
Data Structures Name:
Fall 2017, Prof. Bolton Net ID:
Project

1 Heaps

1.1 Summary

You will design and implement a (min) heap data structure which operates as priority queue.
The details of the design of the structure is largely at your discretion. Major factors to
consider for the design should be theoretical efficiency (both time and space), practical
efficiency, and appropriate memory management. Although some tips are provided below
(and have been provided in class), the determination of how to make the structure efficient
is largely your charge.

1.2 Programming Languages

I encourage you to submit your projects using C++. You may choose a different program-
ming language with prior approval from me. However there are caveats as not all program-
ming languages have the same characteristics. Also note, if choosing a language other than
C++, you may by chance choose a language with which the TAs are not familiar, thus lim-
iting the amount of assistance they might provide. Note one of the main goals of our class
projects is for you to learn how to construct various data structures from the most elemental
programming constructs. Thus you will not receive credit when using any pre-existing struc-
tures from programming libraries or code that has been created or designed by others. For
example in C++ you cannot use the pre-existing vectors, stacks, lists, etc.

Note: There are many versions of C++. You must use the version that is
currently running on the course server.

Please note that complex data structures (non-elemental constructs) are “built-into”
some programming languages. If this is the case, you cannot use the built-in structure. For
example, in Python, both list and “array” structures are fairly complex and not elemental
programming constructs, e.g., they can change size dynamically. If you are using Python,
you will not receive credit when using these structures.

If you have any questions as to what structures are permitted (and which are not per-
mitted), given your language of choice, please ask me.

1.3 Planning and Design

Before implementation, you should plan and design using standard approaches, e.g. UML
class diagrams, flow diagrams, etc. If you have questions pertaining to your project, I will
first ask to see your designs. I will not look at your code without first viewing your
design documents.



Data Structures Project - Page 2 of 4

You will be faced with many design decisions during this project. It is best to spend the
requisite time during the design stages to assure an appropriate and efficient implementation
is built. Consider your options, perform a theoretical complexity analysis of the different
options, and base your decision on the results of your analysis.

1.4 Input Requirements

The program will take no inputs and will be interactive. The user should be repeatedly
prompted to input a command. Valid commands are add, remove and quit. The user will
type in two tokens: the first is the command, the second is the priority or key. Use the
following syntax “a 6” represents command add key 6 to the heap; “r” represents command
remove root from the heap; and “q” represents command quit program. After each command,
a string representation of the resulting heap should be printed to the screen – see details
below.

1.5 Structural and Operational Requirements

1. A simple min-Heap class

• the fundamental member variable will be a dynamic array – this is the heap. use
a reasonable resizing scheme. (Note here the structure is largely defined for you.)

• the data stored is assumed to be the priority. in practice, each node would also
contain a reference to the item stored (and not just the priority of the item).

• provide methods to add and remove an item. if the item is not in the heap, no
changes are made.

• provide a print method or overload the “<<” operator. print a display that
indicates the structure of the heap. I encourage you to print a “bracketed”
representation of the heap, which can be rendered using the the tool found at
http://mshang.ca/syntree/ . Example min-heap: 1 [5 [9] [7]] [8 [10] [11] ]. To
construct such a print statement, perform a Depth First Traversal and 1) print
an open bracket when traversing down 1 depth to a child node; 2) the print
the priority representing that node; and 3) print a close bracket for each depth
retreated.

Notes: To earn full marks it is expected that you will implement the structure very
efficiently (in space and time). If you are faced with a space / time tradeoff, you will opt to
improve time complexity (if the cost of space is relatively minor).

1.6 Output Requirements

The following steps should be executed by the main method:

1. Initialize min-Heap structure.



Data Structures Project - Page 3 of 4

2. Repeatedly prompt user, add or remove items from the heap, and print string repre-
sentation for updated heap.

No other outputs should be observed.

1.7 Submission and Compilation Requirements

Rather than fill out a cover letter, please simply include comments when submitting in Can-
vas. Submission Deadline – See Canvas. Budget your time well. Include significant time
for design / planning and testing / debugging. Please submit early and often! Your last
submission will be graded.

Your code must run on the class server.

To standardize submissions, you will submit a makefile, which will contain the necessary
compilation commands for your code. The target executable will be named p3.

Thus, the following steps should run your code on the course server (CHECK IT).

make p3
./p3

If the program does not compile on the class server, or the program does not run, or the
program crashes on an reasonable input the submission will not be accepted.

1.8 Testing and Debugging (Optional)

You may wish to construct an interactive interface to test the functionality of your structure
at intermediate stages of development. This would likely be most efficient with an interactive
interface that allowed you to interactively test various functionalities of your structure given
different inputs. If you do implement a testing interface, please be sure to comment it (so
that it does NOT execute) before submission.

1.9 Rubric



Data Structures Project - Page 4 of 4

List of Requirements Percentage

Heap Structure and Order Maintained 0.40
Dynamic Array and Memory Management 0.40
Add 0.10
Remove 0.10
TOTAL 1.0


