2

Getting Started

This chapter will familiarize you with the framework we shall use throughout the
book to think about the design and analysis of algorithms. It is self-contained, but
it does include several references to material that we introduce in Chapters 3 and 4.
(It also contains several summations, which Appendix A shows how to solve.)

We begin by examining the insertion sort algorithm to solve the sorting problem
introduced in Chapter 1. We define a “pseudocode” that should be familiar to you if
you have done computer programming, and we use it to show how we shall specify
our algorithms. Having specified the insertion sort algorithm, we then argue that it
correctly sorts, and we analyze its running time. The analysis introduces a notation
that focuses on how that time increases with the number of items to be sorted.
Following our discussion of insertion sort, we introduce the divide-and-conquer
approach to the design of algorithms and use it to develop an algorithm called
merge sort. We end with an analysis of merge sort’s running time.

2.1 Insertion sort

Our first algorithm, insertion sort, solves the sorting problem introduced in Chap-
ter 1:

Input: A sequence of n numbers (ay,a,, ..., a,).

Output: A permutation (reordering) (a, a5, ..., a,) of the input sequence such
thata| <a) <--- <a,.

The numbers that we wish to sort are also known as the keys. Although conceptu-
ally we are sorting a sequence, the input comes to us in the form of an array with n
elements.

In this book, we shall typically describe algorithms as programs written in a
pseudocode that is similar in many respects to C, C++, Java, Python, or Pascal. If
you have been introduced to any of these languages, you should have little trouble

2.1 Insertion sort 17

Figure 2.1 Sorting a hand of cards using insertion sort.

reading our algorithms. What separates pseudocode from “real” code is that in
pseudocode, we employ whatever expressive method is most clear and concise to
specify a given algorithm. Sometimes, the clearest method is English, so do not
be surprised if you come across an English phrase or sentence embedded within
a section of “real” code. Another difference between pseudocode and real code
is that pseudocode is not typically concerned with issues of software engineering.
Issues of data abstraction, modularity, and error handling are often ignored in order
to convey the essence of the algorithm more concisely.

We start with insertion sort, which is an efficient algorithm for sorting a small
number of elements. Insertion sort works the way many people sort a hand of
playing cards. We start with an empty left hand and the cards face down on the
table. We then remove one card at a time from the table and insert it into the
correct position in the left hand. To find the correct position for a card, we compare
it with each of the cards already in the hand, from right to left, as illustrated in
Figure 2.1. At all times, the cards held in the left hand are sorted, and these cards
were originally the top cards of the pile on the table.

We present our pseudocode for insertion sort as a procedure called INSERTION-
SORT, which takes as a parameter an array A[l..n] containing a sequence of
length n that is to be sorted. (In the code, the number n of elements in A is denoted
by A.length.) The algorithm sorts the input numbers in place: it rearranges the
numbers within the array A4, with at most a constant number of them stored outside
the array at any time. The input array A contains the sorted output sequence when
the INSERTION-SORT procedure is finished.

18

Chapter 2 Getting Started

2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

ONF : B 113 (b)|2|é96|1|3| (c)|2|4|sgl|3|
.

1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

(d) 24 1 B (e) 5 3 (f)|1|2|3|4|5|6|

Figure 2.2 The operation of INSERTION-SORT on the array 4 = (5, 2, 4, 6, 1, 3). Array indices
appear above the rectangles, and values stored in the array positions appear within the rectangles.
(a)-(e) The iterations of the for loop of lines 1-8. In each iteration, the black rectangle holds the
key taken from A[], which is compared with the values in shaded rectangles to its left in the test of
line 5. Shaded arrows show array values moved one position to the right in line 6, and black arrows
indicate where the key moves to in line 8. (f) The final sorted array.

INSERTION-SORT (A)

1 for j = 2to A.length

2 key = A[J]

3 // Tnsert A[j] into the sorted sequence A[1..j — 1].
4 i=j-1

5 while i > 0 and A[i] > key

6 Ali +1] = Ali]

7 i =i-1

8 Ali + 1] = key

Loop invariants and the correctness of insertion sort

Figure 2.2 shows how this algorithm works for A = (5,2, 4, 6, 1, 3). The in-
dex j indicates the “current card” being inserted into the hand. At the beginning
of each iteration of the for loop, which is indexed by j, the subarray consisting
of elements A[l..j — 1] constitutes the currently sorted hand, and the remaining
subarray A[j + 1..n] corresponds to the pile of cards still on the table. In fact,
elements A[l..j — 1] are the elements originally in positions 1 through j — 1, but
now in sorted order. We state these properties of A[l..j — 1] formally as a loop
invariant:

At the start of each iteration of the for loop of lines 1-8, the subarray
A[l..j —1] consists of the elements originally in A[1 .. j —1], but in sorted
order.

We use loop invariants to help us understand why an algorithm is correct. We
must show three things about a loop invariant:

2.1 Insertion sort 19

Initialization: It is true prior to the first iteration of the loop.

Maintenance: If it is true before an iteration of the loop, it remains true before the
next iteration.

Termination: When the loop terminates, the invariant gives us a useful property
that helps show that the algorithm is correct.

When the first two properties hold, the loop invariant is true prior to every iteration
of the loop. (Of course, we are free to use established facts other than the loop
invariant itself to prove that the loop invariant remains true before each iteration.)
Note the similarity to mathematical induction, where to prove that a property holds,
you prove a base case and an inductive step. Here, showing that the invariant holds
before the first iteration corresponds to the base case, and showing that the invariant
holds from iteration to iteration corresponds to the inductive step.

The third property is perhaps the most important one, since we are using the loop
invariant to show correctness. Typically, we use the loop invariant along with the
condition that caused the loop to terminate. The termination property differs from
how we usually use mathematical induction, in which we apply the inductive step
infinitely; here, we stop the “induction” when the loop terminates.

Let us see how these properties hold for insertion sort.

Initialization: We start by showing that the loop invariant holds before the first
loop iteration, when j = 2.' The subarray A[l..j — 1], therefore, consists
of just the single element A[l], which is in fact the original element in A[l].
Moreover, this subarray is sorted (trivially, of course), which shows that the
loop invariant holds prior to the first iteration of the loop.

Maintenance: Next, we tackle the second property: showing that each iteration
maintains the loop invariant. Informally, the body of the for loop works by
moving A[j — 1], A[j — 2], A[j — 3], and so on by one position to the right
until it finds the proper position for A[;] (lines 4-7), at which point it inserts
the value of A[;] (line 8). The subarray A[l .. j] then consists of the elements
originally in A[1 .. j], but in sorted order. Incrementing j for the next iteration
of the for loop then preserves the loop invariant.

