Data Structures Name:
Fall 2017, Prof. Bolton Net ID:
Project

1 List Efficiency

1.1 Summary

You will design and implement two different List data structures that are designed for ef-
ficient data retrieval: orderedList structure and MTFlist structure. The efficiency of the
two list structures will be compared empirically. The details of implementation are largely
at your discretion. Major factors to consider for the design should be theoretical efficiency
(both time and space), practical efficiency, and appropriate memory management. Although
some related concepts and tips are provided below (and have been provided in class), the
determination of how to make the structure efficient is largely your charge.

1.2 Programming Languages

I encourage you to submit your projects using C++. You may choose a different program-
ming language with prior approval from me. However there are caveats as not all program-
ming languages have the same characteristics. Also note, if choosing a language other than
C++, you may by chance choose a language with which the TAs are not familiar, thus lim-
iting the amount of assistance they might provide. Note one of the main goals of our class
projects is for you to learn how to construct various data structures from the most elemental
programming constructs. Thus you will not receive credit when using any pre-existing struc-
tures from programming libraries or code that has been created or designed by others. For
example in C4++ you cannot use the pre-existing vectors, stacks, lists, etc.

Note: There are many versions of C++. You must use the version that is
currently running on the course server.

Please note that complex data structures (non-elemental constructs) are “built-into”
some programming languages. If this is the case, you cannot use the built-in structure. For
example, in Python, both list and “array” structures are fairly complex and not elemental
programming constructs, e.g., they can change size dynamically. If you are using Python,
you will not receive credit when using these structures.

If you have any questions as to what structures are permitted (and which are not per-
mitted), given your language of choice, please ask me.

1.3 Planning and Design

Before implementation, you should plan and design using standard approaches, e.g. UML
class diagrams, flow diagrams, etc. If you have questions pertaining to your project, I will



Data Structures Project - Page 2 of 4

first ask to see your designs. I will not look at your code without first viewing your
design documents.

You will be faced with many design decisions during this project. It is best to spend the
requisite time during the design stages to assure an appropriate and efficient implementation
is built. Consider your options, perform a theoretical complexity analysis of the different
options, and base your decision on the results of your analysis.

1.4 Input Requirements

The program will take one command line argument, which will be an input file (assumed
to be located in the same directory as the executable). The program will load and
store the numbers into the List structures. The first line will be an integer that is the length
of the list. This will be followed by a new line character. The next line will contain all
the numbers to store; we will refer to this sequence of numbers as the “list”. This will be
followed by a new line character. The next line will then contain a number (the number of
queries) followed by a new line character. Next a sequence of numbers to retrieve; we will
refer to this sequence as the “queries”. A sample input file will be provided.

1.5 Structural and Operational Requirements

1. An orderedList (of integers or template if you wish) structure

e integers stored in this list must be in increasing order
e a merge sort method should be implemented (to impose above requirement)

e a searching method should be implemented (to facilitate queries)
2. An MTF (self-organizing) List (of integers or template if you wish) structure

e integers are initially stored in an arbitrary order.

e a secarching method should be implemented (to facilitate queries). this method
should re-organize the list using the move-to-front strategy.

Notes: To earn full marks it is expected that you will implement the structures very
efficiently (in space and time). If you are faced with a space / time tradeoff, you will opt to
improve time complexity (if the cost of space is relatively minor).

1.6 Output Requirements

The main method should construct the two list structures, read in the input file populating

both lists appropriately, perform the sequential retrievals for each list separately, and should

finally display the retrieval results to the console. (The main method should also be efficient.)
The following steps should be executed by the main method:

1. Read input file and store data items in both lists.



Data Structures Project - Page 3 of 4

2. Record the time needed to complete the sequence of retrievals for the Ordered Array
Structure. Include the time needed to initially sort the list.

3. Record the time needed to complete the sequence of retrievals for the MTF Linked
List Structure.

4. Display the total retrieval times for both Lists, and declare which was faster.

No other outputs should be observed.

1.7 Submission and Compilation Requirements

You must fill out a cover letter for all project submissions — See website. Budget your time
well. Include significant time for design / planning and testing / debugging. Please submit
early and often (version control)! Your last submission will be graded.

Your code must run on the class server.

To standardize submissions, you will submit a makefile, which will contain the necessary
compilation commands for your code. The target executable will be named pl.

Thus, the following steps should run your code on the course server (CHECK IT).

make pl
./pl inputFilename

If the program does not compile (using the above make command) or the program does
not run, the submission will not be accepted.

1.8 Testing and Debugging (Not Submitted)

You may wish to construct an interactive interface to test the functionality of your structure
at intermediate stages of development. This would likely be most efficient with an interactive
interface that allowed you to interactively test various functionalities of your structure given
different inputs. If you do implement a testing interface, please be sure to comment it (so
that it does NOT execute) before submission. 1 also strongly encourage you to construct
and test many input files to test the functionality of your implementation on varying inputs.

1.9 Version Control (Not submitted, but encouraged)

I strongly recommend that you back-up your work periodically throughout the development
process. This can mitigate a disaster scenario where you might accidentally delete your
program files. I also recommend employing a version control strategy which records your



Data Structures Project - Page 4 of 4

development at different stages (versions). If you have time, I encourage you to investigate
GitHub to facilitate version control. Otherwise you can make use of a more simplistic naming
scheme: each time you save a file, change the filename to indicate a version: filename_v1.cpp,
filename v2.cpp, ... .

1.10 Rubric
List of Requirements Percentage
OrderedList Structure 0.20
OrderedList Search 0.10
OrderedList Sort 0.10
MTFList Structure 0.20
MTFList Search 0.20
efficient input and ouput 0.10
efficient main 0.10

TOTAL 1.0



