the 
corresponding adjacent node. 

• The string is accepted if you end 
in an accepting state (indicated 
by a double circle)



FSM formally

• A finite state machine is a 5-tuple:

– (Q, Σ, 𝛿, 𝑞0, 𝐹)

– Q: finite set of all states

– Σ : alphabet (finite set of characters)

– 𝛿: state transition function, 𝛿: 𝑄𝑥Σ → Q

– 𝑞0 ∈ 𝑄: start state

– F⊂ 𝑄: set of accepting state(s)  



FSM example with values

•



In-Class
FSM Example: Design a FSM for a floating point token



Example: RegEx and FSM

• Example: 

– Construct a regex to generate a language of binary strings that begin with 

an even number of 0s and ends with an odd number of 1s

• Construct the corresponding FSM as a recognizer



RegEx to FSM

• A language L is a regular Language iff there exists a regular expressions generator. A 
language L is a regular Language iff there exists a finite state machine recognizer. 

– Note: for each Regular Expression, that generates a regular language L, there exists a FSM that 
recognizes L

– Note: for each FSM, that recognizes a regular language L, there exists a RegEx that generates L

• Relationship between RegEx and FSM. Example 𝑎, 𝑏 ∈ Σ

– Any element a in the alphabet

– Concatenation: ab

– Repetition: (ab)*

– Selection | : a(a | b)



Usage of RLs and CFLs in PLs (revisited)
Use RLs to define rules for tokens. Use CFL for PL rules. 

• Could you use BNF to define the set of all possible variables or 

ints? YES. But instead we will use regular languages and regular 

expressions. (More on this later)

< 𝑠𝑡𝑚𝑡 > →< 𝑣𝑎𝑟 >= < 𝑒𝑥𝑝𝑟 >
< 𝑒𝑥𝑝𝑟 >→< 𝑡𝑒𝑟𝑚 > | < 𝑒𝑥𝑝𝑟 > + < 𝑡𝑒𝑟𝑚 > | < 𝑒𝑥𝑝𝑟 > − < 𝑡𝑒𝑟𝑚 >
< 𝑡𝑒𝑟𝑚 >→ < 𝑛𝑒𝑔 > | < 𝑡𝑒𝑟𝑚 > ∗ < 𝑛𝑒𝑔 > | < 𝑡𝑒𝑟𝑚 > / < 𝑛𝑒𝑔 >
< 𝑛𝑒𝑔 >→ < 𝑣𝑎𝑟 > | −< 𝑣𝑎𝑟 >
< 𝑣𝑎𝑟 > → 𝑠𝑒𝑒 𝑟𝑒𝑔𝑢𝑙𝑎𝑟 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑓𝑜𝑟 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠.
< 𝑖𝑛𝑡 > → 𝑠𝑒𝑒 𝑟𝑒𝑔𝑢𝑙𝑎𝑟 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑓𝑜𝑟 𝑖𝑛𝑡𝑒𝑔𝑒𝑟𝑠.

Groups of tokens
(sets of terminals)

We will use regular 
grammars to model 
these constructs

Groups of 
abstractions: 
compositions of 
terminals and 
nonterminals. We 
use CFGs to model 
these constructs.

It is intuitive to define our language in terms of its smallest 
syntactic unit (the most integral units that have meaning). 

However – these “lexemes”  consist of parts (chars) 
themselves. Solution: Use 1 model for the (smallest 

syntactic units) lexemes and 1 model for the language.



We could simply use 1 model: CFLs

• This would certainly work since CFL recognizers and generators can recognize and generate 
any language a RL recognizer and generator can recognize and generate. 

• So why not?
– As noted, the form of tokens is notably less complicated than the form of programs. If we use a simpler 

model for the tokenizer, we can simplify this process.