A more formal treatment of the second property would require us to state and
show a loop invariant for the while loop of lines 5-7. At this point, however,

I'When the loop is a for loop, the moment at which we check the loop invariant just prior to the first
iteration is immediately after the initial assignment to the loop-counter variable and just before the
first test in the loop header. In the case of INSERTION-SORT, this time is after assigning 2 to the
variable j but before the first test of whether j < A.length.

20 Chapter 2 Getting Started

we prefer not to get bogged down in such formalism, and so we rely on our
informal analysis to show that the second property holds for the outer loop.

Termination: Finally, we examine what happens when the loop terminates. The

condition causing the for loop to terminate is that j > A.length = n. Because
each loop iteration increases j by 1, we must have j = n + 1 at that time.
Substituting n + 1 for j in the wording of loop invariant, we have that the
subarray A[l..n] consists of the elements originally in A[1..n], but in sorted
order. Observing that the subarray A[l ..n] is the entire array, we conclude that
the entire array is sorted. Hence, the algorithm is correct.

We shall use this method of loop invariants to show correctness later in this

chapter and in other chapters as well.

Pseudocode conventions

We use the following conventions in our pseudocode.

L]

Indentation indicates block structure. For example, the body of the for loop that
begins on line 1 consists of lines 2—8, and the body of the while loop that begins
on line 5 contains lines 67 but not line 8. Our indentation style applies to
if-else statements? as well. Using indentation instead of conventional indicators
of block structure, such as begin and end statements, greatly reduces clutter
while preserving, or even enhancing, clarity.’

The looping constructs while, for, and repeat-until and the if-else conditional
construct have interpretations similar to those in C, C++, Java, Python, and
Pascal.* In this book, the loop counter retains its value after exiting the loop,
unlike some situations that arise in C++, Java, and Pascal. Thus, immediately
after a for loop, the loop counter’s value is the value that first exceeded the for
loop bound. We used this property in our correctness argument for insertion
sort. The for loop header in line 1 is for j = 2 to A.length, and so when
this loop terminates, j = A.length + 1 (or, equivalently, j = n + 1, since
n = A.length). We use the keyword to when a for loop increments its loop

2In an if-else statement, we indent else at the same level as its matching if. Although we omit the
keyword then, we occasionally refer to the portion executed when the test following if is true as a
then clause. For multiway tests, we use elseif for tests after the first one.

3Bach pseudocode procedure in this book appears on one page so that you will not have to discern
levels of indentation in code that is split across pages.

#Most block-structured languages have equivalent constructs, though the exact syntax may differ.
Python lacks repeat-until loops, and its for loops operate a little differently from the for loops in
this book.

2.1 Insertion sort 21

counter in each iteration, and we use the keyword downto when a for loop
decrements its loop counter. When the loop counter changes by an amount
greater than 1, the amount of change follows the optional keyword by.

* The symbol “//” indicates that the remainder of the line is a comment.

* A multiple assignment of the form i = j = e assigns to both variables i and j
the value of expression e; it should be treated as equivalent to the assignment
j = e followed by the assignment i = j.

* Variables (such as i, j, and key) are local to the given procedure. We shall not
use global variables without explicit indication.

* We access array elements by specifying the array name followed by the in-
dex in square brackets. For example, A[i] indicates the ith element of the
array A. The notation ““..” is used to indicate a range of values within an ar-
ray. Thus, A[l.. j] indicates the subarray of A consisting of the j elements
A[l], A[2], ... ALJ]

* We typically organize compound data into objects, which are composed of
attributes. We access a particular attribute using the syntax found in many
object-oriented programming languages: the object name, followed by a dot,
followed by the attribute name. For example, we treat an array as an object
with the attribute /ength indicating how many elements it contains. To specify
the number of elements in an array A, we write A.length.

We treat a variable representing an array or object as a pointer to the data rep-
resenting the array or object. For all attributes f of an object x, setting y = x
causes y.f to equal x.f. Moreover, if we now set x.f = 3, then afterward not
only does x.f equal 3, but y.f equals 3 as well. In other words, x and y point
to the same object after the assignment y = Xx.

Our attribute notation can “cascade.” For example, suppose that the attribute f
is itself a pointer to some type of object that has an attribute g. Then the notation
x.f.g is implicitly parenthesized as (x.f).g. In other words, if we had assigned
y = x.f, then x.f.g is the same as y.g.

Sometimes, a pointer will refer to no object at all. In this case, we give it the
special value NIL.

* We pass parameters to a procedure by value: the called procedure receives its
own copy of the parameters, and if it assigns a value to a parameter, the change
is not seen by the calling procedure. When objects are passed, the pointer to
the data representing the object is copied, but the object’s attributes are not. For
example, if x is a parameter of a called procedure, the assignment x = y within
the called procedure is not visible to the calling procedure. The assignment
x.f = 3, however, is visible. Similarly, arrays are passed by pointer, so that

22

Chapter 2 Getting Started

a pointer to the array is passed, rather than the entire array, and changes to
individual array elements are visible to the calling procedure.

* A return statement immediately transfers control back to the point of call in
the calling procedure. Most return statements also take a value to pass back to
the caller. Our pseudocode differs from many programming languages in that
we allow multiple values to be returned in a single return statement.

* The boolean operators “and” and “or” are short circuiting. That is, when we
evaluate the expression “x and y” we first evaluate x. If x evaluates to FALSE,
then the entire expression cannot evaluate to TRUE, and so we do not evaluate y.
If, on the other hand, x evaluates to TRUE, we must evaluate y to determine the
value of the entire expression. Similarly, in the expression “x or y” we eval-
uate the expression y only if x evaluates to FALSE. Short-circuiting operators
allow us to write boolean expressions such as “x # NIL and x.f = y” without
worrying about what happens when we try to evaluate x.f when x is NIL.

* The keyword error indicates that an error occurred because conditions were
wrong for the procedure to have been called. The calling procedure is respon-
sible for handling the error, and so we do not specify what action to take.

Exercises

2.1-1
Using Figure 2.2 as a model, illustrate the operation of INSERTION-SORT on the
array A = (31,41,59,26,41, 58).

2.1-2
Rewrite the INSERTION-SORT procedure to sort into nonincreasing instead of non-
decreasing order.

2.1-3
Consider the searching problem:

Input: A sequence of n numbers A = {(ay,a»,...,a,) and a value v.

Output: An index i such that v = A[i] or the special value NIL if v does not
appear in A.

