
COSC160: Data Structures
Graph Structures

Jeremy Bolton, PhD

Assistant Teaching Professor

Supplemental Slides provided by A. Gates and L. Singh

A special thanks to D. Harder for use of presentation
material.

Outline

I. Graphs vs. Trees
I. Terminology

I. Paths

II. Traversals

I. Class Exercise: Design a Traversal Scheme

II. DFS

III. BFS

II. Paths

III. Implementations

IV. Applications
I. Maps / Networks

II. Matching Problem

Graphs

• Definition:

– A graph is a 2-tuple: G = (N,E)

– N is a set of nodes

– E is a set of edges

• Note a tree is a type of graph

– With added constraints

Graph Terminology

• An edge e is incident on a node n1 if e = (n1,ni) or e
= (ni, n1)
– A directed edge e emanates from n1 if e = (n1,ni)

– A directed edge e terminates at n1 if e = (ni, n1)

• A path on a graph between two nodes n1 and ni , is
a sequence of edges e1, e2, … ,ej where e1
emanates at n1 and ei terminates at ni, and all
intermediate edges ek are appropriately connected,
ie, ek terminates at nk+1 and ek+1 emanates from
nk+1.

• A loop is a path that emanates and terminates at
the same node.

• A simple path is a path that contains no loops

(A,B) , (B,C) , (C,D) , (D,E)

OR (more compactly)

A – B – C – D – E

Graph Terminology

• A directed graph consists of edges which have implied direction.

• An undirected graph consists of edges without implied direction.

• A mixed graph consists of edges with and without direction.

• An attributed graph is a graph where attributes are associated with
the edges or nodes (usually the edges)

• A weighted graph is a graph with weight attributes associated with the
edges.

Edge Weights

Quantify the relationship
between two nodes.

0.5

0.5

0.8 0.6

0.1 0.1

0.7

0.2

0.3

0.2
0.6

0.2

0.3

0.2

Graph Terminology

• A graph is connected if there exists a path from any node to any other node.

• A fully connected simple graph is a graph with the maximum number of edges (Assuming it
is not a multi-graph!):
– (n-1)2 edges: with no self-loops.

– (n)2 edges: with self-loops

• A simple graph is a graph such that there is never multiple edges connected the same node
pair.

• A multigraph is a graph where there exists multiple edges connecting the same node pair.

• The order or degree of a node is the number of edges incident upon it.
– In-degree: the number of edges terminating at a node

– Out-degree: the number of nodes emanating at a node

Node Degree:

In directed graphs, we have in-degrees
and out-degrees.

• Sink: nodes with out-degree = 0
• Source: nodes with in-degree = 0

Images: Jure Leskovec

The number of neighbors an
Individual node has.

Degree of A = 4

Implementation of a Graph

• How might we implement a Graph Structure?

• Chaining:
– Nodes and pointers

• Array:
– Adjacency Matrix

• Efficient (chain or array):
– Sparse matrix

• Representing edges (who is adjacent to
whom) as a matrix

– Mij = 1 if node i has an edge to node j
= 0 if node i does not have an edge to j

– Mii = 1 if the network has self-loops

– Mij = Mji if the network is undirected,
or if i and j share a reciprocated edge

i
j

i

i
j

Different Ways to Represent a
Graph: Adjacency Matrix M

i
j

Adjacency Matrix Example

1

2

3

45

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 0 0 0 1

1 1 0 0 0

M =

1 2 3 4 5

1

2

3

4

5

Compute the Adjacency Matrices

11

1 2 3 4

1 0 1 0 1

2 1 0 0 1

3 0 0 0 1

4 1 1 1 0

1 2 3 4

1 0 1 0 1

2 0 0 0 0

3 0 0 0 0

4 0 1 1 0

M =

SYMMETRIC NOT SYMMETRIC

Analysis of Adjacency Matrix Implementation

• Space requirements

– O(N2) where N is the number of nodes

• Time requirements

– Creation / initialization: O(N2)

• In many applications, graphs are very sparse!

– A sparse representation may be more efficient.

