
COSC252: Programming
Languages: Intro

Jeremy Bolton, PhD

Asst. Teaching Professor

Course Overview

• Tour class website for details …

http://jeremybolton.georgetown.domains/courses/pl/

Course Timeline

I. Practical Perspective: Programming
Language Design

– Theory injected into discussions and readings

– Deliverables of course project

II. Theoretical ReCap: Formal Languages

III. Programming Language Paradigms
– History / Motivation

– Functional, OOP, Logic, …

– Practical Application via Project

IV. Formal Semantics

Language Basics +
Lexical Analysis

Language Syntax

Language
Semantics

Outline

I. Introduction

II. Programming Domains

III. Programming Categories

IV. Language Design Trade-offs

V. Programming Methods

Why do we study PLs?

• What is the purpose of a language?

• Why do we study programming languages?

– How do we use language?

– How does language work?

Communication via PL

• How is communication with a machine possible / facilitated?

– To better understand this we must investigate the computer

• Translation from human to machine

Which PL to Use?

• Where are programming languages used?

– Do application areas dictate the choice of PL? Why?

• What flavors or categories and subcategories of PLs are there?

Assessing PLs

• What characteristics of PLs are distinguishing?

– Evaluation criteria and tradeoffs

Appendix

Topics

 Reasons for Studying Concepts of Programming Languages

 Programming Domains

 Language Evaluation Criteria

 Influences on Language Design

 Language Categories

 Language Design Trade-Offs

 Implementation Methods

 Programming Environments

Copyright © 2015 Pearson. All rights reserved. 1-10

Reasons for Studying Concepts of
Programming Languages

 Increased ability to express ideas

 Improved background for choosing appropriate
languages

 Increased ability to learn new languages

 Better understanding of significance of
implementation

 Better use of languages that are already known

 Overall advancement of computing

1-11

back

Programming Domains
 Scientific applications

 Large numbers of floating point computations; use of arrays
 Fortran

 Business applications
 Produce reports, use decimal numbers and characters
 COBOL

 Artificial intelligence
 Symbols rather than numbers manipulated; use of linked lists
 LISP

 Systems programming
 Need efficiency because of continuous use
 C

 Web Software
 Eclectic collection of languages: markup (e.g., HTML), scripting (e.g., PHP),

general-purpose (e.g., Java)

Copyright © 2015 Pearson. All rights reserved. 1-12

back

Language Evaluation Criteria
 Readability: the ease with which programs can be

read and understood

 Writability: the ease with which a language can be
used to create programs

 Reliability: conformance to specifications (i.e.,
performs to its specifications)

 Cost: the ultimate total cost

Copyright © 2015 Pearson. All rights reserved. 1-13

Evaluation Criteria: Readability
 Overall simplicity

 A manageable set of features and constructs

 Minimal feature multiplicity

 Minimal operator overloading

 Orthogonality
 A relatively small set of primitive constructs can be combined in a relatively small

number of ways

 Every possible combination is legal

 Data types
 Adequate predefined data types

 Syntax considerations
 Identifier forms: flexible composition

 Special words and methods of forming compound statements

 Form and meaning: self-descriptive constructs, meaningful keywords

Copyright © 2015 Pearson. All rights reserved. 1-14

Evaluation Criteria: Writability
 Simplicity and orthogonality

 Few constructs, a small number of primitives, a small set of rules for
combining them

 Support for abstraction
 The ability to define and use complex structures or operations in ways

that allow details to be ignored

 Expressivity

 A set of relatively convenient ways of specifying operations

 Strength and number of operators and predefined functions

Copyright © 2015 Pearson. All rights reserved. 1-15

Evaluation Criteria: Reliability
 Type checking

 Testing for type errors

 Exception handling
 Intercept run-time errors and take corrective measures

 Aliasing
 Presence of two or more distinct referencing methods for the same memory

location

 Readability and writability
 A language that does not support “natural” ways of expressing an algorithm

will require the use of “unnatural” approaches, and hence reduced reliability

Copyright © 2015 Pearson. All rights reserved. 1-16

Evaluation Criteria: Others

 Portability
 The ease with which programs can be moved from one implementation to

another

 Generality
 The applicability to a wide range of applications

 Well-definedness
 The completeness and precision of the language’s official definition