Write pseudocode for linear search, which scans through the sequence, looking
for v. Using a loop invariant, prove that your algorithm is correct. Make sure that
your loop invariant fulfills the three necessary properties.

2.14
Consider the problem of adding two n-bit binary integers, stored in two n-element
arrays A and B. The sum of the two integers should be stored in binary form in

2.2 Analyzing algorithms 23

an (n + 1)-element array C. State the problem formally and write pseudocode for
adding the two integers.

2.2 Analyzing algorithms

Analyzing an algorithm has come to mean predicting the resources that the algo-
rithm requires. Occasionally, resources such as memory, communication band-
width, or computer hardware are of primary concern, but most often it is compu-
tational time that we want to measure. Generally, by analyzing several candidate
algorithms for a problem, we can identify a most efficient one. Such analysis may
indicate more than one viable candidate, but we can often discard several inferior
algorithms in the process.

Before we can analyze an algorithm, we must have a model of the implemen-
tation technology that we will use, including a model for the resources of that
technology and their costs. For most of this book, we shall assume a generic one-
processor, random-access machine (RAM) model of computation as our imple-
mentation technology and understand that our algorithms will be implemented as
computer programs. In the RAM model, instructions are executed one after an-
other, with no concurrent operations.

Strictly speaking, we should precisely define the instructions of the RAM model
and their costs. To do so, however, would be tedious and would yield little insight
into algorithm design and analysis. Yet we must be careful not to abuse the RAM
model. For example, what if a RAM had an instruction that sorts? Then we could
sort in just one instruction. Such a RAM would be unrealistic, since real computers
do not have such instructions. Our guide, therefore, is how real computers are de-
signed. The RAM model contains instructions commonly found in real computers:
arithmetic (such as add, subtract, multiply, divide, remainder, floor, ceiling), data
movement (load, store, copy), and control (conditional and unconditional branch,
subroutine call and return). Each such instruction takes a constant amount of time.

The data types in the RAM model are integer and floating point (for storing real
numbers). Although we typically do not concern ourselves with precision in this
book, in some applications precision is crucial. We also assume a limit on the size
of each word of data. For example, when working with inputs of size n, we typ-
ically assume that integers are represented by ¢ Ign bits for some constant ¢ > 1.
We require ¢ > 1 so that each word can hold the value of 7, enabling us to index the
individual input elements, and we restrict ¢ to be a constant so that the word size
does not grow arbitrarily. (If the word size could grow arbitrarily, we could store
huge amounts of data in one word and operate on it all in constant time—clearly
an unrealistic scenario.)

24

Chapter 2 Getting Started

Real computers contain instructions not listed above, and such instructions rep-
resent a gray area in the RAM model. For example, is exponentiation a constant-
time instruction? In the general case, no; it takes several instructions to compute x”
when x and y are real numbers. In restricted situations, however, exponentiation is
a constant-time operation. Many computers have a “shift left” instruction, which
in constant time shifts the bits of an integer by k positions to the left. In most
computers, shifting the bits of an integer by one position to the left is equivalent
to multiplication by 2, so that shifting the bits by k positions to the left is equiv-
alent to multiplication by 2%. Therefore, such computers can compute 2% in one
constant-time instruction by shifting the integer 1 by k positions to the left, as long
as k is no more than the number of bits in a computer word. We will endeavor to
avoid such gray areas in the RAM model, but we will treat computation of 2* as a
constant-time operation when k is a small enough positive integer.

In the RAM model, we do not attempt to model the memory hierarchy that is
common in contemporary computers. That is, we do not model caches or virtual
memory. Several computational models attempt to account for memory-hierarchy
effects, which are sometimes significant in real programs on real machines. A
handful of problems in this book examine memory-hierarchy effects, but for the
most part, the analyses in this book will not consider them. Models that include
the memory hierarchy are quite a bit more complex than the RAM model, and so
they can be difficult to work with. Moreover, RAM-model analyses are usually
excellent predictors of performance on actual machines.

Analyzing even a simple algorithm in the RAM model can be a challenge. The
mathematical tools required may include combinatorics, probability theory, alge-
braic dexterity, and the ability to identify the most significant terms in a formula.
Because the behavior of an algorithm may be different for each possible input, we
need a means for summarizing that behavior in simple, easily understood formulas.

Even though we typically select only one machine model to analyze a given al-
gorithm, we still face many choices in deciding how to express our analysis. We
would like a way that is simple to write and manipulate, shows the important char-
acteristics of an algorithm’s resource requirements, and suppresses tedious details.

Analysis of insertion sort

The time taken by the INSERTION-SORT procedure depends on the input: sorting a
thousand numbers takes longer than sorting three numbers. Moreover, INSERTION-
SORT can take different amounts of time to sort two input sequences of the same
size depending on how nearly sorted they already are. In general, the time taken
by an algorithm grows with the size of the input, so it is traditional to describe the
running time of a program as a function of the size of its input. To do so, we need
to define the terms “running time” and “size of input” more carefully.

2.2 Analyzing algorithms 25

The best notion for input size depends on the problem being studied. For many
problems, such as sorting or computing discrete Fourier transforms, the most nat-
ural measure is the number of items in the input—for example, the array size n
for sorting. For many other problems, such as multiplying two integers, the best
measure of input size is the rotal number of bits needed to represent the input in
ordinary binary notation. Sometimes, it is more appropriate to describe the size of
the input with two numbers rather than one. For instance, if the input to an algo-
rithm is a graph, the input size can be described by the numbers of vertices and
edges in the graph. We shall indicate which input size measure is being used with
each problem we study.

The running time of an algorithm on a particular input is the number of primitive
operations or “steps” executed. It is convenient to define the notion of step so
that it is as machine-independent as possible. For the moment, let us adopt the
following view. A constant amount of time is required to execute each line of our
pseudocode. One line may take a different amount of time than another line, but
we shall assume that each execution of the ith line takes time c;, where c¢; is a
constant. This viewpoint is in keeping with the RAM model, and it also reflects
how the pseudocode would be implemented on most actual computers.’

In the following discussion, our expression for the running time of INSERTION-
SORT will evolve from a messy formula that uses all the statement costs ¢; to a
much simpler notation that is more concise and more easily manipulated. This
simpler notation will also make it easy to determine whether one algorithm is more
efficient than another.

We start by presenting the INSERTION-SORT procedure with the time “cost”
of each statement and the number of times each statement is executed. For each
Jj =2.3,...,n, where n = A.length, we let t; denote the number of times the
while loop test in line 5 is executed for that value of j. When a for or while loop
exits in the usual way (i.e., due to the test in the loop header), the test is executed
one time more than the loop body. We assume that comments are not executable
statements, and so they take no time.