• Where do we “draw the line” where does the token model end and the program language 
model begin
– Intuitively: the tokens should describe the form of the most integral syntactic unit. The smallest unit for 

which we can supply meaning (semantics)

< 𝑠𝑡𝑚𝑡 > →< 𝑣𝑎𝑟 >= < 𝑒𝑥𝑝𝑟 >
< 𝑒𝑥𝑝𝑟 >→< 𝑡𝑒𝑟𝑚 > | < 𝑒𝑥𝑝𝑟 > + < 𝑡𝑒𝑟𝑚 > | < 𝑒𝑥𝑝𝑟 > − < 𝑡𝑒𝑟𝑚 >
< 𝑡𝑒𝑟𝑚 >→ < 𝑛𝑒𝑔 > | < 𝑡𝑒𝑟𝑚 > ∗ < 𝑛𝑒𝑔 > | < 𝑡𝑒𝑟𝑚 > / < 𝑛𝑒𝑔 >
< 𝑛𝑒𝑔 >→ < 𝑣𝑎𝑟 > | −< 𝑣𝑎𝑟 >

… 
<var> -> <alpha>  <alphaNum>
<alphaNum> -> <alpha> <alphaNum>| <num><alphaNum> | 𝜖
< 𝑎𝑙𝑝ℎ𝑎 > → 𝑎 𝑏 … | 𝑧
< 𝑛𝑢𝑚 > → 0 1 … | 9



Use of Language Models for PLs

• In general: RLs are used to model the tokens
– Each token class is a regular language. The input alphabet is the set of all 

characters.

– The job of the tokenizer is to “recognize” each token class
• In a left to right scan of the input, the tokenizer can recognize the beginning and end of 

each token (given the rules: fsm of each token class). Thus creating a token list.

• In general: CFLs are used to model the programming language (int
terms of the tokens / lexemes)
– Each programming language is a CFL. The input alphabet is the set of all tokens. 

– The job of the parser is to “recognize” and produce a parse tree.
• In a left to right scan of the input (token sequence), the parser will determine if the token 

sequence conforms with the rules of the grammar, thus creating a parse tree. 



Syntactic Analyzer aka Parser

• Parsers construct (or trace out) the parse tree

– Goals:

• Determine if syntax is correct

• The tree is explicitly constructed or “traced” out

• Two categories of parsers: 

– Top-Down: Tree is “constructed” from root down

– Bottom-Up: Tree is “constructed” from leaves up

– Example:  3 + 5 * 1 

< 𝑒𝑥𝑝𝑟 >→< 𝑡𝑒𝑟𝑚 > | < 𝑒𝑥𝑝𝑟 > + < 𝑡𝑒𝑟𝑚 > | < 𝑒𝑥𝑝𝑟 > − < 𝑡𝑒𝑟𝑚 >
< 𝑡𝑒𝑟𝑚 >→ < 𝑛𝑢𝑚 > | < 𝑡𝑒𝑟𝑚 > ∗ < 𝑛𝑢𝑚 > | < 𝑡𝑒𝑟𝑚 > / < 𝑛𝑢𝑚 >
< 𝑛𝑢𝑚 > → 𝑠𝑒𝑒 𝑟𝑒𝑔𝐸𝑥



The Parsing Problem: Top-Down Parsers

• Top-Down
– Nodes in parse tree are “visited” in pre-order.

– Intuitive but not simple.

– Creates a Left to Right, Left Most Derivation.

• Crux of top-down parsing.
– During derivation, choosing which RHS when deriving leftmost non-terminal

– (Mid derivation) Given a sentence in the form xAα , 
• x is a sequence of terminals

• A is leftmost non-terminal

• α is mix of terminals and non-terminals (yet to be derived)

• the parser must choose the “correct” RHS of A=> rule.

– Its best if this decision can be made based on the first tokens of A’s RHSs.
• This is true if all first terminals of A productions are different.



The Parsing Problem: Bottom-Up Parsers

• Bottom-Up

– Tree “built” from leaves up.

– aka shift-reduce parsers

– Creates a left to right, right most derivation (in reverse)

• Crux of bottom up parser

– At each reduction step, a RHS matching the substring of the input is 

replace by the LHS of the production (merging rather than expanding)



How hard is the general parsing problem?

• For any general, un-ambiguous grammar: O(n3)

• Why? If the parser makes an incorrect decision, it may need to 

backtrack and rebuild the parse tree from the point of the mistake

• Most compilers are however O(n)

– Syntax for PLs are chosen to permit “fast” parsing



Appendix