Copyright © 2015 Pearson. All rights reserved. 1-17

Language Design Trade-Offs
 Reliability vs. cost of execution

 Example: Java demands all references to array elements be checked
for proper indexing, which leads to increased execution costs

 Readability vs. writability
Example: APL provides many powerful operators (and a large number of

new symbols), allowing complex computations to be written in a
compact program but at the cost of poor readability

 Writability (flexibility) vs. reliability
 Example: C++ pointers are powerful and very flexible but are

unreliable

Copyright © 2015 Pearson. All rights reserved. 1-18

back

Influences on Language Design

 Computer Architecture
 Languages are developed around the prevalent computer architecture, known

as the von Neumann architecture

 Program Design Methodologies
 New software development methodologies (e.g., object-oriented software

development) led to new programming paradigms and by extension, new
programming languages

Copyright © 2015 Pearson. All rights reserved. 1-19

Computer Architecture Influence

 Well-known computer architecture: Von Neumann

 Imperative languages, most dominant, because of von Neumann computers
 Data and programs stored in memory

 Memory is separate from CPU

 Instructions and data are piped from memory to CPU

 Basis for imperative languages

 Variables model memory cells

 Assignment statements model piping

 Iteration is efficient

Copyright © 2015 Pearson. All rights reserved. 1-20

Copyright © 2015 Pearson. All rights reserved. 1-21

The von Neumann Architecture

The von Neumann Architecture

 Fetch-execute-cycle (on a von Neumann architecture computer)

initialize the program counter

repeat forever

fetch the instruction pointed by the counter

increment the counter

decode the instruction

execute the instruction

end repeat

Copyright © 2015 Pearson. All rights reserved. 1-22

back

Programming Methodologies Influences

 1950s and early 1960s: Simple applications; worry about
machine efficiency

 Late 1960s: People efficiency became important; readability,
better control structures

 structured programming

 top-down design and step-wise refinement

 Late 1970s: Process-oriented to data-oriented
 data abstraction

 Middle 1980s: Object-oriented programming
 Data abstraction + inheritance + polymorphism

Copyright © 2015 Pearson. All rights reserved. 1-23

Language Categories
 Imperative

 Central features are variables, assignment statements, and iteration
 Include languages that support object-oriented programming
 Include scripting languages
 Include the visual languages
 Examples: C, Java, Perl, JavaScript, Visual BASIC .NET, C++

 Functional
 Main means of making computations is by applying functions to given

parameters
 Examples: LISP, Scheme, ML, F#

 Logic
 Rule-based (rules are specified in no particular order)
 Example: Prolog

 Markup/programming hybrid
 Markup languages extended to support some programming
 Examples: JSTL, XSLT

Copyright © 2015 Pearson. All rights reserved. 1-24

back

Implementation Methods
 Compilation

 Programs are translated into machine language; includes JIT systems

 Use: Large commercial applications

 Pure Interpretation
 Programs are interpreted by another program known as an interpreter

 Use: Small programs or when efficiency is not an issue

 Hybrid Implementation Systems
 A compromise between compilers and pure interpreters

 Use: Small and medium systems when efficiency is not the first
concern

Copyright © 2015 Pearson. All rights reserved. 1-25

Layered View of Computer

Copyright © 2015 Pearson. All rights reserved. 1-26

The operating system
and language
implementation are
layered over
machine interface of a
computer

Compilation
 Translate high-level program (source language) into machine

code (machine language)

 Slow translation, fast execution

 Compilation process has several phases:
 lexical analysis: converts characters in the source program into lexical

units

 syntax analysis: transforms lexical units into parse trees which
represent the syntactic structure of program