>There are some subtleties here. Computational steps that we specify in English are often variants
of a procedure that requires more than just a constant amount of time. For example, later in this
book we might say “sort the points by x-coordinate,” which, as we shall see, takes more than a
constant amount of time. Also, note that a statement that calls a subroutine takes constant time,
though the subroutine, once invoked, may take more. That is, we separate the process of calling the
subroutine—passing parameters to it, etc. —from the process of executing the subroutine.

26

Chapter 2 Getting Started

INSERTION-SORT (A) cost times
1 for j = 2to A.length cq n
2 key = A[j] Cy n—1
3 // Insert A[j] into the sorted
sequence A[l..j —1]. 0 n—1
4 i=j—1 Cy4 n—1
5 while i > 0 and A[i] > key Cs Yot
6 Afli + 1] = A[i] Co Yt —1)
7 i=i—1 c7 Yt =1
8 Ali + 1] = key s n—1

The running time of the algorithm is the sum of running times for each state-
ment executed; a statement that takes ¢; steps to execute and executes n times will
contribute ¢;n to the total running time.® To compute 7'(n), the running time of
INSERTION-SORT on an input of n values, we sum the products of the cost and
times columns, obtaining

T = C1n+6’2(n—l)—|-c4(n—1)+c52[j+CSZ(Z],_1)

j=2 j=2
n
ter) (6 =) +esn—1).
Jj=2

Even for inputs of a given size, an algorithm’s running time may depend on
which input of that size is given. For example, in INSERTION-SORT, the best

case occurs if the array is already sorted. For each j = 2,3,...,n, we then find
that A[i] < key in line 5 when i has its initial value of j — 1. Thus z; = 1 for
j =2,3,...,n, and the best-case running time is

T(n) = cin+ca(n—10)4csn—1)4+cs(n—1)+cg(m—1)

= (c1+cr+csg+cs+cg)n—(ca+cy+cs+cg).

We can express this running time as an + b for constants a and b that depend on
the statement costs ¢;; it is thus a linear function of n.

If the array is in reverse sorted order—that is, in decreasing order—the worst
case results. We must compare each element A[;] with each element in the entire
sorted subarray A[l..j —1],andsot; = j for j = 2,3,...,n. Noting that

This characteristic does not necessarily hold for a resource such as memory. A statement that
references m words of memory and is executed n times does not necessarily reference mn distinct
words of memory.

2.2 Analyzing algorithms 27

n

j=

and

. _n(n—1)
;(1_1)_7

(see Appendix A for a review of how to solve these summations), we find that in
the worst case, the running time of INSERTION-SORT is

T(n) = cin+c(n—1)+ci(n—1)+cs (n(nz—l—) 1)

Ce (@) + ¢y (@) + Cg(l’l — 1)

C C C C C C
= (F+3+3)r+(aratatrs-F-F +a)n

—(c2+cs+es+cs).

We can express this worst-case running time as an’? + bn + ¢ for constants a, b,
and c that again depend on the statement costs ¢;; it is thus a quadratic function
of n.

Typically, as in insertion sort, the running time of an algorithm is fixed for a
given input, although in later chapters we shall see some interesting “randomized”
algorithms whose behavior can vary even for a fixed input.

Worst-case and average-case analysis

In our analysis of insertion sort, we looked at both the best case, in which the input
array was already sorted, and the worst case, in which the input array was reverse
sorted. For the remainder of this book, though, we shall usually concentrate on
finding only the worst-case running time, that is, the longest running time for any
input of size n. We give three reasons for this orientation.

* The worst-case running time of an algorithm gives us an upper bound on the
running time for any input. Knowing it provides a guarantee that the algorithm
will never take any longer. We need not make some educated guess about the
running time and hope that it never gets much worse.

* For some algorithms, the worst case occurs fairly often. For example, in search-
ing a database for a particular piece of information, the searching algorithm’s
worst case will often occur when the information is not present in the database.
In some applications, searches for absent information may be frequent.

28

Chapter 2 Getting Started

* The “average case” is often roughly as bad as the worst case. Suppose that we
randomly choose n numbers and apply insertion sort. How long does it take to
determine where in subarray A[l .. — 1] to insert element A[;]? On average,
half the elements in A[l..j — 1] are less than A[j], and half the elements are
greater. On average, therefore, we check half of the subarray A[1..j — 1], and
so t; is about j/2. The resulting average-case running time turns out to be a
quadratic function of the input size, just like the worst-case running time.

In some particular cases, we shall be interested in the average-case running time
of an algorithm; we shall see the technique of probabilistic analysis applied to
various algorithms throughout this book. The scope of average-case analysis is
limited, because it may not be apparent what constitutes an “average” input for
a particular problem. Often, we shall assume that all inputs of a given size are
equally likely. In practice, this assumption may be violated, but we can sometimes
use a randomized algorithm, which makes random choices, to allow a probabilistic
analysis and yield an expected running time. We explore randomized algorithms
more in Chapter 5 and in several other subsequent chapters.

Order of growth

We used some simplifying abstractions to ease our analysis of the INSERTION-
SORT procedure. First, we ignored the actual cost of each statement, using the
constants c¢; to represent these costs. Then, we observed that even these constants
give us more detail than we really need: we expressed the worst-case running time
as an? + bn + ¢ for some constants a, b, and ¢ that depend on the statement
costs ¢;. We thus ignored not only the actual statement costs, but also the abstract
Ccosts ¢;.

We shall now make one more simplifying abstraction: it is the rate of growth,
or order of growth, of the running time that really interests us. We therefore con-
sider only the leading term of a formula (e.g., an?), since the lower-order terms are
relatively insignificant for large values of n. We also ignore the leading term’s con-
stant coefficient, since constant factors are less significant than the rate of growth
in determining computational efficiency for large inputs. For insertion sort, when
we ignore the lower-order terms and the leading term’s constant coefficient, we are
left with the factor of n? from the leading term. We write that insertion sort has a
worst-case running time of ®(n?) (pronounced “theta of n-squared”). We shall use
®-notation informally in this chapter, and we will define it precisely in Chapter 3.

‘We usually consider one algorithm to be more efficient than another if its worst-
case running time has a lower order of growth. Due to constant factors and lower-
order terms, an algorithm whose running time has a higher order of growth might
take less time for small inputs than an algorithm whose running time has a lower

2.3 Designing algorithms 29

order of growth. But for large enough inputs, a ©(n?) algorithm, for example, will
run more quickly in the worst case than a ®(n3) algorithm.

