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The Basics of Programming Languages

• Before we can learn about each of these steps, we will formalize 

the concepts and nomenclature



Basic Elements of a Language

• Language: A set of sentences.
– Exhaustive list (roster notation) is not practical. Usually a syntax is used.

• Sentence: a string of lexemes in a language (as specified by the syntax of 
the language)

• Syntax: A specification that can be used to determine whether a sentence is 
in a set (or not).

• Lexeme: Lowest level, integral, syntactic unit that has meaning
– e.g. word, number, operator, … 

• Token: A lexeme group  or lexeme category   



The Basics of Programming Languages

• Lexical Analysis: identifying and categorizing lexemes

• Syntactic Analysis: determining if sentence (string of lexemes) is 

in language.



Example: Identify the lexemes and tokens

• Example:  English Language

• Sample Sentence:

– John has a cat, and Mary has a dog.

Lexeme Token (lexeme category)

John noun

has Verb

a article

cat noun

, comma

and conjunction

…



Example: Identify the lexemes and tokens

• Example: Programming Language

• Sample Sentence:

– sum = sum + 1.0;

Lexeme Token (lexeme category)

sum variable

= assignment operator

sum variable

+ plus operator

1.0 double

; semicolon



Discussion: Syntactic Analysis

• Identifying and categorizing lexemes is often an easy task, but how do 
we determine whether a sentence is in a language?

• Example: Language L is the set of all English sentences. 
– L = {s | s is an English sentences}

– When given a sentence s, how doe we determine whether it is in the English 
Language?

• Lets say s = “The cat has a hat.”

• Option: Compare s to all sentences in L

– Brute Force, Exhaustive search

– No – not practical



Rules for a Language

• Syntax Rules are used to characterize a language

• Lets try to develop some simple rules for English Sentences: 



Syntax

• How can we use syntax to define or characterize a language?

– There is no “perfect” solution or recipe

• There are 2 categories for syntax implementation and therefore 2 

categories for language characterization.

– Recognizers 

– Generators 

Rs accept or reject (is s in L?)

G 𝑠 ∈ 𝐿



Generators vs Recognizers

• Both generators and recognizers are useful in different 

applications, but each is limited 

• Recognizers

– EG compiler, Clearly useful

– Compilers are generally very complex: Not good for communicating a 

language or describing a language

• Generators

– Useful for learning or describing a language

– (Examples upcoming)



Recognizers

• Recognizers take as input a sentence and determine whether the 

sentence is in the language.

– Example:  compiler

– A compiler is an algorithmic representation of syntax

– A compiler is a syntactic analyzer

• The parsing portion of the compiler



Using Generators to Characterize a Language

• Noam Chomsky 
– MIT Linguist

– Published work on categories of Languages / Grammars, 1950s

• Two categories are commonly used in Programming Languages

– Context-Free Languages 

» Often used to characterize programming language sentence structure

– Regular Languages

» Often used to characterize the structure of lexemes / tokens

• John Backus and Peter Naur developed a formal notation for 
generating a Context Free Language, (similar to the notation used by 
Chomsky)
– BNF (Bachus Naur Form)



Grammars

• Generators are often implemented as a set of rules, called 

grammars.

• BNF grammars are grammars consisting of

– terminals: lexemes (integral syntactic units)

– non-terminals: abstract compositions of terminals

• Have at least two possible forms

– productions: composition rules for non-terminals. 



BNF Example

• BNF production for English grammar example

< 𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒 >→< 𝑛𝑜𝑢𝑛 > < 𝑣𝑒𝑟𝑏 > < 𝑎𝑑𝑗𝑒𝑐𝑡𝑖𝑣𝑒 > < 𝑝𝑒𝑟𝑖𝑜𝑑 >

• The production defines the LHS abstraction, or non-terminal
– Here sentence is defined to be produced by a noun followed by a verb followed by an 

adjective followed by a period. 

• Note this production requires that we define noun, verb, … as well.

Each line in BNF is a rule or production. Each production 
consists of a left hand side (LHS), followed by an arrow (“is 
produced by”), followed by a right hand side (RHS).



BNF Example

• BNF snippet for English grammar example

< 𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒 > →< 𝑛𝑜𝑢𝑛 > < 𝑣𝑒𝑟𝑏 > < 𝑎𝑑𝑗𝑒𝑐𝑡𝑖𝑣𝑒 > < 𝑝𝑒𝑟𝑖𝑜𝑑 >

< 𝑛𝑜𝑢𝑛 >→ 𝐵𝑜𝑏

< 𝑣𝑒𝑟𝑏 >→ 𝑖𝑠

< 𝑎𝑑𝑗𝑒𝑐𝑡𝑖𝑣𝑒 > → 𝑡𝑎𝑙𝑙

< 𝑝𝑒𝑟𝑖𝑜𝑑 > → .

Each line in BNF is a rule or production. Each production 
consists of a left hand side (LHS), followed by an arrow 
(“derives”), followed by a right hand side (RHS).

Each non-terminal is enclosed by a “<  >”. Each non-terminal 
should have a defining production. 

All other character strings, lexemes, are called terminals in this 
context. 



BNF Example

• BNF for English grammar example

< 𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒 > →< 𝑛𝑜𝑢𝑛 > < 𝑣𝑒𝑟𝑏 > < 𝑎𝑑𝑗𝑒𝑐𝑡𝑖𝑣𝑒 > < 𝑝𝑒𝑟𝑖𝑜𝑑 >

< 𝑛𝑜𝑢𝑛 >→ 𝐵𝑜𝑏

< 𝑣𝑒𝑟𝑏 >→ 𝑖𝑠

< 𝑎𝑑𝑗𝑒𝑐𝑡𝑖𝑣𝑒 > → 𝑡𝑎𝑙𝑙

< 𝑝𝑒𝑟𝑖𝑜𝑑 > → .

What sentence(s) can be generated using this BNF grammar? 
What sentence(s) are in this Language? 
How many sentence(s) are in this Language?



BNF Example

• BNF snippet for Programming grammar example

< 𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡 > → < 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 > = < 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 >

< 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 > → < 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 > + < 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 >

< 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 > → < 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 > − < 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 >

< 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 > →< 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 > + < 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 > |

< 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 > − < 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 >

Use the “|” symbol to represent the logical OR. Multiple definitions of 
each non-terminal can be written in the same production. 



Listing out non-terminals

• Non-terminals can generally take on many forms

• How can we practically list out all possible forms of a non-terminal?

• Example <expr>

< 𝑒𝑥𝑝𝑟 >→< 𝑣𝑎𝑟 > + < 𝑣𝑎𝑟 > |

< 𝑣𝑎𝑟 > + < 𝑣𝑎𝑟 > + < 𝑣𝑎𝑟 >

< 𝑣𝑎𝑟 > + < 𝑣𝑎𝑟 > + < 𝑣𝑎𝑟 > + < 𝑣𝑎𝑟 >

…



Listing Out Non-Terminals

< 𝑒𝑥𝑝𝑟 > →< 𝑣𝑎𝑟 > + < 𝑣𝑎𝑟 > |

< 𝑣𝑎𝑟 > + < 𝑣𝑎𝑟 > + < 𝑣𝑎𝑟 >

< 𝑣𝑎𝑟 > + < 𝑣𝑎𝑟 > + < 𝑣𝑎𝑟 > + < 𝑣𝑎𝑟 >

…

< 𝑒𝑥𝑝𝑟 > →< 𝑒𝑥𝑝𝑟 > + < 𝑣𝑎𝑟 > | < 𝑣𝑎𝑟 >

The above is tedious and impractical. We can avoid such definitions 
by recursively defining non-terminals.