Keep track of all the edges in the
graph

– Edge Set
2 3
2 4
3 2
3 4
4 5
5 2
5 1

– Node Set with edges
1:
2: 3 4
3: 2 4
4: 5
5: 1 2

1

2

3

45

Different Ways to Represent a Graph
– Adjacency List

Adjacency List Implementation (Sparse)

• Space Requirements:

– O(N+E), where E ≤ N2 is the number of edges

• Inequality holds assuming there are no repeated edges (with different weights)

• The number of edges is quite low in sparse graphs

• Time Requirements:

– Creation / initialization: O(N+E), where E is the number of edges

Traversing a Graph

• Class Discussion:

– Design a graph traversal algorithm

assuming graph is connected.

• Notes: Similar to tree, but there may

be cycles!

– Thus must assure no looping during

traversal

Traversing a Graph

• DFS

• BFS

𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝐷𝐹𝑆 𝑛𝑜𝑑𝑒
stack. 𝑝𝑢𝑠ℎ(𝑛𝑜𝑑𝑒)
𝑤ℎ𝑖𝑙𝑒 𝑠𝑡𝑎𝑐𝑘 𝑖𝑠 𝑛𝑜𝑡 𝑒𝑚𝑝𝑡𝑦

𝑡ℎ𝑖𝑠𝑁𝑜𝑑𝑒 ≔ 𝑠𝑡𝑎𝑐𝑘. 𝑝𝑜𝑝
𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛𝑜𝑑𝑒𝑠 𝑐 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡 𝑡𝑜 𝑡ℎ𝑖𝑠𝑁𝑜𝑑𝑒 𝒕𝒉𝒂𝒕 𝒉𝒂𝒗𝒆 𝒏𝒐𝒕 𝒃𝒆𝒆𝒏 𝒑𝒓𝒆𝒗𝒊𝒐𝒖𝒔𝒍𝒚 𝒗𝒊𝒔𝒊𝒕𝒆𝒅

if c 𝑖𝑠 𝑛𝑜𝑡 𝑛𝑢𝑙𝑙, 𝑠𝑡𝑎𝑐𝑘. 𝑝𝑢𝑠ℎ(𝑐)

𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝐵𝐹𝑆 𝑛𝑜𝑑𝑒
queue. 𝑎𝑑𝑑(𝑛𝑜𝑑𝑒)
𝑤ℎ𝑖𝑙𝑒 𝑞𝑢𝑒𝑢𝑒 𝑖𝑠 𝑛𝑜𝑡 𝑒𝑚𝑝𝑡𝑦

𝑡ℎ𝑖𝑠𝑁𝑜𝑑𝑒 ∶= 𝑞𝑢𝑒𝑢𝑒. 𝑑𝑒𝑞𝑢𝑒𝑢𝑒
𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛𝑜𝑑𝑒𝑠 𝑐 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡 𝑡𝑜 𝑡ℎ𝑖𝑠𝑁𝑜𝑑𝑒 𝒕𝒉𝒂𝒕 𝒉𝒂𝒗𝒆 𝒏𝒐𝒕 𝒃𝒆𝒆𝒏 𝒑𝒓𝒆𝒗𝒊𝒐𝒖𝒔𝒍𝒚 𝒗𝒊𝒔𝒊𝒕𝒆𝒅

𝑖𝑓 𝑐 𝑖𝑠 𝑛𝑜𝑡 𝑛𝑢𝑙𝑙, 𝑞𝑢𝑒𝑢𝑒. 𝑎𝑑𝑑(𝑐)

Single Source Path Length: unweighted graphs

Problem: find the distance from one vertex v to all other vertices

– Use a breadth-first traversal

– Vertices are added in layers

– The starting vertex is defined to be in the zeroeth layer, L0

– While the kth layer is not empty:

• All unvisited vertices adjacent to verticies in Lk are added to the (k + 1)st layer

Any unvisited vertices are said to be an infinite distance from v

Reference: Kleinberg and Tardos

Determining Distances

Consider this graph: find the distance from A to each other vertex

Determining Distances

A forms the zeroeth layer, L0

A

Determining Distances

The unvisited vertices B, F and G are adjacent to A

– These form the first layer, L1

B F G

Determining Distances

We now begin popping L1 vertices: pop B

– H is adjacent to B

– It is tagged L2

F G H

Determining Distances

Popping F pushes E onto the queue

– It is also tagged L2

G H E

Determining Distances

We pop G which has no other unvisited neighbours

– G is the last L1 vertex; thus H and E form the second layer, L2

H E

Determining Distances

Popping H in L2 adds C and I to the third layer L3

E C I

Determining Distances

E has no more adjacent unvisited vertices

– Thus C and I form the third layer, L3

C I

Determining Distances

The unvisited vertex D is adjacent to vertices in L3

– This vertex forms the fourth layer, L4

Finding Shortest Paths from 1 source: weighted graphs

• Class Discussion:
– Given a graph, design an algorithm to find the shortest path between the two

nodes

– What is the shortest path between
• A and C?