 Semantics analysis: generate intermediate code

 code generation: machine code is generated

Copyright © 2015 Pearson. All rights reserved. 1-27

Copyright © 2015 Pearson. All rights reserved. 1-28

The Compilation Process

Lexical Analysis

Syntax Analysis

Semantic Analysis

IR Generation

IR Optimization

Code Generation

Optimization

while (y < z) {

int x = a + b;

y += x;

}

COMPILATION

EXAMPLE

Lexical Analysis

Syntax Analysis

Semantic Analysis

IR Generation

IR Optimization

Code Generation

Optimization

while (y < z) {

int x = a + b;

y += x;

}

Lexical Analysis

Syntax Analysis

Semantic Analysis

IR Generation

IR Optimization

Code Generation

Optimization

while (y < z) {

int x = a + b;

y += x;

}

T_While

T_LeftParen

T_Identifier y

T_Less

T_Identifier z

T_RightParen

T_OpenBrace

T_Int

T_Identifier x

T_Assign

T_Identifier a

T_Plus

T_Identifier b

T_Semicolon

T_Identifier y

T_PlusAssign

T_Identifier x

T_Semicolon

T_CloseBrace

Lexical Analysis

Syntax Analysis

Semantic Analysis

IR Generation

IR Optimization

Code Generation

Optimization

while (y < z) {

int x = a + b;

y += x;

}

T_While

T_LeftParen

T_Identifier y

T_Less

T_Identifier z

T_RightParen

T_OpenBrace

T_Int

T_Identifier x

T_Assign

T_Identifier a

T_Plus

T_Identifier b

T_Semicolon

T_Identifier y

T_PlusAssign

T_Identifier x

T_Semicolon

T_CloseBrace

Lexical Analysis

Syntax Analysis

Semantic Analysis

IR Generation

IR Optimization

Code Generation

Optimization

while (y < z) {

int x = a + b;

y += x;

}
While

<

Sequence

=

x +

a b

=

y +

y x

y z

Lexical Analysis

Syntax Analysis

Semantic Analysis

IR Generation

IR Optimization

Code Generation

Optimization

while (y < z) {

int x = a + b;

y += x;

}
While

Sequence

=

x +

a b

=

y +

y x

<

y z

while (y < z)

int x = a

{

+ b;

y += x;
}

While

Sequence

=

+

=

+x

int

a

int

b

int

int

int
int

y

int

y

int

x

int

int

void

void

Lexical Analysis

Syntax Analysis

Semantic Analysis

IR Generation

IR Optimization

Code Generation

Optimization

<

y

int

z

int

bool

Lexical Analysis

Syntax Analysis

Semantic Analysis

IR Generation

IR Optimization

Code Generation

Optimization

while (y < z)

int x = a

{

+ b;

y += x;
}

While

Sequence

=

+

=

+x

int

a

int

b

int

int

int
int

y

int

y

int

x

int

int

void

void

<

y

int

z

int

bool

while (y < z) {

int x = a + b;

y += x;

}

Loop: x = a + b

y = x + y

_t1 = y < z

if _t1 goto Loop

Lexical Analysis

Syntax Analysis

Semantic Analysis

IR Generation

IR Optimization

Code Generation

Optimization

Lexical Analysis

Syntax Analysis

Semantic Analysis

IR Generation

IR Optimization

Code Generation

Optimization

while (y < z) {

int x = a + b;

y += x;

}

Loop: x = a + b

y = x + y

_t1 = y < z

if _t1 goto Loop

while (y < z) {

int x = a + b;

y += x;

}

x = a + b

Loop: y = x + y

_t1 = y < z

if _t1 goto Loop

Lexical Analysis

Syntax Analysis

Semantic Analysis

IR Generation

IR Optimization

Code Generation

Optimization

Lexical Analysis

Syntax Analysis

Semantic Analysis

IR Generation

IR Optimization

Code Generation

Optimization

while (y < z) {

int x = a + b;

y += x;

}

x = a + b

Loop: y = x + y

_t1 = y < z

if _t1 goto Loop

Lexical Analysis

Syntax Analysis

Semantic Analysis

IR Generation

IR Optimization

Code Generation

Optimization

while (y < z) {

int x = a + b;

y += x;