Generating Sentences using BNF

• Start Symbol: One unique abstraction used to start a derivation

• Derivation: a repeated application of BNF rules 

A simple but complete grammar

< 𝑝𝑟𝑜𝑔𝑟𝑎𝑚 >→ 𝑏𝑒𝑔𝑖𝑛 < 𝑠𝑡𝑚𝑡 > 𝑒𝑛𝑑

< 𝑠𝑡𝑚𝑡 > →< 𝑣𝑎𝑟 >= < 𝑒𝑥𝑝𝑟 >

< 𝑒𝑥𝑝𝑟 >→< 𝑣𝑎𝑟 > | < 𝑣𝑎𝑟 >+< 𝑣𝑎𝑟 > | < 𝑣𝑎𝑟 >−< 𝑣𝑎𝑟 >

< 𝑣𝑎𝑟 >→ 𝑥 𝑦 𝑧



Generation / Derivation Example

• < 𝑝𝑟𝑜𝑔𝑟𝑎𝑚 >

• 𝑏𝑒𝑔𝑖𝑛 < 𝑠𝑡𝑚𝑡 > 𝑒𝑛𝑑

• 𝑏𝑒𝑔𝑖𝑛 < 𝑣𝑎𝑟 > = < 𝑒𝑥𝑝𝑟 > 𝑒𝑛𝑑

• 𝑏𝑒𝑔𝑖𝑛 𝑥 = < 𝑒𝑥𝑝𝑟 > 𝑒𝑛𝑑

• 𝑏𝑒𝑔𝑖𝑛 𝑥 = < 𝑣𝑎𝑟 > + < 𝑣𝑎𝑟 > 𝑒𝑛𝑑

• 𝑏𝑒𝑔𝑖𝑛 𝑥 = 𝑦 + < 𝑣𝑎𝑟 > 𝑒𝑛𝑑

• 𝑏𝑒𝑔𝑖𝑛 𝑥 = 𝑦 + 𝑧 𝑒𝑛𝑑

< 𝑝𝑟𝑜𝑔𝑟𝑎𝑚 >→ 𝑏𝑒𝑔𝑖𝑛 < 𝑠𝑡𝑚𝑡 > 𝑒𝑛𝑑

< 𝑠𝑡𝑚𝑡 > →< 𝑣𝑎𝑟 >= < 𝑒𝑥𝑝𝑟 >

< 𝑒𝑥𝑝𝑟 >→< 𝑣𝑎𝑟 > | < 𝑣𝑎𝑟 >+< 𝑣𝑎𝑟 > | <
𝑣𝑎𝑟 >−< 𝑣𝑎𝑟 >

< 𝑣𝑎𝑟 >→ 𝑥 𝑦 𝑧

• Derivation: a repeated application of BNF rules
– Starting with start symbol, repeatedly replace a non-terminal using on of the production rules until no 

non-terminals remain

– Only reduce one non-terminal per line of derivation – it is best not to perform multiple steps per line

• Try to generate:  begin   x = y + z   end



Derivation Practice

• Try to derive sentence:   begin y = x – y end

< 𝑝𝑟𝑜𝑔𝑟𝑎𝑚 >→ 𝑏𝑒𝑔𝑖𝑛 < 𝑠𝑡𝑚𝑡 > 𝑒𝑛𝑑

< 𝑠𝑡𝑚𝑡 > →< 𝑣𝑎𝑟 >= < 𝑒𝑥𝑝𝑟 >

< 𝑒𝑥𝑝𝑟 >→< 𝑣𝑎𝑟 > | < 𝑣𝑎𝑟 >+< 𝑣𝑎𝑟 > | <
𝑣𝑎𝑟 >−< 𝑣𝑎𝑟 >

< 𝑣𝑎𝑟 >→ 𝑥 𝑦 𝑧

• < 𝑝𝑟𝑜𝑔𝑟𝑎𝑚 >

• 𝑏𝑒𝑔𝑖𝑛 < 𝑠𝑡𝑚𝑡 > 𝑒𝑛𝑑

• 𝑏𝑒𝑔𝑖𝑛 < 𝑣𝑎𝑟 > = < 𝑒𝑥𝑝𝑟 > 𝑒𝑛𝑑

• 𝑏𝑒𝑔𝑖𝑛 𝑦 = < 𝑒𝑥𝑝𝑟 > 𝑒𝑛𝑑

• 𝑏𝑒𝑔𝑖𝑛 𝑦 = < 𝑣𝑎𝑟 > − < 𝑣𝑎𝑟 > 𝑒𝑛𝑑

• 𝑏𝑒𝑔𝑖𝑛 𝑦 = 𝑥 − < 𝑣𝑎𝑟 > 𝑒𝑛𝑑

• 𝑏𝑒𝑔𝑖𝑛 𝑦 = 𝑥 − 𝑦 𝑒𝑛𝑑



Derivation Practice

• Try to derive sentence:   begin y = x – y + z end

< 𝑝𝑟𝑜𝑔𝑟𝑎𝑚 >→ 𝑏𝑒𝑔𝑖𝑛 < 𝑠𝑡𝑚𝑡 > 𝑒𝑛𝑑

< 𝑠𝑡𝑚𝑡 > →< 𝑣𝑎𝑟 >= < 𝑒𝑥𝑝𝑟 >

< 𝑒𝑥𝑝𝑟 >→< 𝑣𝑎𝑟 > | < 𝑣𝑎𝑟 >+< 𝑣𝑎𝑟 > | <
𝑣𝑎𝑟 >−< 𝑣𝑎𝑟 >

< 𝑣𝑎𝑟 >→ 𝑥 𝑦 𝑧

• < 𝑝𝑟𝑜𝑔𝑟𝑎𝑚 >

• 𝑏𝑒𝑔𝑖𝑛 < 𝑠𝑡𝑚𝑡 > 𝑒𝑛𝑑

• 𝑏𝑒𝑔𝑖𝑛 < 𝑣𝑎𝑟 > = < 𝑒𝑥𝑝𝑟 > 𝑒𝑛𝑑

• 𝑏𝑒𝑔𝑖𝑛 𝑦 = < 𝑒𝑥𝑝𝑟 > 𝑒𝑛𝑑

• 𝑏𝑒𝑔𝑖𝑛 𝑦 = < 𝑣𝑎𝑟 > − < 𝑣𝑎𝑟 > 𝑒𝑛𝑑

• …

• Cannot! Need a more general production rule

• What rule can we add?



Derivation example with recursive production

• Try to derive sentence:   begin y = x – y + z end

< 𝑝𝑟𝑜𝑔𝑟𝑎𝑚 >→ 𝑏𝑒𝑔𝑖𝑛 < 𝑠𝑡𝑚𝑡 > 𝑒𝑛𝑑

< 𝑠𝑡𝑚𝑡 > →< 𝑣𝑎𝑟 >= < 𝑒𝑥𝑝𝑟 >

< 𝑒𝑥𝑝𝑟 >→< 𝑣𝑎𝑟 > | < 𝑒𝑥𝑝𝑟 >+< 𝑣𝑎𝑟 >
| < 𝑒𝑥𝑝𝑟 >−< 𝑣𝑎𝑟 >

< 𝑣𝑎𝑟 >→ 𝑥 𝑦 𝑧

• < 𝑝𝑟𝑜𝑔𝑟𝑎𝑚 >

• 𝑏𝑒𝑔𝑖𝑛 < 𝑠𝑡𝑚𝑡 > 𝑒𝑛𝑑

• 𝑏𝑒𝑔𝑖𝑛 < 𝑣𝑎𝑟 > = < 𝑒𝑥𝑝𝑟 > 𝑒𝑛𝑑

• 𝑏𝑒𝑔𝑖𝑛 𝑦 = < 𝑒𝑥𝑝𝑟 > 𝑒𝑛𝑑

• 𝑏𝑒𝑔𝑖𝑛 𝑦 = < 𝑒𝑥𝑝𝑟 > + < 𝑣𝑎𝑟 > 𝑒𝑛𝑑

• 𝑏𝑒𝑔𝑖𝑛 𝑦 = < 𝑒𝑥𝑝𝑟 ≻ − < 𝑣𝑎𝑟 > + < 𝑣𝑎𝑟 > 𝑒𝑛𝑑

• 𝑏𝑒𝑔𝑖𝑛 𝑦 = < 𝑣𝑎𝑟 ≻ − < 𝑣𝑎𝑟 > + < 𝑣𝑎𝑟 > 𝑒𝑛𝑑

• 𝑏𝑒𝑔𝑖𝑛 𝑦 = 𝑥 − < 𝑣𝑎𝑟 > + < 𝑣𝑎𝑟 > 𝑒𝑛𝑑

• 𝑏𝑒𝑔𝑖𝑛 𝑦 = 𝑥 − 𝑦 + < 𝑣𝑎𝑟 > 𝑒𝑛𝑑

• 𝑏𝑒𝑔𝑖𝑛 𝑦 = 𝑥 − 𝑦 + 𝑧 𝑒𝑛𝑑



LMD vs RMD

• Note: Multiple derivations may exist per sentence. 
– Many sentences have multiple derivations

• Two common derivation strategies
– Left Most Derivation: During derivation, always reduce left-most non-

terminal at each step. 