• A and F?

• How would you do this?
– Which scheme is most appropriate here?

• BFS

• DFS

Dijkstra's Algorithm: Shortest

𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑠ℎ𝑜𝑟𝑡𝑒𝑠𝑡𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑𝑃𝑎𝑡ℎ 𝑠: 𝑠𝑜𝑢𝑟𝑐𝑒 // computes shortest path from 1 source to all other nodes
𝑁 ≔ 𝑙𝑖𝑠𝑡 𝑜𝑓 𝑎𝑙𝑙 𝑁𝑜𝑑𝑒𝑠
dist[∀ 𝑛 ∈ 𝑁] := inf // initialize distance to be inf , dist [j] is distance from source to node j
dist[s] := 0 / / distance to source is 0
𝑉 ≔ 𝜙 // nodes visited
while 𝑉 ≠ 𝑁

min ≔ 𝑎𝑟𝑔𝑚𝑖𝑛𝑖∉𝑉(𝑑𝑖𝑠𝑡 𝑖)
𝑉 ≔ 𝑉 ∪ {𝑚𝑖𝑛}
𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛𝑜𝑑𝑒𝑠 𝑣 ∉ 𝑉 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡 𝑡𝑜 𝑚𝑖𝑛 // check all unvisited neighbors

𝑖𝑓 𝑑𝑖𝑠𝑡 𝑣 > 𝑑𝑖𝑠𝑡 𝑚𝑖𝑛 + 𝑤𝑒𝑖𝑔ℎ𝑡 𝑚𝑖𝑛, 𝑣
𝑑𝑖𝑠𝑡 𝑣 ≔ 𝑑𝑖𝑠𝑡 𝑚𝑖𝑛 + 𝑤𝑒𝑖𝑔ℎ𝑡 𝑚𝑖𝑛, 𝑣 // update shortest dist

return dist

A “conditional” BFS: Continue BFS

toward node with least aggregate weight

Example Graph Structure Implementation

• Graph Structure: to allow for an efficient shortest path determination
– Table with N rows, each col would hold

• List of nodes names: implemented as a hash to allow for direct indexing

• Adjacency List (represents edges and weights)

• Marked (for any traversal)
– Initialize all nodes as unmarked

– During traversal, mark a node upon visit

• Dist (for shortest path)
– Keep track of shortest path from source to each node

• Previous (for shortest path)
– When updating shortest path, keep track of preceding node in shortest path. Allows for easy retrieval of nodes

sequence of shortest path (in reverse)

𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑠ℎ𝑜𝑟𝑡𝑒𝑠𝑡𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑𝑃𝑎𝑡ℎ 𝑠: 𝑠𝑜𝑢𝑟𝑐𝑒 // computes shortest path from source to all other nodes
𝑁 ≔ 𝑙𝑖𝑠𝑡 𝑜𝑓 𝑎𝑙𝑙 𝑁𝑜𝑑𝑒𝑠
dist[∀ 𝑛 ∈ 𝑁] := inf // initialize distance to be inf , dist [j] is distance from source to node j
dist[s] := 0 / / distance to source is 0
𝑉 ≔ 𝜙 // nodes visited
while 𝑉 ≠ 𝑁

min ≔ 𝑎𝑟𝑔𝑚𝑖𝑛𝑖∉𝑉(𝑑𝑖𝑠𝑡 𝑖)
𝑉 ≔ 𝑉 ∪ {𝑚𝑖𝑛}
𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛𝑜𝑑𝑒𝑠 𝑣 ∉ 𝑉 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡 𝑡𝑜 𝑚𝑖𝑛 // check all unvisited neighbors

