
Data Structures Name:
Fall 2016, Prof. Bolton Net ID:
Exam 1

This exam contains 8 pages (including this cover page) and 9 questions. Total of points is 100.

Conditions: You are permitted writing utensils and the midterm. No other items are permitted, e.g. no
notes, no text,

Note: The pages are double-sided. PLEASE WRITE your name on all pages.

I, , understand the above statements and agree to follow these terms, and upon
my honor, I swear that the answers provided are of my design and of my effort alone. I have not received
nor viewed answers from any source but myself.
< sign >

1 Complexity (10 minutes)

1. (18 points) Computational Complexity.

A. Given the following pseudocode, determine the worst case Big-Theta time and space com-
plexities, in terms of n. Identify each separately.

sum := 0

for i from 1 to n

for j from 1 to n

for k from 1 to n

sum := sum + i ∗ j

B. Given the following pseudocode, determine the worst case Big-Theta time and space com-
plexities, in terms of n. Identify each separately.

i := n

while(i > 1)

i := i/2

print(i)

C. Given the following pseudocode, determine the worst case Big-Theta time and space com-
plexities, in terms of n. Assume listNode is a pointer to a node in a linked list of length n.
Assume the function is initially called using the head of the list. Identify time and space
complexity separately.

function search(listNode, val)

if listNode is NULL return NULL

else if listNode.data == val, return listNode

else search(listNode→ next, val)

Data Structures Exam 1 - Page 2 of 8

2 Data Encoding (10 minutes)

2. (12 points) Data.

A. Briefly describe how data is encoded in a computer.

B. What is the binary representation of the int value 9 assuming an 8-bit representation of ints?

C. Assume &, | , <<, and >> are bitwise symbols / operators to perform the following operations
on binary encodings (respectively): AND, OR, left-shift, right-shift. Using pseudo-code or
c-like code, implement an efficient function doubleVal(int x) that returns the int value 2
* x. You cannot use the multiplication operator “*”.

Data Structures Exam 1 - Page 3 of 8

3 Circular Dynamic Array (10 minutes)

3. (10 points) In general, an array is limited due to its contiguous allocation. A dynamic array
provides an abstraction that conceals this constraint (but not does circumvent it.) Briefly
describe how a dynamic array can “change” size dynamically. (Be precise and concise: 2-3
sentences should suffice)

4. (5 points) Consider a circular, dynamic array structure with member attributes int numItems,
int first, int last, and array (which is THE array member). Consider the valid states of this
structure. Using pseudocode or c-like code, implement a function CDArray::removeFirst()
that effectively “removes” the first item in the circular dynamic array. Hint: Be sure a valid
state of the structure is maintained.

Data Structures Exam 1 - Page 4 of 8

4 Polynomial (10 minutes)

5. (15 points) In your project, describe how you implemented the polynomial structure. Include
all structure attributes (member variables and types only – no need to include methods) and
comprehensively (yet concisely) describe each member and what it represents. Feel free to use
an illustration or UML diagram to help support your discussion.

Data Structures Exam 1 - Page 5 of 8

5 Tree (20 minutes)

6. (15 points) Consider the following tree with nodes A,B,C,D,E,F, and G: where C has children
D and E; G has children A, B, and C; and A has child F.

A. Draw an illustration of the tree where nodes are represented as circles and edges as
lines.

B. Represent this tree using set and tuple notation.

C. What is the root of this tree?

D. What are the leaves of this tree?

E. What are the descendants of A?

Data Structures Exam 1 - Page 6 of 8

7. (10 points) Consider a Tree structure with attribute: Node* root. Also consider a Node struc-
ture with attributes: Node* leftChild, Node* rightChild (only two children per node). Using
pseudocode or c-like code, implement a function heightOfTree(root) that returns an int
which is the height of the tree. If you prefer to provide pseudocode for a generic tree (rather
than a binary tree with only two children – that is OK). Hint: Consider the recursive definition
of a tree. How is the height of a tree defined in terms of the height of its subtrees?

Data Structures Exam 1 - Page 7 of 8

6 Stack (15 minutes)

8. (10 points) Consider the stack data structure. Assume you are tasked with designing an efficient data
structure called DoubleStack, which consists of two separate stacks. Also assume that memory use is
highly restricted – only n memory locations, in total, can be used for the two stacks. For example, stack
#1 might have n − i items and if stack #2 has i items, then no more items could be added to either
stack. Assume the operation to be performed on a DoubleStack ds are as follows: DoubleStack::push(int
stackNum, int val) and DoubleStack::pop(int stackNum) such that ds.push(1,10) would push 10 onto
stack #1, ds.push(2,15) would push 15 onto stack #2, ds.pop(1) would perform a pop on stack #1
and ds.pop(2) would perform a pop on stack #2. Since we are restricted to n total spaces for both
stacks, if all n spaces are full, we will assume the push function would be unsuccessful and throw an
exception/error. Assume you are tasked with designing DoubleStack, explain the design and describe
implementation details of your structure DoubleStack. Include all attributes (member variables). Dis-
cuss the details of how the stacks will be stored in memory, how the restriction of n memory locations
will be maintained, and what member variables are necessary to maintain this structure. Feel free to use
an illustration and/or a UML diagram to help in your explanation. A goal of this design is to efficiently
make use of the n memory locations. An efficient design would ensure that if any of the n spaces are
free, push(1, val) or push(2, val) would be successful.

Data Structures Exam 1 - Page 8 of 8

9. (5 points) Using pseudocode or c-like code, implement a method DoubleStack::push(int stackNum,
int val) with the following behavior: doubleStack.push(1, 10) will push the value of 10 onto stack num-
ber 1 and doubleStack.push(2, 15) will push the value of 15 onto stack number 2. If an item cannot be
added, given the memory constraint, the function will execute “throw error”.