Exercises

2.2-1
Express the function 72/1000 — 100n? — 1007 + 3 in terms of ®-notation.

2.2-2

Consider sorting n numbers stored in array A4 by first finding the smallest element
of A and exchanging it with the element in A[1]. Then find the second smallest
element of 4, and exchange it with A[2]. Continue in this manner for the first n — 1
elements of A. Write pseudocode for this algorithm, which is known as selection
sort. What loop invariant does this algorithm maintain? Why does it need to run
for only the first n — 1 elements, rather than for all n elements? Give the best-case
and worst-case running times of selection sort in ®-notation.

2.2-3

Consider linear search again (see Exercise 2.1-3). How many elements of the in-
put sequence need to be checked on the average, assuming that the element being
searched for is equally likely to be any element in the array? How about in the
worst case? What are the average-case and worst-case running times of linear
search in ®-notation? Justify your answers.

2.24
How can we modify almost any algorithm to have a good best-case running time?

2.3 Designing algorithms

We can choose from a wide range of algorithm design techniques. For insertion
sort, we used an incremental approach: having sorted the subarray A[l..j — 1],
we inserted the single element A[j] into its proper place, yielding the sorted
subarray A[l .. j].

In this section, we examine an alternative design approach, known as “divide-
and-conquer,” which we shall explore in more detail in Chapter 4. We’ll use divide-
and-conquer to design a sorting algorithm whose worst-case running time is much
less than that of insertion sort. One advantage of divide-and-conquer algorithms is
that their running times are often easily determined using techniques that we will
see in Chapter 4.

30

Chapter 2 Getting Started

2.3.1 The divide-and-conquer approach

Many useful algorithms are recursive in structure: to solve a given problem, they
call themselves recursively one or more times to deal with closely related sub-
problems. These algorithms typically follow a divide-and-conquer approach: they
break the problem into several subproblems that are similar to the original prob-
lem but smaller in size, solve the subproblems recursively, and then combine these
solutions to create a solution to the original problem.

The divide-and-conquer paradigm involves three steps at each level of the recur-
sion:

Divide the problem into a number of subproblems that are smaller instances of the
same problem.

Congquer the subproblems by solving them recursively. If the subproblem sizes are
small enough, however, just solve the subproblems in a straightforward manner.

Combine the solutions to the subproblems into the solution for the original prob-
lem.

The merge sort algorithm closely follows the divide-and-conquer paradigm. In-
tuitively, it operates as follows.

Divide: Divide the n-element sequence to be sorted into two subsequences of 7/2
elements each.

Conquer: Sort the two subsequences recursively using merge sort.

Combine: Merge the two sorted subsequences to produce the sorted answer.

The recursion “bottoms out” when the sequence to be sorted has length 1, in which
case there is no work to be done, since every sequence of length 1 is already in
sorted order.

The key operation of the merge sort algorithm is the merging of two sorted
sequences in the “combine” step. We merge by calling an auxiliary procedure
MERGE(A, p,q,r), where A is an array and p, ¢, and r are indices into the array
such that p < g < r. The procedure assumes that the subarrays A[p..q] and
Alg + 1..r] are in sorted order. It merges them to form a single sorted subarray
that replaces the current subarray A[p..r].

Our MERGE procedure takes time ®(n), where n = r — p + 1 is the total
number of elements being merged, and it works as follows. Returning to our card-
playing motif, suppose we have two piles of cards face up on a table. Each pile is
sorted, with the smallest cards on top. We wish to merge the two piles into a single
sorted output pile, which is to be face down on the table. Our basic step consists
of choosing the smaller of the two cards on top of the face-up piles, removing it
from its pile (which exposes a new top card), and placing this card face down onto

2.3 Designing algorithms 31

the output pile. We repeat this step until one input pile is empty, at which time
we just take the remaining input pile and place it face down onto the output pile.
Computationally, each basic step takes constant time, since we are comparing just
the two top cards. Since we perform at most n basic steps, merging takes ©(n)
time.

The following pseudocode implements the above idea, but with an additional
twist that avoids having to check whether either pile is empty in each basic step.
We place on the bottom of each pile a sentinel card, which contains a special value
that we use to simplify our code. Here, we use oo as the sentinel value, so that
whenever a card with oo is exposed, it cannot be the smaller card unless both piles
have their sentinel cards exposed. But once that happens, all the nonsentinel cards
have already been placed onto the output pile. Since we know in advance that
exactly r — p 4 1 cards will be placed onto the output pile, we can stop once we
have performed that many basic steps.

MERGE(4, p,q,1)

1 ny=q—p+1
2 ny=r—gq

3 letL[l..n; + 1]and R[l..n, 4 1] be new arrays
4 fori = 1ton;

5 Lli] = Alp+i—1]

6 for j = 1ton,

7 R[j] = Alg + j]

10 i =1

1 j=1

12 fork = ptor

13 if L[i] < R[/]

14 Alk] = LJi]

15 i =1i+1

16 else A[k] = R[/]

17 j=Jj+1

In detail, the MERGE procedure works as follows. Line 1 computes the length 1,
of the subarray A[p..q], and line 2 computes the length n, of the subarray
Alg + 1..r]. We create arrays L and R (“left” and “right”), of lengths n; + 1
and n, + 1, respectively, in line 3; the extra position in each array will hold the
sentinel. The for loop of lines 4-5 copies the subarray A[p..q] into L[1..n4],
and the for loop of lines 6-7 copies the subarray A[g + 1..r] into R[l..n,].
Lines 8-9 put the sentinels at the ends of the arrays L and R. Lines 1017, illus-

32

Chapter 2 Getting Started

10 11 12 13 14 15 16 17 10 11 12 13 14 15 16 17
|§|4|5|7|1|2|3|6| |1|2|5|7|1|2|3|6|
1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
L(2]4]s]7]=] r[L[2[3][6]<] L(2]4]s]7]=] rRE2[3][6]<]
l J l J
(a) (b)
10 11 12 13 14 15 16 17 10 11 12 13 14 15 16 17
|1|2|2|7|1|2|3|6| |1|2|2|2|1|2|3|6|
1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
t@l4]s]7]=] rE]2[3]6]~] L@l4]s]7]-] r[E[2[3]6]~]
i] l J
(©) (d