– Right Most Derivation: During derivation, always reduce right-most non-
terminal at each step. 

• Note: Derivation order has no effect on the language generated



LMD vs RMD:  begin y = x – y end

• < 𝑝𝑟𝑜𝑔𝑟𝑎𝑚 >

• 𝑏𝑒𝑔𝑖𝑛 < 𝑠𝑡𝑚𝑡 > 𝑒𝑛𝑑

• 𝑏𝑒𝑔𝑖𝑛 < 𝑣𝑎𝑟 > = < 𝑒𝑥𝑝𝑟 > 𝑒𝑛𝑑

• 𝑏𝑒𝑔𝑖𝑛 𝑦 = < 𝑒𝑥𝑝𝑟 > 𝑒𝑛𝑑

• 𝑏𝑒𝑔𝑖𝑛 𝑦 = < 𝑣𝑎𝑟 > − < 𝑣𝑎𝑟 > 𝑒𝑛𝑑

• 𝑏𝑒𝑔𝑖𝑛 𝑦 = 𝑥 − < 𝑣𝑎𝑟 > 𝑒𝑛𝑑

• 𝑏𝑒𝑔𝑖𝑛 𝑦 = 𝑥 − 𝑦 𝑒𝑛𝑑

• < 𝑝𝑟𝑜𝑔𝑟𝑎𝑚 >

• 𝑏𝑒𝑔𝑖𝑛 < 𝑠𝑡𝑚𝑡 > 𝑒𝑛𝑑

• 𝑏𝑒𝑔𝑖𝑛 < 𝑣𝑎𝑟 > = < 𝑒𝑥𝑝𝑟 > 𝑒𝑛𝑑

• 𝑏𝑒𝑔𝑖𝑛 < 𝑣𝑎𝑟 > = < 𝑣𝑎𝑟 > − < 𝑣𝑎𝑟 > 𝑒𝑛𝑑

• 𝑏𝑒𝑔𝑖𝑛 < 𝑣𝑎𝑟 > = < 𝑣𝑎𝑟 > − 𝑦 𝑒𝑛𝑑

• 𝑏𝑒𝑔𝑖𝑛 < 𝑣𝑎𝑟 > = 𝑥 − 𝑦 𝑒𝑛𝑑

• 𝑏𝑒𝑔𝑖𝑛 𝑦 = 𝑥 − 𝑦 𝑒𝑛𝑑

LMD RMD

< 𝑝𝑟𝑜𝑔𝑟𝑎𝑚 >→ 𝑏𝑒𝑔𝑖𝑛 < 𝑠𝑡𝑚𝑡 > 𝑒𝑛𝑑

< 𝑠𝑡𝑚𝑡 > →< 𝑣𝑎𝑟 >= < 𝑒𝑥𝑝𝑟 >

< 𝑒𝑥𝑝𝑟 >→< 𝑣𝑎𝑟 > | < 𝑣𝑎𝑟 >+< 𝑣𝑎𝑟 > | <
𝑣𝑎𝑟 >−< 𝑣𝑎𝑟 >

< 𝑣𝑎𝑟 >→ 𝑥 𝑦 𝑧

Note: Any intermediate 
representation derived from 

the start symbol called a 
sentinel form. If derived via a 
{LMD, RMD} it is a {left, right} 

sentinel form.



In-class Exercise

< 𝑝𝑟𝑜𝑔𝑟𝑎𝑚 >→ 𝑏𝑒𝑔𝑖𝑛 < 𝑠𝑡𝑚𝑡 > 𝑒𝑛𝑑

< 𝑠𝑡𝑚𝑡 > →< 𝑣𝑎𝑟 >= < 𝑒𝑥𝑝𝑟 >

< 𝑒𝑥𝑝𝑟 >→< 𝑣𝑎𝑟 > | < 𝑒𝑥𝑝𝑟 >+< 𝑣𝑎𝑟 > | < 𝑒𝑥𝑝𝑟 >−< 𝑣𝑎𝑟 >

< 𝑣𝑎𝑟 >→ 𝑥 𝑦 𝑧

• Derive (LMD or RMD):  begin x = y + z – x end



In Class Exercise

• Construct a grammar that allows programs with operators +, -, /, 

and *.



Parse Trees

• Hierarchical representation of the syntactic structure of a sentence 

– Based on syntax rules / derivation

– LHS of production is parent node and RHS are children nodes

– Example: Bob is happy.

< 𝑠𝑒𝑛𝑡 > → < 𝑠𝑢𝑏 > < 𝑣𝑒𝑟𝑏 > < 𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒 > .
< 𝑠𝑢𝑏 > → < 𝑛𝑜𝑢𝑛 >
< 𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒 > → < 𝑎𝑟𝑡 > < 𝑛𝑜𝑢𝑛 > | < 𝑎𝑑𝑗 >
< 𝑛𝑜𝑢𝑛 > → 𝐵𝑜𝑏 |  Mary 
< 𝑎𝑟𝑡 > → 𝑎 | the
< 𝑣𝑒𝑟𝑏 >→ 𝑖𝑠
< 𝑎𝑑𝑗 > → 𝑡𝑎𝑙𝑙 | happy | sad



Parse Trees

• Observations

– Root: start symbol

– Internal nodes are non-terminals

– Leaf nodes are terminals

< 𝑠𝑒𝑛𝑡 > → < 𝑠𝑢𝑏 > < 𝑣𝑒𝑟𝑏 > < 𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒 > .
< 𝑠𝑢𝑏 > → < 𝑛𝑜𝑢𝑛 >
< 𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒 > → < 𝑎𝑟𝑡 > < 𝑛𝑜𝑢𝑛 > | < 𝑎𝑑𝑗 >
< 𝑛𝑜𝑢𝑛 > → 𝐵𝑜𝑏 |  Mary 
< 𝑎𝑟𝑡 > → 𝑎 | the
< 𝑣𝑒𝑟𝑏 >→ 𝑖𝑠
< 𝑎𝑑𝑗 > → 𝑡𝑎𝑙𝑙 | happy | sad



Parse Tree (programming) Example

< 𝑝𝑟𝑜𝑔𝑟𝑎𝑚 >→ 𝑏𝑒𝑔𝑖𝑛 < 𝑠𝑡𝑚𝑡 > 𝑒𝑛𝑑

< 𝑠𝑡𝑚𝑡 > →< 𝑣𝑎𝑟 >= < 𝑒𝑥𝑝𝑟 >

< 𝑒𝑥𝑝𝑟 >→< 𝑣𝑎𝑟 > | < 𝑒𝑥𝑝𝑟 >+< 𝑣𝑎𝑟 >
| < 𝑒𝑥𝑝𝑟 >−< 𝑣𝑎𝑟 >

< 𝑣𝑎𝑟 >→ 𝑥 𝑦 𝑧

• Example

– Based on syntax rules / derivation

– Example: begin x = x + y end



In Class -- Parse Tree (programming) Example

• Example: create parse tree

x = x * y + z

< 𝑠𝑡𝑚𝑡 > →< 𝑣𝑎𝑟 >= < 𝑒𝑥𝑝𝑟 >
< 𝑒𝑥𝑝𝑟 >→< 𝑣𝑎𝑟 > | < 𝑒𝑥𝑝𝑟 > + < 𝑒𝑥𝑝𝑟 > | < 𝑒𝑥𝑝𝑟 > ∗ < 𝑒𝑥𝑝𝑟 >
< 𝑣𝑎𝑟 >→ 𝑥 𝑦 𝑧



