Data Structures Name:
Fall 2017, Prof. Bolton Net ID:
Project

1 Hashtable

1.1 Summary

You will design and implement a hashtable Structure. The application of the structure
will include spell checking and word counting. Words in an inputFile will be sequentially
investigated and compared to a comprehensive list of correctly spelled words — a lexicon.
The lexicon will stored in a hash table structure to provide for an efficient search time.

Major factors to consider for the design should be theoretical efficiency (both time and
space), practical efficiency, and appropriate memory management. Although some tips are
provided below (and have been provided in class), the determination of how to make the
structure efficient is largely your charge.

1.2 Programming Languages

I encourage you to submit your projects using C+4. You may choose a different pro-
gramming language with prior approval from me. However there are caveats as not all
programming languages have the same characteristics. Also note, if choosing a language
other than C++, you may by chance choose a language which the TAs are not familiar, thus
limiting the amount of assistance they might provide. Note one of the main goals of our class
projects is for you to learn how to construct various data structures from the most elemen-
tal programming constructs. Thus you will not receive credit when using any pre-existing
structures from programming libraries or code that has been created or designed by others.
For example in C4++ you cannot use pre-existing such as vectors, stacks, lists, trees etc.
To help facilitate io and timing, you may use ctime, string, ifstream, iostream, and string
stream.

Note: There are many versions of C++. You must use the version that is
currently running on the course server.

Please note that complex data structures (non-elemental constructs) are “built-into”
some programming languages. If this is the case, you cannot use the built-in structure. For
example, in Python, both list and “array” structures are fairly complex and not elemental
programming constructs, e.g., they can change size dynamically. If you are using Python,
you will not receive credit when using these structures.

If you have any questions as to what structures are permitted (and which are not per-
mitted), given your language of choice, please ask me.



Data Structures Project - Page 2 of 4

1.3 Input Requirements

The program will take three command line arguments (Do not prompt the user).
./p5 [dictionaryFile] [inputFile]

Argument 2 is inputFile: the name of a text file to be spell-checked. Argument 1 is dictio-
naryFile: the name of a text file that contains all correctly spelled words (a lexicon).

1.4 Structural and Operational Requirements

1. Hashtable Implementation

e Collision resolution or mitigation should be considered. Hint (do this): Imple-
ment a linear-space, perfect hash by creating a hash table of hash tables. Note:
this will require the use of a random number generator and universal hashing.

e Initialize the outer hash to a "reasonable” size. Consider the following: the interior
hashes will be quadratic in the size of the number of collisions per bucket, thus
you should initialize the outer hash to a size large enough to keep the number of
collisions low, e.g. the size of the lexicon should be a good guess here.

e Constructing the hash table should be done as follows:

(a) Initialize the outer hashtable and randomly draw a hash function for use
with the outer table. This first draw is kept usually without question or
confirmation of ”goodness”.

(b) Hash the lexicon into the outer table and count the number of collisions in
each bucket.

(¢) For each bucket, use the quadratic-space method discussed in class: intialize
each inner table to square size of the number of collisions for that bucket.
Keep randomly drawing a hash function for each bucket until no inner colli-
sions.

2. Application: Spell Checking

e The program sequentially investigates each word in inputFile and confirm that
this word exists in the lexicon. If so, it is assumed the word is spelled correctly;
if not, the word is spelled incorrectly.

e The program will keep a count of the number of misspelled words in inputFile.
Notes and implementation details:

e Although, I have provided a general scheme or framework for implementation, there
are many details of design left to you. For example, you must design a family of hash
functions that can be randomly drawn, that map the set of strings to a set of indices.
Hint: I suggest using some variation of the random vector method in combination with
folding.



Data Structures Project - Page 3 of 4

e To earn full marks it is expected that you will make the hashtable very efficient (in
space and time). Goal: implement a linear-space, perfect hashtable.

e You will likely need to use c++ ctime or some other timing construct. (More info in
Output Section.)

1.5 Output Requirements

The main method should read in the inputFile and dictionary
The program should then execute the following operations, provide the following output,
and then exit normally:

1. Store lexicon in a hashtable that provides for efficient lookup. Perform spell check of
inputFile. Keep track of the number of misspelled words.

e Print to the screen, the total number of misspelled words in inputFile.

e Print to the screen, the total time needed to “create” the perfect hash,
and the total runtime during the spell checking. (How — see notes
below.)

No other outputs should be observed.

1.6 Submission and Compilation Requirements

Please feel free to provide a discussion or explanation of your implementation within Canvas
Comments. Submission Deadline — See BB. Budget your time well. Include significant time
for design / planning and testing / debugging. Please submit early and often! Your last
submission (before the end of the grace period) will be graded.

Your code must compile and run on the class server.

To standardize submissions, you will submit a makefile, which will contain the necessary
compilation commands for your code. The target executable will be named p5.

Thus, the following steps should run your code on the course server (CHECK IT).
make pb
./pb [dictionaryFile] [inputFile]

If the program does not compile (following your instructions) or the program does not
run, the submission will not be accepted.



Data Structures Project - Page 4 of 4

1.7 Testing and Debugging (Optional)

You may wish to construct an interactive interface to test the functionality of your structure
at intermediate stages of development. This would likely be most efficient with an interactive
interface that allowed you to interactively test various functionalities of your structure given
different inputs. If you do implement a testing interface, please be sure to comment it (so
that it does NOT execute) before submission.

1.8 Rubric
Efficiency should be considered.

List of Requirements Percentage
hashtable implementation 0.30
Design of universal hash family 0.10
Hash selection scheme 0.30
spell checking (traversal of input and lexicon) 0.10
speed of hash retrieval and construction 0.10
main method conforms to specs 0.10

TOTAL 1.0