Figure 2.3 The operation of lines 10-17 in the call MERGE(A4, 9, 12, 16), when the subarray
A[9..16] contains the sequence (2, 4, 5,7, 1, 2, 3, 6). After copying and inserting sentinels, the
array L contains (2, 4,5, 7, 00), and the array R contains (1, 2, 3, 6, co). Lightly shaded positions
in A contain their final values, and lightly shaded positions in L and R contain values that have yet
to be copied back into A. Taken together, the lightly shaded positions always comprise the values
originally in A[9..16], along with the two sentinels. Heavily shaded positions in 4 contain values
that will be copied over, and heavily shaded positions in L and R contain values that have already
been copied back into A. (a)-(h) The arrays A, L, and R, and their respective indices k, i, and j
prior to each iteration of the loop of lines 12—-17.

trated in Figure 2.3, perform the r — p + 1 basic steps by maintaining the following
loop invariant:

At the start of each iteration of the for loop of lines 12-17, the subarray
A[p ..k — 1] contains the k — p smallest elements of L[l..n; + 1] and
R[1..n, + 1], in sorted order. Moreover, L[i] and R[] are the smallest
elements of their arrays that have not been copied back into A.

We must show that this loop invariant holds prior to the first iteration of the for
loop of lines 12-17, that each iteration of the loop maintains the invariant, and
that the invariant provides a useful property to show correctness when the loop
terminates.

Initialization: Prior to the first iteration of the loop, we have k = p, so that the
subarray A[p ..k — 1] is empty. This empty subarray contains the k — p = 0
smallest elements of L and R, and since i = j = 1, both L[i] and R[] are the
smallest elements of their arrays that have not been copied back into A.

2.3 Designing algorithms 33

10 11 12 13 14 15 16 17 10 11 12 13 14 15 16 17

- “THT2T2[5 T JoSiel -~
k
1 2 3 4 5 1 2 3 4 5
L H R LBIEls [7]~] [T 6]~
i] ! J

(e) €3)
10 11 12 13 14 15 16 17 10 11 12 13 14 15 16 17
|1|2|2|345-: |1|2|2|3|456.:
1 4 5 1
_ & [¢ [~] L BRI« R
i j i J
(2) (h)

10 11 12 13 14 15 16 17
T2[2[2[4T5 [] 7]

®

Figure 2.3, continued (i) The arrays and indices at termination. At this point, the subarray in
A[9..16] is sorted, and the two sentinels in L and R are the only two elements in these arrays that
have not been copied into A.

Maintenance: To see that each iteration maintains the loop invariant, let us first
suppose that L[i] < R[j]. Then L[i] is the smallest element not yet copied
back into A. Because A[p ..k — 1] contains the kK — p smallest elements, after
line 14 copies L[i] into A[k], the subarray A[p .. k] will contain the k — p + 1
smallest elements. Incrementing & (in the for loop update) and i (in line 15)
reestablishes the loop invariant for the next iteration. If instead L[i] > R[/],
then lines 16—17 perform the appropriate action to maintain the loop invariant.

Termination: At termination, k = r 4+ 1. By the loop invariant, the subarray
Alp ..k — 1], which is A[p..r], contains the k — p = r — p + | smallest
elements of L[1..n; + 1] and R[l..n, + 1], in sorted order. The arrays L
and R together contain n; 4+ n, + 2 = r — p + 3 elements. All but the two
largest have been copied back into A, and these two largest elements are the
sentinels.

34

Chapter 2 Getting Started

To see that the MERGE procedure runs in ®(n) time, where n =r — p + 1,
observe that each of lines 1-3 and 8-11 takes constant time, the for loops of
lines 4-7 take ®(n; + n,) = ©O(n) time,” and there are n iterations of the for
loop of lines 12—17, each of which takes constant time.

We can now use the MERGE procedure as a subroutine in the merge sort al-
gorithm. The procedure MERGE-SORT(A, p,r) sorts the elements in the subar-
ray A[p..r]. If p > r, the subarray has at most one element and is therefore
already sorted. Otherwise, the divide step simply computes an index ¢ that par-
titions A[p..r] into two subarrays: A[p..q], containing [n/2] elements, and
Alg + 1..r], containing |n/2] elements.®

MERGE-SORT(A4, p,r)

1 ifp<r

2 q=1[(p+r)/2]

3 MERGE-SORT(A4, p, q)

4 MERGE-SORT(A4,q + 1,r)
5 MERGE(A, p,q.1)

To sort the entire sequence A = (A[l], A[2], ..., A[n]), we make the initial call
MERGE-SORT(A4, 1, A.length), where once again A.length = n. Figure 2.4 il-
lustrates the operation of the procedure bottom-up when 7 is a power of 2. The
algorithm consists of merging pairs of 1-item sequences to form sorted sequences
of length 2, merging pairs of sequences of length 2 to form sorted sequences of
length 4, and so on, until two sequences of length 1 /2 are merged to form the final
sorted sequence of length n.

2.3.2 Analyzing divide-and-conquer algorithms

When an algorithm contains a recursive call to itself, we can often describe its
running time by a recurrence equation or recurrence, which describes the overall
running time on a problem of size n in terms of the running time on smaller inputs.
We can then use mathematical tools to solve the recurrence and provide bounds on
the performance of the algorithm.

7We shall see in Chapter 3 how to formally interpret equations containing ©-notation.

8The expression [x] denotes the least integer greater than or equal to x, and | x| denotes the greatest
integer less than or equal to x. These notations are defined in Chapter 3. The easiest way to verify
that setting g to | (p + r)/2] yields subarrays A[p..q] and A[g + 1..r] of sizes [n/2] and |n/2],
respectively, is to examine the four cases that arise depending on whether each of p and r is odd or
even.

2.3 Designing algorithms 35

sorted sequence

[t 2 2 3 4 5 6 1|
/ merge \

7] (1 2

4 3
VAN VAN

(9}

=~
[+]
=
=]
B~

[1]

initial sequence

Figure 2.4 The operation of merge sort on the array A = (5,2,4,7, 1,3, 2, 6). The lengths of the
sorted sequences being merged increase as the algorithm progresses from bottom to top.

A recurrence for the running time of a divide-and-conquer algorithm falls out
from the three steps of the basic paradigm. As before, we let 7'(n) be the running
time on a problem of size n. If the problem size is small enough, say n < ¢
for some constant ¢, the straightforward solution takes constant time, which we
write as ®(1). Suppose that our division of the problem yields a subproblems,
each of which is 1/b the size of the original. (For merge sort, both a and b are 2,
but we shall see many divide-and-conquer algorithms in which a # b.) It takes
time 7'(n/b) to solve one subproblem of size n/b, and so it takes time a7 (n/b)
to solve a of them. If we take D(n) time to divide the problem into subproblems
and C(n) time to combine the solutions to the subproblems into the solution to the
original problem, we get the recurrence

_ e() ifn <c,

T(n) = aT(”l/b) + D(l’l) + C(n) otherwise .