Ambiguous Grammars

• A grammar that generates a 
sentence with two or more 
possible parse trees is called 
an ambiguous grammar

• A grammar is ambiguous if it 
produces more than one left 
most derivation or more than 
one right most derivation

• Example:
x = x * y + z

< 𝑠𝑡𝑚𝑡 > →< 𝑣𝑎𝑟 >= < 𝑒𝑥𝑝𝑟 >
< 𝑒𝑥𝑝𝑟 >→< 𝑣𝑎𝑟 > | < 𝑒𝑥𝑝𝑟 > + < 𝑒𝑥𝑝𝑟 > | < 𝑒𝑥𝑝𝑟 > ∗ < 𝑒𝑥𝑝𝑟 >
< 𝑣𝑎𝑟 >→ 𝑥 𝑦 𝑧



Ambiguous Grammars

• Inspection: Why is this grammar ambiguous … 

• The <expr> non terminal can be expanded on either side of the + 
or * operator. We can derive the either side first possibly giving 
rise to two distinct parse trees

• Note: Syntactically this may be OK, but in practice, this may cause 
semantic issues

< 𝑠𝑡𝑚𝑡 > →< 𝑣𝑎𝑟 >= < 𝑒𝑥𝑝𝑟 >
< 𝑒𝑥𝑝𝑟 >→< 𝑣𝑎𝑟 > | < 𝑒𝑥𝑝𝑟 > + < 𝑒𝑥𝑝𝑟 > | < 𝑒𝑥𝑝𝑟 > ∗ < 𝑒𝑥𝑝𝑟 >
< 𝑣𝑎𝑟 >→ 𝑥 𝑦 𝑧



Ambiguous Grammar : English*

• I see Bob on the roof with binoculars.



Disambiguating Grammars

• This grammar is ambiguous as there is the same non-terminal on 

either side of the ‘+’ and ‘*’ operators, which may permit multiple parse 

trees

• Fix:

– Change the associativity of the operator within the productions.

– Make each operator either left associative or right associative, but not both.

– Associativity can dictate derivation and disambiguate a grammar. 

< 𝑠𝑡𝑚𝑡 > →< 𝑣𝑎𝑟 >= < 𝑒𝑥𝑝𝑟 >
< 𝑒𝑥𝑝𝑟 >→< 𝑣𝑎𝑟 > | < 𝑒𝑥𝑝𝑟 > + < 𝑒𝑥𝑝𝑟 > | < 𝑒𝑥𝑝𝑟 > ∗ < 𝑒𝑥𝑝𝑟 >
< 𝑣𝑎𝑟 >→ 𝑥 𝑦 𝑧



Operator Associativity

• A production is left recursive if its LHS appears at the beginning of the 
RHS. This implies left associativity.
– The following grammar is left associative and unambiguous. 

• A production is right recursive if its LHS appears at the beginning of 
the RHS. This implies right associativity.
– The following grammar is right associative and unambiguous. 

< 𝑠𝑡𝑚𝑡 > →< 𝑣𝑎𝑟 >= < 𝑒𝑥𝑝𝑟 >
< 𝑒𝑥𝑝𝑟 >→< 𝑣𝑎𝑟 > | < 𝑒𝑥𝑝𝑟 > + < 𝑣𝑎𝑟 > | < 𝑒𝑥𝑝𝑟 > ∗ < 𝑣𝑎𝑟 >
< 𝑣𝑎𝑟 >→ 𝑥 𝑦 𝑧

< 𝑠𝑡𝑚𝑡 > →< 𝑣𝑎𝑟 >= < 𝑒𝑥𝑝𝑟 >
< 𝑒𝑥𝑝𝑟 >→< 𝑣𝑎𝑟 > < 𝑣𝑎𝑟 > + < 𝑒𝑥𝑝𝑟 > < 𝑣𝑎𝑟 >∗ < 𝑒𝑥𝑝𝑟 >
< 𝑣𝑎𝑟 >→ 𝑥 𝑦 𝑧



Parse Tree Example

• Lets attempt our previous example using a non-ambiguous 

grammar.

– Example:   x = x * y + z

< 𝑠𝑡𝑚𝑡 > →< 𝑣𝑎𝑟 >= < 𝑒𝑥𝑝𝑟 >
< 𝑒𝑥𝑝𝑟 >→< 𝑣𝑎𝑟 > | < 𝑒𝑥𝑝𝑟 > + < 𝑣𝑎𝑟 > | < 𝑒𝑥𝑝𝑟 > ∗ < 𝑣𝑎𝑟 >
< 𝑣𝑎𝑟 >→ 𝑥 𝑦 𝑧



Does associativity solve all language issues?

• NO – Associativity may help with ambiguity issues, but semantic issues

may still remain. 

– Example 1: operator precedence. 

– Example 2: the dangling “else” problem.

• Operator Precedence Concern:  apply semantics to “ x = x + y * z ”

– Semantic Goal: evaluate the multiplication first!

– Note: Semantics is applied to the parsed structure – parse tree. 

• The lower in the parse tree, the higher the precedence. That is, items lower on the parse 

tree (along the same branch) are evaluated first



Example: Operator 
Precedence 

• Parse “ x = x + y * z ” , using the following grammar

• Using Left Associative Productions leads to improper parse 
tree
– Addition is lower in the parse tree and is evaluated first

• Question
– Does using a Right Associative production fix the issue?

– For this one example, yes, but for the general case NO!
– Associativity will change the resulting parse tree based on the order 

each of the operators or symbols, but cannot be used alone to 
enforce operator precedence.

• Perspective: Parsing and evaluation as a depth first 
traversal
– Post Order!
– Parsing can be viewed as a downward operation – traversing the tree 

downward. Applying semantics can be viewed as an upward 
operation, performed when traversing back up the tree. 

• So … How can we enforce operator precedence?

< 𝑠𝑡𝑚𝑡 > →< 𝑣𝑎𝑟 >= < 𝑒𝑥𝑝𝑟 >
< 𝑒𝑥𝑝𝑟 >→< 𝑣𝑎𝑟 > | < 𝑒𝑥𝑝𝑟 > + < 𝑣𝑎𝑟 > | < 𝑒𝑥𝑝𝑟 > ∗ < 𝑣𝑎𝑟 >
< 𝑣𝑎𝑟 > → 𝑥 𝑦 𝑧



Operator Precedence

• How can we enforce operator precedence?

– With the addition of non-terminals and rules

• Example: Require operands of the ‘+’ operator to consist of 

variables or products of variables (but not the reverse – do not 

allow operands of products to consist of additions of variables). 

This will ensure that multiplication is lower on the parse tree.

