
Data Structures Name:
Fall 2017, Prof. Bolton Net ID:
Project

1 Polynomial Representation

1.1 Summary

You will design and implement a Data Structure for Polynomial Representation, Arithmetic,
and Evaluation. The implementation should allow for basic arithmetic operations and eval-
uation. The details of the design of the structure is largely at your discretion. Major factors
to consider for the design should be theoretical efficiency (both time and space), practical
efficiency, and appropriate memory management. Although some tips are provided below
(and have been provided in class), the determination of how to make the structure efficient
is largely your charge.

1.2 Programming Languages

I encourage you to submit your projects using C++. You may choose a different program-
ming language with prior approval from me. However there are caveats as not all program-
ming languages have the same characteristics. Also note, if choosing a language other than
C++, you may by chance choose a language with which the TAs are not familiar, thus lim-
iting the amount of assistance they might provide. Note one of the main goals of our class
projects is for you to learn how to construct various data structures from the most elemental
programming constructs. Thus you will not receive credit when using any pre-existing struc-
tures from programming libraries or code that has been created or designed by others. For
example in C++ you cannot use the pre-existing vectors, stacks, lists, etc.

Note: There are many versions of C++. You must use the version that is
currently running on the course server.

Please note that complex data structures (non-elemental constructs) are “built-into”
some programming languages. If this is the case, you cannot use the built-in structure. For
example, in Python, both list and “array” structures are fairly complex and not elemental
programming constructs, e.g., they can change size dynamically. If you are using Python,
you will not receive credit when using these structures.

If you have any questions as to what structures are permitted (and which are not per-
mitted), given your language of choice, please ask me.

1.3 Planning and Design

Before implementation, you should plan and design using standard approaches, e.g. UML
class diagrams, flow diagrams, etc. If you have questions pertaining to your project, I will



Data Structures Project - Page 2 of 5

first ask to see your designs. I will not look at your code without first viewing your
design documents.

You will be faced with many design decisions during this project. It is best to spend the
requisite time during the design stages to assure an appropriate and efficient implementation
is built. Consider your options, perform a theoretical complexity analysis of the different
options, and base your decision on the results of your analysis.

1.4 Input Requirements

The program will take one command line argument, which will be an input file. The input
file will contain the information needed to construct 2 polynomials. The program will load
the polynomial information from the input file. The first line will contain pairs of numbers
to represent a term in the polynomial, given the standard polynomial expansion. The first
number will the coefficient and the second number will be the exponent. For example, if the
first line is 1 4 3 2 -1 0, this should be interpreted as x4 + 3x2 − 1. You may assume all the
exponents in the terms of each polynomial will be non-negative integers. You may assume
all coefficients are integers. A sample input file will be provided.

1.5 Structural and Operational Requirements

1. provide efficient polynomial representation

• Efficiently stores polynomial information

• Appropriately displays to screen polynomial information, e.g. 6x7 − x5 + 3x2 + 2

• Appropriately allocate / deallocate memory

• Valid state is always maintained

2. efficiently performs polynomial addition (overload +)

• adds 2 polynomials (resulting in a new polynomial), e.g. assume p and q are
polynomials: p = (6x7 − x5) and q = (33x7 + 2x4 − 1). Then p+ q = 39x7 − x5 +
2x4 − 1

3. efficiently performs polynomial multiplication

• multiplies 2 polynomial operands (resulting in a new polynomial), e.g. (6x7 −
x5) ∗ (x7 + 2x4 − 1) = 6x14 − x12 + 12x11 − 10x9 − 6x7 + x5

4. efficiently performs polynomial exponentiation

• raises polynomial operands to integer power (resulting in a new polynomial), e.g.
(x3+3x)n, where n is a non-negative integer. Example: (x3+3x)2 = x6+6x4+9x2

5. efficiently performs polynomial evaluation



Data Structures Project - Page 3 of 5

• evaluates a polynomial given the provided parameter value, for example, if p =
(6x3 − x2) , p evaluated at x = 2 should result in value 44.

