Original Source: http:/mrbook.org/blog/tutorials/make/

A tutorial by example

Compiling your source code files can be tedious, especially when you want to include several source files and have to type the
compiling command everytime you want to do it.

Well, I have news for you... Your days of command line compiling are (mostly) over, because YOU will learn how to write Makefiles.
Makefiles are special format files that together with the make utility will help you to automagically build and manage your projects.

The make utility

If you run

make

at the command line prompt, this program will look for a file named makefile in your directory, and then execute it.
If you have several makefiles, then you can execute them with the command:

make -f MyMakefile

There are several other switches to the make utility. For more info, man make.

Build Process

1. Compiler takes the source files and outputs object files
2. Linker takes the object files and creates an executable

Compiling by hand
The trivial way to compile the files and obtain an executable, is by running the command:

g++ main.cpp hello.cpp factorial.cpp -o hello

The basic Makefile

The basic makefile is composed of:

target: dependencies
[tab] system command

This syntax applied to our example would look like:

all:
g++ main.cpp hello.cpp factorial.cpp -o hello

To run this makefile on your files, type:

make -f Makefile

On this first example we see that our target is called all. This is the default target for makefiles. The make utility will execute this
target if no other one is specified.

We also see that there are no dependencies for target all, so make safely executes the system commands specified.

Finally, make compiles the program according to the command line we gave it.

Using dependencies

Although this is not necessary for project submission, it is sometimes is useful to use different targets. This is because if you modify a
single file in your project, you don’t have to recompile everything, only what you modified.

Here is an example. Assume the following is contained in a file named Makefile:

all: p1

pl : main.o factorial.o hello.o

g++ main.o factorial.o hello.o -o hello

main.o: main.cpp

g++ -C main.cpp

factorial.o: factorial.cpp

g++ -c factorial.cpp

hello.o: hello.cpp

g++ -c hello.cpp

clean:

rm hello.o factorial.o main.o

NOTE: ONLY INCLUDE THE OBJ FILES IN THE CLEAN OPTION! YOU DO NOT WANT TO DELETE YOUR .CPP FILES!!!!
NEVER USE rm *

Now we see that the target all has only dependencies, but no system commands. In order for make to execute correctly, it has to
meet all the dependencies of the called target (in this case all).

Each of the dependencies are searched through all the targets available and executed if found.
Thus to compile your project you need only type make p1 or make all.

In this example we see a target called clean. It is useful to have such target if you want to have a fast way to get rid of all the object
files and executables. NOTE: ONLY INCLUDE THE OBJ FILES IN THE CLEAN OPTION! YOU DO NOT WANT TO DELETE YOUR
.CPP FILES!!!! NEVER USE rm *

Thus, if you wish to remove the .o files and recompile, you can type make clean and then make p1 .

NOTE: ONLY INCLUDE THE OBJ FILES IN THE CLEAN OPTION! YOU DO NOT WANT TO DELETE YOUR .CPP FILES!!!!
NEVER USE rm *

NOTE: ONLY INCLUDE THE OBJ FILES IN THE CLEAN OPTION! YOU DO NOT WANT TO DELETE YOUR .CPP FILES!!!!
NEVER USE rm *