< 𝑠𝑡𝑚𝑡 > →< 𝑣𝑎𝑟 >= < 𝑒𝑥𝑝𝑟 >
< 𝑒𝑥𝑝𝑟 >→< 𝑣𝑎𝑟 > | < 𝑒𝑥𝑝𝑟 > + < 𝑣𝑎𝑟 > | < 𝑒𝑥𝑝𝑟 > ∗ < 𝑣𝑎𝑟 >
< 𝑣𝑎𝑟 > → 𝑥 𝑦 𝑧

< 𝑠𝑡𝑚𝑡 > →< 𝑣𝑎𝑟 >= < 𝑒𝑥𝑝𝑟 >
< 𝑒𝑥𝑝𝑟 >→< 𝑡𝑒𝑟𝑚 > | < 𝑒𝑥𝑝𝑟 > + < 𝑡𝑒𝑟𝑚 >
< 𝑡𝑒𝑟𝑚 >→ < 𝑣𝑎𝑟 > | < 𝑡𝑒𝑟𝑚 > ∗ < 𝑣𝑎𝑟 >
< 𝑣𝑎𝑟 > → 𝑥 𝑦 𝑧

‘*’ has precedence over ‘+’No enforced precedence 



Example: Operator Precedence

• Parse “ x = x + y * z ” , using the following 
grammar

• Since the operands of expressions are 
composed of terms,  (and terms are not 
composed of expressions), terms will 
appear lower in the parse tree

< 𝑠𝑡𝑚𝑡 > →< 𝑣𝑎𝑟 >= < 𝑒𝑥𝑝𝑟 >
< 𝑒𝑥𝑝𝑟 >→< 𝑡𝑒𝑟𝑚 > | < 𝑒𝑥𝑝𝑟 > + < 𝑡𝑒𝑟𝑚 >
< 𝑡𝑒𝑟𝑚 >→ < 𝑣𝑎𝑟 > | < 𝑡𝑒𝑟𝑚 > ∗ < 𝑣𝑎𝑟 >
< 𝑣𝑎𝑟 > → 𝑥 𝑦 𝑧



In Class Example

• Given the following grammar, parse the following sentences (if possible). 

• Sentences:

x = x * y / z

y =  z + x / y

z =  -x / y + z

< 𝑠𝑡𝑚𝑡 > →< 𝑣𝑎𝑟 >= < 𝑒𝑥𝑝𝑟 >
< 𝑒𝑥𝑝𝑟 >→< 𝑡𝑒𝑟𝑚 > | < 𝑒𝑥𝑝𝑟 > + < 𝑣𝑎𝑟 > | < 𝑒𝑥𝑝𝑟 > − < 𝑣𝑎𝑟 >
< 𝑡𝑒𝑟𝑚 >→ < 𝑣𝑎𝑟 > | < 𝑡𝑒𝑟𝑚 > ∗ < 𝑣𝑎𝑟 > | < 𝑡𝑒𝑟𝑚 > / < 𝑣𝑎𝑟 >
< 𝑣𝑎𝑟 > → 𝑥 𝑦 𝑧



Example: non-ideal grammar

• Using the following grammar, try to parse sentences

• Which of these sentences are in the language? (ie which can we parse)

x = x * y / z

y =  z + x / y

z =  - x / y + z

• What is “wrong” with this grammar? How can we “fix” it?

< 𝑠𝑡𝑚𝑡 > →< 𝑣𝑎𝑟 >= < 𝑒𝑥𝑝𝑟 >
< 𝑒𝑥𝑝𝑟 >→< 𝑡𝑒𝑟𝑚 > | < 𝑡𝑒𝑟𝑚 > + < 𝑣𝑎𝑟 > | < 𝑒𝑥𝑝𝑟 > − < 𝑣𝑎𝑟 >
< 𝑡𝑒𝑟𝑚 >→ < 𝑣𝑎𝑟 > | < 𝑣𝑎𝑟 > ∗ < 𝑣𝑎𝑟 > | < 𝑡𝑒𝑟𝑚 > / < 𝑣𝑎𝑟 >
< 𝑣𝑎𝑟 > → 𝑥 𝑦 𝑧



Designing a Grammar

• Each operator with different precedence should have its own non-

terminal with production(s)

• The productions should be designed to enforce the correct 

precedence

• Example: Add the unary negation operator to the existing 

grammar 

< 𝑠𝑡𝑚𝑡 > →< 𝑣𝑎𝑟 >= < 𝑒𝑥𝑝𝑟 >
< 𝑒𝑥𝑝𝑟 >→< 𝑡𝑒𝑟𝑚 > | < 𝑒𝑥𝑝𝑟 > + < 𝑡𝑒𝑟𝑚 > | < 𝑒𝑥𝑝𝑟 > − < 𝑡𝑒𝑟𝑚 >
< 𝑡𝑒𝑟𝑚 >→ < 𝑣𝑎𝑟 > | < 𝑡𝑒𝑟𝑚 > ∗ < 𝑣𝑎𝑟 > | < 𝑡𝑒𝑟𝑚 > / < 𝑣𝑎𝑟 >
< 𝑣𝑎𝑟 > → 𝑥 𝑦 𝑧

< 𝑠𝑡𝑚𝑡 > →< 𝑣𝑎𝑟 >= < 𝑒𝑥𝑝𝑟 >
< 𝑒𝑥𝑝𝑟 >→< 𝑡𝑒𝑟𝑚 > | < 𝑒𝑥𝑝𝑟 > + < 𝑡𝑒𝑟𝑚 > | < 𝑒𝑥𝑝𝑟 > − < 𝑡𝑒𝑟𝑚 >
< 𝑡𝑒𝑟𝑚 >→ < 𝑛𝑒𝑔 > | < 𝑡𝑒𝑟𝑚 > ∗ < 𝑛𝑒𝑔 > | < 𝑡𝑒𝑟𝑚 > / < 𝑛𝑒𝑔 >
< 𝑛𝑒𝑔 >→ < 𝑣𝑎𝑟 > | −< 𝑣𝑎𝑟 >
< 𝑣𝑎𝑟 > → 𝑥 𝑦 𝑧



In-Class Example

• Everyone try:  Update the following grammar to allow for 

parenthesis within a mathematical expression

– Questions to ask yourself

• What precedence level is a parenthetical expression?

• Given that, where should this new rule go within the BNF?

– Should we add a new non-terminal and production, or a new production for an existing 

non-terminal?

– What is the form of all possible parenthetical statements, ie what is the form of the 

production?

< 𝑠𝑡𝑚𝑡 > →< 𝑣𝑎𝑟 >= < 𝑒𝑥𝑝𝑟 >
< 𝑒𝑥𝑝𝑟 >→< 𝑡𝑒𝑟𝑚 > | < 𝑒𝑥𝑝𝑟 > + < 𝑡𝑒𝑟𝑚 > | < 𝑒𝑥𝑝𝑟 > − < 𝑡𝑒𝑟𝑚 >
< 𝑡𝑒𝑟𝑚 >→ < 𝑛𝑒𝑔 > | < 𝑡𝑒𝑟𝑚 > ∗ < 𝑛𝑒𝑔 > | < 𝑡𝑒𝑟𝑚 > / < 𝑛𝑒𝑔 >
< 𝑛𝑒𝑔 >→ < 𝑣𝑎𝑟 > | −< 𝑣𝑎𝑟 >
< 𝑣𝑎𝑟 > → 𝑥 𝑦 𝑧



Example (cont)

• Will this generate?:

x = x + ( y + z )

< 𝑠𝑡𝑚𝑡 > →< 𝑣𝑎𝑟 >= < 𝑒𝑥𝑝𝑟 >
< 𝑒𝑥𝑝𝑟 >→< 𝑡𝑒𝑟𝑚 > | < 𝑒𝑥𝑝𝑟 > + < 𝑡𝑒𝑟𝑚 > | < 𝑒𝑥𝑝𝑟 > − < 𝑡𝑒𝑟𝑚 >
< 𝑡𝑒𝑟𝑚 >→ < 𝑛𝑒𝑔 > | < 𝑡𝑒𝑟𝑚 > ∗ < 𝑛𝑒𝑔 > | < 𝑡𝑒𝑟𝑚 > / < 𝑛𝑒𝑔 >
< 𝑛𝑒𝑔 >→ < 𝑣𝑎𝑟 > | −< 𝑣𝑎𝑟 >
< 𝑣𝑎𝑟 > → 𝑥 𝑦 𝑧

< 𝑠𝑡𝑚𝑡 > →< 𝑣𝑎𝑟 >= < 𝑒𝑥𝑝𝑟 >
< 𝑒𝑥𝑝𝑟 >→< 𝑡𝑒𝑟𝑚 > | < 𝑒𝑥𝑝𝑟 > + < 𝑡𝑒𝑟𝑚 > | < 𝑒𝑥𝑝𝑟 > − < 𝑡𝑒𝑟𝑚 >
| ( <expr> ) 
< 𝑡𝑒𝑟𝑚 >→ < 𝑛𝑒𝑔 > | < 𝑡𝑒𝑟𝑚 > ∗ < 𝑛𝑒𝑔 > | < 𝑡𝑒𝑟𝑚 > / < 𝑛𝑒𝑔 >
< 𝑛𝑒𝑔 >→ < 𝑣𝑎𝑟 > | −< 𝑣𝑎𝑟 >
< 𝑣𝑎𝑟 > → 𝑥 𝑦 𝑧