6. efficiently checks for overflow errors

• if an overflow is detected at some stage of computation, then the final result will
be invalid. Set the resulting value to a sentinel. Efficiently proceed to the next
computational task. Hint: Make use of throwing an exception, and then catch it
appropriately.

• Design your program to minimize the chance of an overflow error.

Notes: To earn full marks it is expected that you will make the polynomial structure
very efficient (in space and time). If you are faced with a space / time tradeoff, you will
opt to improve time complexity (if the cost of space is relatively minor). For example, you
may wish to use previously (in-class) discussed mathematical methods and computational
operators that provide for fast implementation.

1.6 Output Requirements

The main method should read in the input file and display the resulting polynomials, and
their specified: addition, multiplication, subtraction, exponentiation and evaluation as de-
noted below. (The main method should also be efficient.) If an overflow is detected for any
one of the requirements below, print to the screen “Overflow Detected” for that correspond-
ing line of output.

For each input file, the following output is expected (enumerated in this order):

1. Print out standard polynomial representation for the first polynomial read in from the
input file. AND Print the value of this polynomial for x = 10.

2. Print out standard polynomial representation the second polynomial read in from the
input file. AND Print the value of this polynomial for x = 10.

3. Print out standard polynomial representation for the resulting polynomial of the sum
of the two input polynomials. AND Print the value of the sum for x = 10.

4. Print out standard polynomial representation for the resulting polynomial of the prod-
uct of the two input polynomials. AND Print the value of the product for x = 2.

5. Assume the first input polynomial is p1 and the second input polynomial is p2. Print
out standard polynomial representation for the following 2 resulting polynomials and
1 resulting value:

• p31

• p
p2.eval(5)
1

No other outputs should be observed.



Data Structures Project - Page 4 of 5

1.7 Submission and Compilation Requirements

Please provide extensive comments prior to each method and class. Justify your design de-
cisions within your comments. Submission Deadline – See Canvas. Budget your time well.
Include significant time for design / planning and testing / debugging. Please submit early
and often! Your last submission will be graded.

Your code must run on the class server.

To standardize submissions, you will submit a makefile, which will contain the necessary
compilation commands for your code. The target executable will be named p1.

Thus, the following steps should run your code on the course server (CHECK IT).

make p2
./p2 inputFilename

If the program does not compile (following your instructions) or the program does not
run, the submission will not be accepted.

1.8 Testing and Debugging (Optional)

You may wish to construct an interactive interface to test the functionality of your structure
at intermediate stages of development. This would likely be most efficient with an interactive
interface that allowed you to interactively test various functionalities of your structure given
different inputs. If you do implement a testing interface, please be sure to comment it (so
that it does NOT execute) before submission.

1.9 Rubric

List of Requirements Percentage

efficient infrastructure for polynomial representation and display 0.40
efficient polynomial addition 0.10
efficient polynomial subtraction 0.10
efficient polynomial multiplication 0.10
efficient polynomial evaluation 0.10
efficient polynomial exponentiation 0.10
efficient main 0.05
efficient overflow error detection and “recovery” (program continues) 0.05
TOTAL 1.0



Data Structures Project - Page 5 of 5

Each section of the Rubric List will be evaluated based on correctness and efficiency.
About 1/2 of the points for each item in the requirements list are awarded on correctness,
and about 1/2 of the points for each item in the requirements list are awarded on efficiency.
Thus you will need to perform a theoretical analysis of complexity before deciding on an
implementation strategy. It may also be a good idea to check the practical efficiency of your
code using the unix “time” command; however please note that your code will be graded
based on the code written and not the true runtime of the algorithm. During the design
and coding process, you will likely make many design modifications which should result
in improved efficiency. Note, c compilers will optimize your code during compilation ,and
thus you may not see any efficiency gains (e.g. reduced runtime) when explicitly making the
design modifications in your code. This is OK and should be expected for some modifications.
HOWEVER, please leave these design elements in your code. (It is best not to always rely
on the compiler as not all compilers are the same.)