}

add $1, $2, $3

Loop: add $4, $1, $4

slt $6, $1, $5

beq $6, loo

p

Lexical Analysis

Syntax Analysis

Semantic Analysis

IR Generation

IR Optimization

Code Generation

Optimization

while (y < z) {

int x = a + b;

y += x;

}

add $1, $2, $3

Loop: add $4, $1, $4

slt $6, $1, $5

beq $6, loo

p

Lexical Analysis

Syntax Analysis

Semantic Analysis

IR Generation

IR Optimization

Code Generation

Optimization

while (y < z) {

int x = a + b;

y += x;

}

add $1, $2, $3

Loop: add $4, $1, $4

blt $1, $5, loop

Additional Compilation Terminologies

 Load module (executable image): the user and system code together

 Linking and loading: the process of collecting system program units
and linking them to a user program

Copyright © 2015 Pearson. All rights reserved. 1-44

Von Neumann Bottleneck

 Connection speed between a computer’s memory and its processor
determines the speed of a computer

 Program instructions often can be executed much faster than the
speed of the connection; the connection speed thus results in a
bottleneck

 Known as the von Neumann bottleneck; it is the primary limiting
factor in the speed of computers

Copyright © 2015 Pearson. All rights reserved. 1-45

Pure Interpretation
 No translation

 Easier implementation of programs (run-time errors can easily
and immediately be displayed)

 Slower execution (10 to 100 times slower than compiled
programs)

 Often requires more space

 Now rare for traditional high-level languages

Copyright © 2015 Pearson. All rights reserved. 1-46

Copyright © 2015 Pearson. All rights reserved. 1-47

Pure Interpretation Process

Hybrid Implementation Systems
 A compromise between compilers and pure

interpreters

 A high-level language program is translated to an
intermediate language that allows easy interpretation

 Faster than pure interpretation

 Examples
 Perl programs are partially compiled to detect errors before

interpretation

 Initial implementations of Java were hybrid; the intermediate form,
byte code, provides portability to any machine that has a byte code
interpreter and a run-time system (together, these are called Java
Virtual Machine)

Copyright © 2015 Pearson. All rights reserved. 1-48

Copyright © 2015 Pearson. All rights reserved. 1-49

Hybrid Implementation Process

Just-in-Time Implementation Systems

 Initially translate programs to an intermediate language

 Then compile the intermediate language of the subprograms into machine code
when they are called

 Machine code version is kept for subsequent calls

 JIT systems are widely used for Java programs

 .NET languages are implemented with a JIT system

 In essence, JIT systems are delayed compilers

Copyright © 2015 Pearson. All rights reserved. 1-50

back

Preprocessors
 Preprocessor macros (instructions) are commonly

used to specify that code from another file is to be
included

 A preprocessor processes a program immediately
before the program is compiled to expand embedded
preprocessor macros

 A well-known example: C preprocessor
 expands #include, #define, and similar macros

Copyright © 2015 Pearson. All rights reserved. 1-51

Programming Environments
 A collection of tools used in software development

 UNIX
 An older operating system and tool collection

 Nowadays often used through a GUI (e.g., CDE, KDE, or GNOME) that
runs on top of UNIX

 Microsoft Visual Studio.NET
 A large, complex visual environment

 Used to build Web applications and non-Web applications in any .NET
language

 NetBeans
 Related to Visual Studio .NET, except for applications in Java

Copyright © 2015 Pearson. All rights reserved. 1-52

Summary
 The study of programming languages is valuable for a number

of reasons:
 Increase our capacity to use different constructs
 Enable us to choose languages more intelligently
 Makes learning new languages easier

 Most important criteria for evaluating programming languages
include:

 Readability, writability, reliability, cost

 Major influences on language design have been machine
architecture and software development methodologies

 The major methods of implementing programming languages
are: compilation, pure interpretation, and hybrid
implementation

Copyright © 2015 Pearson. All rights reserved. 1-53

COSC252: Programming
Languages: Intro

Jeremy Bolton, PhD

Asst. Teaching Professor