< 𝑠𝑡𝑚𝑡 >→< 𝑣𝑎𝑟 >= < 𝑒𝑥𝑝𝑟 >
< 𝑒𝑥𝑝𝑟 >→< 𝑡𝑒𝑟𝑚 > | < 𝑒𝑥𝑝𝑟 > + < 𝑡𝑒𝑟𝑚 > | < 𝑒𝑥𝑝𝑟 > − < 𝑡𝑒𝑟𝑚 >
| ( <expr> )  | <expr> + ( <expr> ) | (<expr>) + <expr> | … 
< 𝑡𝑒𝑟𝑚 >→ < 𝑛𝑒𝑔 > | < 𝑡𝑒𝑟𝑚 > ∗ < 𝑛𝑒𝑔 > | < 𝑡𝑒𝑟𝑚 > / < 𝑛𝑒𝑔 >
< 𝑛𝑒𝑔 >→ < 𝑣𝑎𝑟 > | −< 𝑣𝑎𝑟 >
< 𝑣𝑎𝑟 > → 𝑥 𝑦 𝑧

• Placing the parenthetical near the top of 

the BNF hierarchy is intuitive in many 

ways; HOWEVER, given its general use 

and semantics, this construct should be 

lower in the hierarchy.

• Why? BNF is a hierarchical construct, 

building a abstractions out of lower level 

abstractions. The lower the abstraction 

the more atomic (indivisible) … in the 

context of operators: the higher the 

precedence.

• Will this generate?:

x = x + ( y + z ) yes

x = x * (x + y) no



Example (cont)

• When adding a construct to a grammar (with its own level of 

precedence … indivisibility), add a new production at the 

appropriate level of the hierarchy.

< 𝑠𝑡𝑚𝑡 > →< 𝑣𝑎𝑟 >= < 𝑒𝑥𝑝𝑟 >
< 𝑒𝑥𝑝𝑟 >→< 𝑡𝑒𝑟𝑚 > | < 𝑒𝑥𝑝𝑟 > + < 𝑡𝑒𝑟𝑚 > | < 𝑒𝑥𝑝𝑟 > − < 𝑡𝑒𝑟𝑚 >
< 𝑡𝑒𝑟𝑚 >→ < 𝑛𝑒𝑔 > | < 𝑡𝑒𝑟𝑚 > ∗ < 𝑛𝑒𝑔 > | < 𝑡𝑒𝑟𝑚 > / < 𝑛𝑒𝑔 >
< 𝑛𝑒𝑔 >→ < 𝑣𝑎𝑟 > | −< 𝑛𝑒𝑔 >
< 𝑣𝑎𝑟 > → 𝑥 𝑦 𝑧

< 𝑠𝑡𝑚𝑡 > →< 𝑣𝑎𝑟 >= < 𝑒𝑥𝑝𝑟 >
< 𝑒𝑥𝑝𝑟 >→< 𝑡𝑒𝑟𝑚 > | < 𝑒𝑥𝑝𝑟 > + < 𝑡𝑒𝑟𝑚 > | < 𝑒𝑥𝑝𝑟 > − < 𝑡𝑒𝑟𝑚 >
< 𝑡𝑒𝑟𝑚 >→ < 𝑛𝑒𝑔 > | < 𝑡𝑒𝑟𝑚 > ∗ < 𝑛𝑒𝑔 > | < 𝑡𝑒𝑟𝑚 > / < 𝑛𝑒𝑔 >
< 𝑛𝑒𝑔 >→ < 𝑝 > | −< 𝑛𝑒𝑔 >
< 𝑝 >→ < 𝑒𝑥𝑝𝑟 > | < 𝑣𝑎𝑟 >
< 𝑣𝑎𝑟 > → 𝑥 𝑦 𝑧

< 𝑠𝑡𝑚𝑡 > →< 𝑣𝑎𝑟 >= < 𝑒𝑥𝑝𝑟 >
< 𝑒𝑥𝑝𝑟 >→< 𝑡𝑒𝑟𝑚 > | < 𝑒𝑥𝑝𝑟 > + < 𝑡𝑒𝑟𝑚 > | < 𝑒𝑥𝑝𝑟 > − < 𝑡𝑒𝑟𝑚 >
< 𝑡𝑒𝑟𝑚 >→ < 𝑛𝑒𝑔 > | < 𝑡𝑒𝑟𝑚 > ∗ < 𝑛𝑒𝑔 > | < 𝑡𝑒𝑟𝑚 > / < 𝑛𝑒𝑔 >
< 𝑛𝑒𝑔 >→ < 𝑣𝑎𝑟 > | −< 𝑛𝑒𝑔 >
< 𝑣𝑎𝑟 > → 𝑥 𝑦 𝑧 | ( <expr> )

Can we generate?: x = -(x + y)
YES

< 𝑠𝑡𝑚𝑡 > →< 𝑣𝑎𝑟 >= < 𝑒𝑥𝑝𝑟 >
< 𝑒𝑥𝑝𝑟 >→< 𝑡𝑒𝑟𝑚 > | < 𝑒𝑥𝑝𝑟 > + < 𝑡𝑒𝑟𝑚 > | < 𝑒𝑥𝑝𝑟 > − < 𝑡𝑒𝑟𝑚 >
< 𝑡𝑒𝑟𝑚 >→ < 𝑛𝑒𝑔 > | < 𝑡𝑒𝑟𝑚 > ∗ < 𝑛𝑒𝑔 > | < 𝑡𝑒𝑟𝑚 > / < 𝑛𝑒𝑔 >
< 𝑛𝑒𝑔 >→ < 𝑣𝑎𝑟 > | −< 𝑛𝑒𝑔 > | ( <expr> )
< 𝑣𝑎𝑟 > → 𝑥 𝑦 𝑧

Can we generate?: x = -(x + y)
YES



Else-Matching: the dangling else problem

• Consider the following BNF for <if stmts>

< 𝑖𝑓_𝑠𝑡𝑚𝑡 > → 𝑖𝑓 < 𝑒𝑥𝑝𝑟 > < 𝑠𝑡𝑚𝑡 > |

𝑖𝑓 < 𝑒𝑥𝑝𝑟 > < 𝑠𝑡𝑚𝑡 > 𝑒𝑙𝑠𝑒 < 𝑠𝑡𝑚𝑡 >

< 𝑠𝑡𝑚𝑡 > →< 𝑖𝑓_𝑠𝑡𝑚𝑡 > | < 𝑎𝑠𝑠𝑖𝑔𝑛 >
…

• Consider the following code snippet and parse using grammar above:

if( x )

if( y )

x = x + y

else

y = x + y



Else-Matching: the dangling else problem

• Consider the following BNF for <if stmts>

< 𝑖𝑓_𝑠𝑡𝑚𝑡 >→ 𝑖𝑓 < 𝑒𝑥𝑝𝑟 > < 𝑠𝑡𝑚𝑡 > |

𝑖𝑓 < 𝑒𝑥𝑝𝑟 > < 𝑠𝑡𝑚𝑡 >
𝑒𝑙𝑠𝑒 < 𝑠𝑡𝑚𝑡 >

< 𝑠𝑡𝑚𝑡 > →< 𝑖𝑓_𝑠𝑡𝑚𝑡 > | < 𝑎𝑠𝑠𝑖𝑔𝑛 >
…

• Consider the following code snippet and 
parse using grammar above:

if( x )

if( y )

x = x + y

else

y = x + y

ELSE is matched with second IF ELSE is matched with first IF



Else-Matching: the dangling else problem 
(solution match else with nearest if)