𝑖𝑓 𝑑𝑖𝑠𝑡 𝑣 > 𝑑𝑖𝑠𝑡 𝑚𝑖𝑛 + 𝑤𝑒𝑖𝑔ℎ𝑡 𝑚𝑖𝑛, 𝑣
𝑑𝑖𝑠𝑡 𝑣 ≔ 𝑑𝑖𝑠𝑡 𝑚𝑖𝑛 + 𝑤𝑒𝑖𝑔ℎ𝑡 𝑚𝑖𝑛, 𝑣 // update shortest dist
prev[v] := min

return dist

Graph Structure
Example:

Source is A.
Run Shortest Path and update

graph table
Step 1: Visit A and Update

Neighbors Distances

Try this at home:

1. Given a graph table
implementation, try to

algorithmically update the
members of the table when

computing the shortest
path, that is implement,
graph::sp(string node1,

string node2)

• argmin of dist (not

previously visited)

is B

• B is visited

– marked

– prev is updated

• B’s neighbors are

updated in dist

Graph Structure Example

• argmin of dist (not

previously visited)

is E

• E is visited

– marked

– prev is updated

• E’s neighbors are

updated in dist

Graph Structure Example

• argmin of dist (not

previously visited)

is D

• D is visited

– marked

– prev is updated

• D’s neighbors are

updated in dist

Graph Structure Example

• argmin of dist (not

previously visited)

is C

• C is visited

– marked

– prev is updated

• C’s neighbors are

updated in dist

Graph Structure Example

• argmin of dist (not
previously visited)
is B

• B is visited
– marked

– prev is updated

• B’s neighbors are
updated in dist

• All items in dist are
marked .. DONE!

Graph Structure Example

Another Example

Find the shortest distance from (K) to every other node

Example

We set up our table

– Which unvisited vertex has the minimum distance to it?

Vertex Visited Distance Previous

A F ∞ Ø

B F ∞ Ø

C F ∞ Ø

D F ∞ Ø

E F ∞ Ø

F F ∞ Ø

G F ∞ Ø

H F ∞ Ø

I F ∞ Ø

J F ∞ Ø

K F 0 Ø

L F ∞ Ø

Example

We visit vertex K

Vertex Visited Distance Previous

A F ∞ Ø

B F ∞ Ø

C F ∞ Ø

D F ∞ Ø

E F ∞ Ø

F F ∞ Ø

G F ∞ Ø

H F ∞ Ø

I F ∞ Ø

J F ∞ Ø

K T 0 Ø

L F ∞ Ø

Example

Vertex K has four neighbors: H, I, J and L

Vertex Visited Distance Previous

A F ∞ Ø

B F ∞ Ø

C F ∞ Ø

D F ∞ Ø

E F ∞ Ø

F F ∞ Ø

G F ∞ Ø

H F ∞ Ø

I F ∞ Ø

J F ∞ Ø

K T 0 Ø

L F ∞ Ø

Example

We have now found at least one path to each of these vertices

Vertex Visited Distance Previous

A F ∞ Ø

B F ∞ Ø

C F ∞ Ø

D F ∞ Ø

E F ∞ Ø

F F ∞ Ø

G F ∞ Ø

H F 8 K

I F 12 K

J F 17 K

K T 0 Ø

L F 16 K

Example

We’re finished with vertex K

– To which vertex are we now guaranteed we have the shortest path?

Vertex Visited Distance Previous

A F ∞ Ø

B F ∞ Ø

C F ∞ Ø

D F ∞ Ø

E F ∞ Ø

F F ∞ Ø

G F ∞ Ø

H F 8 K

I F 12 K

J F 17 K

K T 0 Ø

L F 16 K

Example

We visit vertex H: the shortest path is (K, H) of length 8

– Vertex H has four unvisited neighbors: E, G, I, L

Vertex Visited Distance Previous

A F ∞ Ø

B F ∞ Ø

C F ∞ Ø

D F ∞ Ø

E F ∞ Ø

F F ∞ Ø

G F ∞ Ø

H T 8 K

I F 12 K

J F 17 K

K T 0 Ø

L F 16 K

Example

Consider these paths:

(K, H, E) of length 8 + 6 = 14 (K, H, G) of length 8 + 11 = 19

(K, H, I) of length 8 + 2 = 10 (K, H, L) of length 8 + 9 = 17

– Which of these are

shorter than any

known path?