In Chapter 4, we shall see how to solve common recurrences of this form.

Analysis of merge sort

Although the pseudocode for MERGE-SORT works correctly when the number of
elements is not even, our recurrence-based analysis is simplified if we assume that

36

Chapter 2 Getting Started

the original problem size is a power of 2. Each divide step then yields two subse-
quences of size exactly n/2. In Chapter 4, we shall see that this assumption does
not affect the order of growth of the solution to the recurrence.

We reason as follows to set up the recurrence for 7'(n), the worst-case running
time of merge sort on n numbers. Merge sort on just one element takes constant
time. When we have n > 1 elements, we break down the running time as follows.

Divide: The divide step just computes the middle of the subarray, which takes
constant time. Thus, D(n) = O(1).

Conquer: We recursively solve two subproblems, each of size n/2, which con-
tributes 27'(n/2) to the running time.

Combine: We have already noted that the MERGE procedure on an n-element
subarray takes time ®(n), and so C(n) = ©(n).

When we add the functions D(n) and C(n) for the merge sort analysis, we are
adding a function that is ®(n) and a function that is ®(1). This sum is a linear
function of n, that is, ®(n). Adding it to the 27 (n/2) term from the “conquer”
step gives the recurrence for the worst-case running time 7' (1) of merge sort:

O ifn=1,
7 = 20 L @1
2T (n/2) +O(n) ifn>1.
In Chapter 4, we shall see the “master theorem,” which we can use to show
that 7'(n) is ®(nlgn), where 1gn stands for log, n. Because the logarithm func-
tion grows more slowly than any linear function, for large enough inputs, merge
sort, with its ®(n1gn) running time, outperforms insertion sort, whose running
time is ®(n?), in the worst case.

We do not need the master theorem to intuitively understand why the solution to

the recurrence (2.1) is 7'(n) = ®©(nlgn). Let us rewrite recurrence (2.1) as
ifn=1,
T(n) =1 2 22)
2T (n/2) +cn ifn>1,
where the constant ¢ represents the time required to solve problems of size 1 as
well as the time per array element of the divide and combine steps.’

91t is unlikely that the same constant exactly represents both the time to solve problems of size 1
and the time per array element of the divide and combine steps. We can get around this problem by
letting ¢ be the larger of these times and understanding that our recurrence gives an upper bound on
the running time, or by letting ¢ be the lesser of these times and understanding that our recurrence
gives a lower bound on the running time. Both bounds are on the order of n Ig n and, taken together,
give a ©(n lgn) running time.

2.3 Designing algorithms 37

Figure 2.5 shows how we can solve recurrence (2.2). For convenience, we as-
sume that 7 is an exact power of 2. Part (a) of the figure shows 7'(n), which we
expand in part (b) into an equivalent tree representing the recurrence. The cn term
is the root (the cost incurred at the top level of recursion), and the two subtrees of
the root are the two smaller recurrences 7' (n/2). Part (c) shows this process carried
one step further by expanding 7'(n/2). The cost incurred at each of the two sub-
nodes at the second level of recursion is cn/2. We continue expanding each node
in the tree by breaking it into its constituent parts as determined by the recurrence,
until the problem sizes get down to 1, each with a cost of ¢. Part (d) shows the
resulting recursion tree.

Next, we add the costs across each level of the tree. The top level has total
cost cn, the next level down has total cost c(n/2) + c(n/2) = cn, the level after
that has total cost c(n/4) +c(n/4)+c(n/4)+c(n/4) = cn, and so on. In general,
the level i below the top has 2’ nodes, each contributing a cost of ¢(n/2"), so that
the ith level below the top has total cost 2/ ¢(n/2") = cn. The bottom level has n
nodes, each contributing a cost of ¢, for a total cost of cn.

The total number of levels of the recursion tree in Figure 2.5 is Ign 4+ 1, where
n is the number of leaves, corresponding to the input size. An informal inductive
argument justifies this claim. The base case occurs when n = 1, in which case the
tree has only one level. Since Ig1 = 0, we have that Ign + 1 gives the correct
number of levels. Now assume as an inductive hypothesis that the number of levels
of a recursion tree with 2/ leaves is 1g2' 4+ 1 = i + 1 (since for any value of i,
we have that 1g2’ = i). Because we are assuming that the input size is a power
of 2, the next input size to consider is 2/ *!. A tree with n = 2/*! leaves has
one more level than a tree with 2! leaves, and so the total number of levels is
G+1)+1=1g2+! +1.

To compute the total cost represented by the recurrence (2.2), we simply add up
the costs of all the levels. The recursion tree has lgn + 1 levels, each costing cn,
for a total cost of cn(lgn 4+ 1) = cnlgn + cn. Ignoring the low-order term and
the constant ¢ gives the desired result of ©(nlgn).

Exercises

2.3-1
Using Figure 2.4 as a model, illustrate the operation of merge sort on the array
A = (3,41,52,26,38,57,9,49).

2.3-2

Rewrite the MERGE procedure so that it does not use sentinels, instead stopping
once either array L or R has had all its elements copied back to A and then copying
the remainder of the other array back into A.

38 Chapter 2 Getting Started

T(n) cn cn
T(n/2) T(n/2) cn/2 cn/2
T(n/4) T(n/4) T(n/4) T(n/4)
(a) (b) (©)
A
cn/2 Cnl2 s n cn
lgn / \
cnl4 cnl4 cnl4 cnfd e e cn
Y C C C C C e c C v 1 cn
R/_/
n
) Total: cnlgn +cn
Figure 2.5 How to construct a recursion tree for the recurrence T(n) = 2T(n/2) + cn.

Part (a) shows T'(n), which progressively expands in (b)—(d) to form the recursion tree. The fully
expanded tree in part (d) has lgn + 1 levels (i.e., it has height 1gn, as indicated), and each level
contributes a total cost of c¢n. The total cost, therefore, is cnlgn + cn, which is @(nlgn).

Problems for Chapter 2 39

2.3-3
Use mathematical induction to show that when 7 is an exact power of 2, the solu-
tion of the recurrence

2 ifn=2,

T'(n) = . f
2T (n/2) +n ifn =2 fork > 1

isT(n) =nlgn.