< 𝑖𝑓_𝑠𝑡𝑚𝑡 >→ < 𝑚𝑎𝑡𝑐ℎ𝑒𝑑 > | < 𝑢𝑛𝑚𝑎𝑡𝑐ℎ𝑒𝑑 >

< 𝑚𝑎𝑡𝑐ℎ𝑒𝑑 > 𝑖𝑓 < 𝑒𝑥𝑝𝑟 > < 𝑚𝑎𝑡𝑐ℎ𝑒𝑑 > 𝑒𝑙𝑠𝑒 < 𝑚𝑎𝑡𝑐ℎ𝑒𝑑 > |

< 𝑎𝑠𝑠𝑖𝑔𝑛 >

< 𝑢𝑛𝑚𝑎𝑡𝑐ℎ𝑒𝑑 >→ 𝑖𝑓 < 𝑒𝑥𝑝𝑟 > < 𝑖𝑓_𝑠𝑡𝑚𝑡 > | 

𝑖𝑓 < 𝑒𝑥𝑝𝑟 > < 𝑚𝑎𝑡𝑐ℎ𝑒𝑑 > 𝑒𝑙𝑠𝑒 < 𝑢𝑛𝑚𝑎𝑡𝑐ℎ𝑒𝑑 >

• If time, try to parse the following 

if( x )

if( y )

x = x + y

else

y = x + y



If-else discussion

• Observation: the dangling else problem arises from the 

combination of a matched and unmatched if_stmt . Allowing 

“flexible” matchings would produce an ambiguous grammar

• One can add a disambiguating rule to a grammar to enforce a 

matching scheme / rule. Note: This is not the only solution.

• What else might one do to disambiguate such a grammar?



Example: A more complex grammar with PL like 
syntax

• Note operator precedence and composition rules of the 

productions.

• Exercise:

– How can we permit sequences of statements?

– How can we permit while loops?

– How can we permit Boolean expressions?

< 𝑝𝑟𝑜𝑔𝑟𝑎𝑚 >→ <stmt>
< 𝑠𝑡𝑚𝑡 >→< 𝑣𝑎𝑟 >= < 𝑒𝑥𝑝𝑟 >
< 𝑒𝑥𝑝𝑟 >→< 𝑡𝑒𝑟𝑚 > | < 𝑒𝑥𝑝𝑟 > + < 𝑡𝑒𝑟𝑚 > | < 𝑒𝑥𝑝𝑟 > − < 𝑡𝑒𝑟𝑚 >
< 𝑡𝑒𝑟𝑚 >→ < 𝑛𝑒𝑔 > | < 𝑡𝑒𝑟𝑚 > ∗ < 𝑛𝑒𝑔 > | < 𝑡𝑒𝑟𝑚 > / < 𝑛𝑒𝑔 >
< 𝑛𝑒𝑔 >→ < 𝑣𝑎𝑟 > | −< 𝑣𝑎𝑟 >
< 𝑣𝑎𝑟 > → 𝑥 𝑦 𝑧

< 𝑝𝑟𝑜𝑔𝑟𝑎𝑚 >→ ?
< 𝑤ℎ𝑖𝑙𝑒 >→ ?
< 𝑠𝑡𝑚𝑡𝐿𝑖𝑠𝑡 > → ?
< 𝑠𝑡𝑚𝑡 > →< 𝑣𝑎𝑟 >= < 𝑒𝑥𝑝𝑟 >
< 𝑏𝑜𝑜𝑙 >→ ?
< 𝑒𝑥𝑝𝑟 >→< 𝑡𝑒𝑟𝑚 > | < 𝑒𝑥𝑝𝑟 > + < 𝑡𝑒𝑟𝑚 > | < 𝑒𝑥𝑝𝑟 > − < 𝑡𝑒𝑟𝑚 >
< 𝑡𝑒𝑟𝑚 >→ < 𝑛𝑒𝑔 > | < 𝑡𝑒𝑟𝑚 > ∗ < 𝑛𝑒𝑔 > | < 𝑡𝑒𝑟𝑚 > / < 𝑛𝑒𝑔 >
< 𝑛𝑒𝑔 >→ < 𝑣𝑎𝑟 > | −< 𝑣𝑎𝑟 >
< 𝑣𝑎𝑟 > → 𝑥 𝑦 𝑧



Parsing

• Goals

– Find syntax errors

– Produce or trace parse tree

• Types of parsers

– Top-down: build tree from top down

– Bottom-up: build tree from bottom up

• Later!



Top-Down Parsers

• Produces a hierarchical representation of a left-most derivation
– Traces or builds tree in pre-order

• Recursive Descent Parsing
– A Top – Down Parser implemented such that a set of recursive methods is used 

to parse the input.

• Predictive Parser – A recursive descent parser, that may require a 
lookahead symbol(s) to correctly predict a production at various stages 
of a derivation.



Predictive Parsers

• Crux: Must choose / predict correct RHS when expanding a node 
in the parse tree.
– Eg:  3+4

– For efficient design best to use 
next token or lookahead only
one token

<e>

<e><t> +

<e> => <t> + <e> | <f> - <e> | <t>



Top Down Parsing

• Formally, a top down parser must do the following:
– Given a sentence in the form xAα , the parser must choose the correct A=> rule . 

• Notation
– Lowercase: terminal sequence

– Uppercase: non-terminal

– Greek: sequence of terminals and non-terminals

– Its best if this decision can be made based on the first tokens of A’s RHSs.
• This is true if all first terminals of A productions are different.

• Implementation of Top Down Parser
– Recursive decent

– Table driven 
• Later!



Left Recursion and Top Down Parsing:
( also - Using BNF as a design template)

/* term

Parses strings in the language generated by the rule:

<term> -> <term> * <factor> | … 

*/

void term() {

/* Parse the first factor */

term();

/* As long as the next token is * or /,

next token and parse the next factor */

if(nextToken == MULT_OP || nextToken == DIV_OP) {

MultDiv();

factor();

}

} /* End of function term */



Recursive Decent Parsing 

/* term

Parses strings in the language generated by the rule:

<term> -> <factor> {(* | /) <factor>)

*/

void term() {

/* Parse the first factor */

factor();

/* As long as the next token is * or /,

next token and parse the next factor */

while (nextToken == MULT_OP || nextToken == DIV_OP) {

MultDiv();

factor();

}

} /* End of function term */



Limitations of Recursive Descent Parsers

• Left Recursion
– Modify Grammar rules to remove direct left recursion (or similarly use appropriate EBNF)

For each nonterminal, A, 

1. Group the A-rules as A → Aα1 | … | Aαm |  β1 | β2 | … | βn

where none of the β‘s begins with A

2. Replace the original A-rules with

A → β1A’ | β2A’ | … | βnA’

A’ → α1A’ | α2A’ | … | αmA’ |  ε

NOTE:  operator association not explicitly specified in this format (can still be left associative). We will see 
during implementation

• Prediction
– Pairwise disjointedness: assure first terminals are different for each A Production 

• The inability to determine the correct RHS on the basis of one token of lookahead

• FIRST()

– Left factoring 



Eliminate Left Recursion Example

E => E + T | E – T | T

T => 0 | 1 | 3 | … | 9 

E => TE’

E’ => +TE’ | -TE’ | ε

T => 0 | 1 | 3 | … | 9 

For each nonterminal, A, 
1. Group the A-rules as A → Aα1 | … | Aαm |  β1

| β2 | … | βn

where none of the β‘s begins with A
2. Replace the original A-rules with

A → β1A’ | β2A’ | … | βnA’
A’ → α1A’ | α2A’ | … | αmA’ |  ε



Prediction: FIRST to determine pairwise disjointedness

• Def: FIRST() = {a |  =>* a }

(If  =>* ,  is in FIRST())
– For each nonterminal, A, in the grammar that has more than one RHS, for each pair of 

rules, A  i and A  j, it must be true that 

FIRST(i) ⋂ FIRST(j) = 

• EG
A => aB | bB | BA

B => c | d

FIRST (aB) = {a}

FIRST (bB) = {b}

FIRST (B)   = {c,d}

A => aB | bB | BA
B => c | a

FIRST (aB) = {a}
FIRST (bB) = {b}
FIRST (B)   = {c,a}



Left Factoring for Prediction

• Sometimes we can resolve a nondisjointed FIRST through left 

factoring by factoring out similar FIRSTs

<variable>  identifier  |  identifier [<expression>]