Vertex Visited Distance Previous

A F ∞ Ø

B F ∞ Ø

C F ∞ Ø

D F ∞ Ø

E F ∞ Ø

F F ∞ Ø

G F ∞ Ø

H T 8 K

I F 12 K

J F 17 K

K T 0 Ø

L F 16 K

Example

We already have a shorter path (K, L), but we update the other

three

Vertex Visited Distance Previous

A F ∞ Ø

B F ∞ Ø

C F ∞ Ø

D F ∞ Ø

E F 14 H

F F ∞ Ø

G F 19 H

H T 8 K

I F 10 H

J F 17 K

K T 0 Ø

L F 16 K

Example

We are finished with vertex H

– Which vertex do we visit next?

Vertex Visited Distance Previous

A F ∞ Ø

B F ∞ Ø

C F ∞ Ø

D F ∞ Ø

E F 14 H

F F ∞ Ø

G F 19 H

H T 8 K

I F 10 H

J F 17 K

K T 0 Ø

L F 16 K

Example

The path (K, H, I) is the shortest path from K to I of length 10

– Vertex I has two unvisited neighbors: G and J

Vertex Visited Distance Previous

A F ∞ Ø

B F ∞ Ø

C F ∞ Ø

D F ∞ Ø

E F 14 H

F F ∞ Ø

G F 19 H

H T 8 K

I T 10 H

J F 17 K

K T 0 Ø

L F 16 K

Example

Consider these paths:

(K, H, I, G) of length 10 + 3 = 13 (K, H, I, J) of length 10 + 18 = 28

Vertex Visited Distance Previous

A F ∞ Ø

B F ∞ Ø

C F ∞ Ø

D F ∞ Ø

E F 14 H

F F ∞ Ø

G F 19 H

H T 8 K

I T 10 H

J F 17 K

K T 0 Ø

L F 16 K

Example

We have discovered a shorter path to vertex G, but (K, J) is still

the shortest known path to vertex J

Vertex Visited Distance Previous

A F ∞ Ø

B F ∞ Ø

C F ∞ Ø

D F ∞ Ø

E F 14 H

F F ∞ Ø

G F 13 I

H T 8 K

I T 10 H

J F 17 K

K T 0 Ø

L F 16 K

Example

Which vertex can we visit next?

Vertex Visited Distance Previous

A F ∞ Ø

B F ∞ Ø

C F ∞ Ø

D F ∞ Ø

E F 14 H

F F ∞ Ø

G F 13 I

H T 8 K

I T 10 H

J F 17 K

K T 0 Ø

L F 16 K

Example

The path (K, H, I, G) is the shortest path from K to G of length 13

– Vertex G has three unvisited neighbors: E, F and J

Vertex Visited Distance Previous

A F ∞ Ø

B F ∞ Ø

C F ∞ Ø

D F ∞ Ø

E F 14 H

F F ∞ Ø

G T 13 I

H T 8 K

I T 10 H

J F 17 K

K T 0 Ø

L F 16 K

Example
Consider these paths:

(K, H, I, G, E) of length 13 + 15 = 28 (K, H, I, G, F) of

length 13 + 4 = 17

(K, H, I, G, J) of length 13 + 19 = 32

– Which do we

update?

Vertex Visited Distance Previous

A F ∞ Ø

B F ∞ Ø

C F ∞ Ø

D F ∞ Ø

E F 14 H

F F ∞ Ø

G T 13 I

H T 8 K

I T 10 H

J F 17 K

K T 0 Ø

L F 16 K

Example

We have now found a path to vertex F

Vertex Visited Distance Previous

A F ∞ Ø

B F ∞ Ø

C F ∞ Ø

D F ∞ Ø

E F 14 H

F F 17 G

G T 13 I

H T 8 K

I T 10 H

J F 17 K

K T 0 Ø

L F 16 K

Example

Where do we visit next?