2.34

We can express insertion sort as a recursive procedure as follows. In order to sort
A[l..n], we recursively sort A[1..n — 1] and then insert A[n] into the sorted array
A[l..n — 1]. Write a recurrence for the running time of this recursive version of
insertion sort.

2.3-5

Referring back to the searching problem (see Exercise 2.1-3), observe that if the
sequence A is sorted, we can check the midpoint of the sequence against v and
eliminate half of the sequence from further consideration. The binary search al-
gorithm repeats this procedure, halving the size of the remaining portion of the
sequence each time. Write pseudocode, either iterative or recursive, for binary
search. Argue that the worst-case running time of binary search is ®(Ign).

2.3-6

Observe that the while loop of lines 5-7 of the INSERTION-SORT procedure in
Section 2.1 uses a linear search to scan (backward) through the sorted subarray
A[l..j — 1]. Can we use a binary search (see Exercise 2.3-5) instead to improve
the overall worst-case running time of insertion sort to ®(nlgn)?

2.3-7 %
Describe a ®(n 1gn)-time algorithm that, given a set S of n integers and another
integer x, determines whether or not there exist two elements in S whose sum is
exactly x.

Problems

2-1 Insertion sort on small arrays in merge sort

Although merge sort runs in ®(nlgn) worst-case time and insertion sort runs
in ®(n?) worst-case time, the constant factors in insertion sort can make it faster
in practice for small problem sizes on many machines. Thus, it makes sense to
coarsen the leaves of the recursion by using insertion sort within merge sort when

40

Chapter 2 Getting Started

subproblems become sufficiently small. Consider a modification to merge sort in
which n/k sublists of length k are sorted using insertion sort and then merged
using the standard merging mechanism, where k is a value to be determined.

a. Show that insertion sort can sort the n/k sublists, each of length k, in ®(nk)
worst-case time.

b. Show how to merge the sublists in ®(n1g(n/k)) worst-case time.

¢. Given that the modified algorithm runs in ®(nk + nlg(n/k)) worst-case time,
what is the largest value of k as a function of n for which the modified algorithm
has the same running time as standard merge sort, in terms of ®-notation?

d. How should we choose k in practice?

2-2 Correctness of bubblesort
Bubblesort is a popular, but inefficient, sorting algorithm. It works by repeatedly
swapping adjacent elements that are out of order.

BUBBLESORT(A)

1 fori = 1to A.length — 1

2 for j = A.length downto i + 1

3 if A[j] < A[j —1]

4 exchange A[j] with A[j — 1]

a. Let A" denote the output of BUBBLESORT(A). To prove that BUBBLESORT is
correct, we need to prove that it terminates and that

AN <AR)<---<An], (2.3)

where n = A.length. In order to show that BUBBLESORT actually sorts, what
else do we need to prove?

The next two parts will prove inequality (2.3).

b. State precisely a loop invariant for the for loop in lines 2—4, and prove that this
loop invariant holds. Your proof should use the structure of the loop invariant
proof presented in this chapter.

¢. Using the termination condition of the loop invariant proved in part (b), state
a loop invariant for the for loop in lines 1-4 that will allow you to prove in-
equality (2.3). Your proof should use the structure of the loop invariant proof
presented in this chapter.

Problems for Chapter 2 41

d. What is the worst-case running time of bubblesort? How does it compare to the
running time of insertion sort?

2-3 Correctness of Horner’s rule
The following code fragment implements Horner’s rule for evaluating a polynomial

P(x) = Z apx®
k=0

= ao+x(a1+x(@ + -+ x(@—1 +xa,)--)),

given the coefficients ay,aq, ..., a, and a value for x:
1 y=0

for i = n downto 0
3 y=a+x-y

a. In terms of ®-notation, what is the running time of this code fragment for
Horner’s rule?

b. Write pseudocode to implement the naive polynomial-evaluation algorithm that
computes each term of the polynomial from scratch. What is the running time
of this algorithm? How does it compare to Horner’s rule?

¢. Consider the following loop invariant:

At the start of each iteration of the for loop of lines 2-3,
n—@{+1)
k
y = Z Af+i+1X" .
k=0

Interpret a summation with no terms as equaling 0. Following the structure of
the loop invariant proof presented in this chapter, use this loop invariant to show
that, at termination, y = Y ;_, axx*.

d. Conclude by arguing that the given code fragment correctly evaluates a poly-
nomial characterized by the coefficients ag, ay,....a,.

2-4 Inversions
Let A[l..n] be an array of n distinct numbers. If i < j and A[i] > A[J], then the
pair (i, j) is called an inversion of A.

a. List the five inversions of the array (2, 3,8, 6, 1).

42 Chapter 2 Getting Started
b. What array with elements from the set {1,2,...,n} has the most inversions?
How many does it have?

¢. What is the relationship between the running time of insertion sort and the
number of inversions in the input array? Justify your answer.

d. Give an algorithm that determines the number of inversions in any permutation
on 1 elements in ®(n Ign) worst-case time. (Hint: Modify merge sort.)

Chapter notes

In 1968, Knuth published the first of three volumes with the general title The Art of
Computer Programming [209, 210, 211]. The first volume ushered in the modern
study of computer algorithms with a focus on the analysis of running time, and the
full series remains an engaging and worthwhile reference for many of the topics
presented here. According to Knuth, the word “algorithm” is derived from the
name “al-Khowarizmi,” a ninth-century Persian mathematician.

Aho, Hopcroft, and Ullman [5] advocated the asymptotic analysis of algo-
rithms—using notations that Chapter 3 introduces, including ®-notation—as a
means of comparing relative performance. They also popularized the use of re-
currence relations to describe the running times of recursive algorithms.

Knuth [211] provides an encyclopedic treatment of many sorting algorithms. His
comparison of sorting algorithms (page 381) includes exact step-counting analyses,
like the one we performed here for insertion sort. Knuth’s discussion of insertion
sort encompasses several variations of the algorithm. The most important of these
is Shell’s sort, introduced by D. L. Shell, which uses insertion sort on periodic
subsequences of the input to produce a faster sorting algorithm.

Merge sort is also described by Knuth. He mentions that a mechanical colla-
tor capable of merging two decks of punched cards in a single pass was invented
in 1938. J. von Neumann, one of the pioneers of computer science, apparently
wrote a program for merge sort on the EDVAC computer in 1945.

The early history of proving programs correct is described by Gries [153], who
credits P. Naur with the first article in this field. Gries attributes loop invariants to
R. W. Floyd. The textbook by Mitchell [256] describes more recent progress in
proving programs correct.