<variable>  identifier <new>

<new>   |  [<expression>]



EBNF notation

• Extended BNF
– Uses curly braces to indicate repetition (in place of explicit recursion)

– Uses (  |  ) to indicate logical OR applied to individual symbols rather than 
entire RHSs

• Example:
BNF

EBNF

< 𝑒𝑥𝑝𝑟 >→< 𝑡𝑒𝑟𝑚 > | < 𝑒𝑥𝑝𝑟 > + < 𝑡𝑒𝑟𝑚 > | < 𝑒𝑥𝑝𝑟 > − < 𝑡𝑒𝑟𝑚 >

< 𝑒𝑥𝑝𝑟 >→< 𝑡𝑒𝑟𝑚 > + − < 𝑡𝑒𝑟𝑚 > }



Regular Languages

• Both context free languages and regular languages are useful in 
programming languages (Chomsky)

• We have seen that BNF is a great way to formalize context free grammars (to 
define a context free language)

• BNF defines sequences of tokens (sentences) for a languages.

• Regular languages are often used to model the tokens of a language

< 𝑠𝑡𝑚𝑡 > →< 𝑣𝑎𝑟 >= < 𝑒𝑥𝑝𝑟 >
< 𝑒𝑥𝑝𝑟 >→< 𝑡𝑒𝑟𝑚 > | < 𝑒𝑥𝑝𝑟 > + < 𝑡𝑒𝑟𝑚 > | < 𝑒𝑥𝑝𝑟 > − < 𝑡𝑒𝑟𝑚 >
< 𝑡𝑒𝑟𝑚 >→ < 𝑛𝑒𝑔 > | < 𝑡𝑒𝑟𝑚 > ∗ < 𝑛𝑒𝑔 > | < 𝑡𝑒𝑟𝑚 > / < 𝑛𝑒𝑔 >
< 𝑛𝑒𝑔 >→ < 𝑣𝑎𝑟 > | −< 𝑣𝑎𝑟 >
< 𝑣𝑎𝑟 > → 𝑥 𝑦 𝑧



Use of Language Models for PLs

• In general: RLs are used to model the tokens
– Each token class is a regular language. The input alphabet is the set of all 

characters.

– The job of the tokenizer is to “recognize” each token class
• In a left to right scan of the input, the tokenizer can recognize the beginning and end of 

each token (given the rules: fsm of each token class). Thus creating a token list.

• In general: CFLs are used to model the programming language (int
terms of the tokens / lexemes)
– Each programming language is a CFL. The input alphabet is the set of all tokens. 

– The job of the parser is to “recognize” and produce a parse tree.
• In a left to right scan of the input (token sequence), the parser will determine if the token 

sequence conforms with the rules of the grammar, thus creating a parse tree. 



Usage of RLs and CFLs in PLs (revisited)
Use RLs to define rules for tokens. Use CFL for PL rules. 

• Could you use BNF to define the set of all possible variables or 

ints? YES. But instead we will use regular languages and regular 

expressions. (More on this later)

< 𝑠𝑡𝑚𝑡 > →< 𝑣𝑎𝑟 >= < 𝑒𝑥𝑝𝑟 >
< 𝑒𝑥𝑝𝑟 >→< 𝑡𝑒𝑟𝑚 > | < 𝑒𝑥𝑝𝑟 > + < 𝑡𝑒𝑟𝑚 > | < 𝑒𝑥𝑝𝑟 > − < 𝑡𝑒𝑟𝑚 >
< 𝑡𝑒𝑟𝑚 >→< 𝑛𝑒𝑔 > | < 𝑡𝑒𝑟𝑚 > ∗ < 𝑛𝑒𝑔 > | < 𝑡𝑒𝑟𝑚 > / < 𝑛𝑒𝑔 >
< 𝑛𝑒𝑔 >→< 𝑣𝑎𝑟 > | −< 𝑣𝑎𝑟 >
< 𝑣𝑎𝑟 > → 𝑠𝑒𝑒 𝑟𝑒𝑔𝑢𝑙𝑎𝑟 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑓𝑜𝑟 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠.
< 𝑖𝑛𝑡 > → 𝑠𝑒𝑒 𝑟𝑒𝑔𝑢𝑙𝑎𝑟 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑓𝑜𝑟 𝑖𝑛𝑡𝑒𝑔𝑒𝑟𝑠.

Groups of tokens
(sets of terminals)

We will use regular 
grammars to model 
these constructs

Groups of 
abstractions: 
compositions of 
terminals and 
nonterminals. We 
use CFGs to model 
these constructs.

It is intuitive to define our language in terms of its smallest 
syntactic unit (the most integral units that have meaning). 

However – these “lexemes”  consist of parts (chars) 
themselves. Solution: Use 1 model for the (smallest 

syntactic units) lexemes and 1 model for the language.



Regular Languages

• Remember: Tokens are categories of lexemes and lexemes are 
terminals (the smallest syntactic unit)
– If the number of lexemes per token category are small, then we need only list 

them out. That is, there is no need to use a Regular Language to model all of the 
lexemes in the Token Class (Regular Language)  

• In our previous example, there were only 3 possible variable tokens.

• If a token class has many possible lexemes, then a formal rule system 
can be used to help define all possible lexemes (rather than list them all 
out!). For example, try listing out all possible variable names in C++. 

< 𝑣𝑎𝑟 >→ 𝑥 𝑦 𝑧
Three lexemes 

Token



Use Regular Languages to define rules for tokens.

• Could you use BNF to define the set of all possible variables or 

ints? YES. But instead we will use regular languages and regular 

expressions. (More on this later)

< 𝑠𝑡𝑚𝑡 > →< 𝑣𝑎𝑟 >= < 𝑒𝑥𝑝𝑟 >
< 𝑒𝑥𝑝𝑟 >→< 𝑡𝑒𝑟𝑚 > | < 𝑒𝑥𝑝𝑟 > + < 𝑡𝑒𝑟𝑚 > | < 𝑒𝑥𝑝𝑟 > − < 𝑡𝑒𝑟𝑚 >
< 𝑡𝑒𝑟𝑚 >→< 𝑛𝑒𝑔 > | < 𝑡𝑒𝑟𝑚 > ∗ < 𝑛𝑒𝑔 > | < 𝑡𝑒𝑟𝑚 > / < 𝑛𝑒𝑔 >
< 𝑛𝑒𝑔 >→< 𝑣𝑎𝑟 > | −< 𝑣𝑎𝑟 >
< 𝑣𝑎𝑟 > → 𝑠𝑒𝑒 𝑟𝑒𝑔𝑢𝑙𝑎𝑟 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑓𝑜𝑟 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠.
< 𝑖𝑛𝑡 > → 𝑠𝑒𝑒 𝑟𝑒𝑔𝑢𝑙𝑎𝑟 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑓𝑜𝑟 𝑖𝑛𝑡𝑒𝑔𝑒𝑟𝑠.

Groups of tokens
(sets of terminals)

We will use regular 
grammars to model 
these constructs

Groups of 
abstractions: 
compositions of 
terminals and 
nonterminals. We 
use CFGs to model 
these constructs.



Regular Languages

• Regular Languages used to model Tokens

• Regular Expression is a generator for a regular language (it defines a regular language)
– Consists of characters and regular operations

– Just as BNF is a generator and define a context free language. 

• Regular Operations:
– Concatenation

– Repetition
Repeat 0 or more times:  *

Repeat 1 or more times:  + 

– Selection:   |

– Other common symbols used 
Optional:   ?

Any character:  .

Short hand for 1 element in a set:   [   ]



Appendix