Vertex Visited Distance Previous

A F ∞ Ø

B F ∞ Ø

C F ∞ Ø

D F ∞ Ø

E F 14 H

F F 17 G

G T 13 I

H T 8 K

I T 10 H

J F 17 K

K T 0 Ø

L F 16 K

Example

The path (K, H, E) is the shortest path from K to E

of length 14

– Vertex G has four unvisited neighbors: B, C, D and F
Vertex Visited Distance Previous

A F ∞ Ø

B F ∞ Ø

C F ∞ Ø

D F ∞ Ø

E T 14 H

F F 17 G

G T 13 I

H T 8 K

I T 10 H

J F 17 K

K T 0 Ø

L F 16 K

Example

The path (K, H, E) is the shortest path from K to E

of length 14

– Vertex G has four unvisited neighbors: B, C, D and F
Vertex Visited Distance Previous

A F ∞ Ø

B F ∞ Ø

C F ∞ Ø

D F ∞ Ø

E T 14 H

F F 17 G

G T 13 I

H T 8 K

I T 10 H

J F 17 K

K T 0 Ø

L F 16 K

Example
Consider these paths:

(K, H, E, B) of length 14 + 5 = 19 (K, H, E, C) of length 14

+ 1 = 15

(K, H, E, D) of length 14 + 10 = 24 (K, H, E, F) of length

14 + 22 = 36

– Which do we

update?

Vertex Visited Distance Previous

A F ∞ Ø

B F ∞ Ø

C F ∞ Ø

D F ∞ Ø

E T 14 H

F F 17 G

G T 13 I

H T 8 K

I T 10 H

J F 17 K

K T 0 Ø

L F 16 K

Example

We’ve discovered paths to vertices B, C, D

Vertex Visited Distance Previous

A F ∞ Ø

B F 19 E

C F 15 E

D F 24 E

E T 14 H

F F 17 G

G T 13 I

H T 8 K

I T 10 H

J F 17 K

K T 0 Ø

L F 16 K

Example

Which vertex is next?

Vertex Visited Distance Previous

A F ∞ Ø

B F 19 E

C F 15 E

D F 24 E

E T 14 H

F F 17 G

G T 13 I

H T 8 K

I T 10 H

J F 17 K

K T 0 Ø

L F 16 K

Example

We’ve found that the path (K, H, E, C) of length 15

is the shortest

path from K to C

– Vertex C has one unvisited neighbor, B

Vertex Visited Distance Previous

A F ∞ Ø

B F 19 E

C T 15 E

D F 24 E

E T 14 H

F F 17 G

G T 13 I

H T 8 K

I T 10 H

J F 17 K

K T 0 Ø

L F 16 K

Example

The path (K, H, E, C, B) is of length 15 + 7 = 22

– We have already discovered a shorter path through

vertex E

Vertex Visited Distance Previous

A F ∞ Ø

B F 19 E

C T 15 E

D F 24 E

E T 14 H

F F 17 G

G T 13 I

H T 8 K

I T 10 H

J F 17 K

K T 0 Ø

L F 16 K

Example

Where to next?

Vertex Visited Distance Previous

A F ∞ Ø

B F 19 E

C T 15 E

D F 24 E

E T 14 H

F F 17 G

G T 13 I

H T 8 K

I T 10 H

J F 17 K

K T 0 Ø

L F 16 K

Example

We now know that (K, L) is the shortest path

between these

two points

– Vertex L has no unvisited neighborsVertex Visited Distance Previous

A F ∞ Ø

B F 19 E

C T 15 E

D F 24 E

E T 14 H

F F 17 G

G T 13 I

H T 8 K

I T 10 H

J F 17 K

K T 0 Ø

L T 16 K

Example

Where to next?

– Does it matter if we visit vertex F first or vertex J first?

Vertex Visited Distance Previous

A F ∞ Ø

B F 19 E

C T 15 E

D F 24 E

E T 14 H

F F 17 G

G T 13 I

H T 8 K

I T 10 H

J F 17 K

K T 0 Ø

L T 16 K

Example

Let’s visit vertex F first

– It has one unvisited neighbor, vertex D

Vertex Visited Distance Previous

A F ∞ Ø

B F 19 E

C T 15 E

D F 24 E

E T 14 H

F T 17 G

G T 13 I

H T 8 K

I T 10 H

J F 17 K

K T 0 Ø

L T 16 K

Example

The path (K, H, I, G, F, D) is of length 17 + 14 = 31

– This is longer than the path we’ve already discovered

Vertex Visited Distance Previous

A F ∞ Ø

B F 19 E

C T 15 E

D F 24 E

E T 14 H

F T 17 G

G T 13 I

H T 8 K

I T 10 H

J F 17 K

K T 0 Ø

L T 16 K

Example

Now we visit vertex J

– It has no unvisited neighbors

Vertex Visited Distance Previous

A F ∞ Ø

B F 19 E

C T 15 E

D F 24 E

E T 14 H

F T 17 G

G T 13 I

H T 8 K

I T 10 H

J T 17 K

K T 0 Ø

L T 16 K

Example

Next we visit vertex B, which has two unvisited

neighbors:

(K, H, E, B, A) of length 19 + 20 = 39 (K, H, E, B, D) of

length 19 + 13 = 32

– We update the path length to A
Vertex Visited Distance Previous

A F 39 B

B T 19 E

C T 15 E

D F 24 E

E T 14 H

F T 17 G

G T 13 I

H T 8 K

I T 10 H

J T 17 K

K T 0 Ø

L T 16 K

Example

Next we visit vertex D

– The path (K, H, E, D, A) is of length 24 + 21 = 45

– We don’t update A

Vertex Visited Distance Previous

A F 39 B

B T 19 E

C T 15 E

D T 24 E

E T 14 H

F T 17 G

G T 13 I

H T 8 K

I T 10 H

J T 17 K

K T 0 Ø

L T 16 K

Example

Finally, we visit vertex A

– It has no unvisited neighbors and there are no unvisited

vertices left

– We are done

Vertex Visited Distance Previous

A T 39 B

B T 19 E

C T 15 E

D T 24 E

E T 14 H

F T 17 G

G T 13 I

H T 8 K

I T 10 H

J T 17 K

K T 0 Ø

L T 16 K

Example

Thus, we have found the shortest path from vertex

K to each of

the other vertices

Vertex Visited Distance Previous

A T 39 B

B T 19 E

C T 15 E

D T 24 E

E T 14 H

F T 17 G

G T 13 I

H T 8 K

I T 10 H

J T 17 K

K T 0 Ø

L T 16 K

Example

Using the previous pointers, we can reconstruct the

paths

Vertex Visited Distance Previous

A T 39 B

B T 19 E

C T 15 E

D T 24 E

E T 14 H

F T 17 G

G T 13 I

H T 8 K

I T 10 H

J T 17 K

K T 0 Ø

L T 16 K

Example

Note that this table defines a rooted parental tree

– The source vertex K is at the root

– The previous pointer is the parent of the vertex in the tree

Vertex Previous

A B

B E

C E

D E

E H

F G

G I

H K

I H

J K

K Ø

L K

Comments on Dijkstra’s algorithm

Questions:

– What if at some point, all unvisited vertices have a distance ∞?

• This means that the graph is unconnected

• We have found the shortest paths to all vertices in the connected subgraph containing

the source vertex

– What if we just want to find the shortest path between vertices vj and vk?

• Apply the same algorithm, but stop when we are visiting vertex vk

– Does the algorithm change if we have a directed graph?

• No

Implementation and analysis

The initialization requires Q(|V|) memory and run time

We iterate |V| – 1 times, each time finding next closest vertex to the source

– Iterating through the table requires is Q(|V|) time

– Each time we find a vertex, we must check all of its neighbors

– With an adjacency matrix, the run time is Q(|V|(|V| + |V|)) = Q(|V|2)

– With an adjacency list, the run time is Q(|V|2 + |E|) = Q(|V|2) as |E| = O(|V|2)

Can we do better?

– Recall, we only need the closest vertex

– How about a priority queue?
• Try using a binary min heap

Implementation and analysis

The initialization still requires Q(|V|) memory and run time

– The priority queue will also requires O(|V|) memory

– We must use an adjacency list, not an adjacency matrix

Pick Min From Heap: We iterate |V| times, each time finding the closest vertex to the source

– Initialize: Place the distances into a priority queue

– The size of the priority queue is O(|V|)

– Each pick is constant, but then must swapDown O(ln(|V|))

– Each p, the work required for this is O(|V| ln(|V|))

Repeatedly Update Heap:

– Recall that each edge visited may result in a new edge being placed to the very top of the heap.

– Thus, the work required for this is O(|E| ln(|V|))

– NOTE: there must be a way to “eliminate” repeated nodes in the heap to keep the size restricted to V. But How? Can we do this in
constant time?

Thus, the total run time is O(|V| ln(|V|) + |E| ln(|V|))

Thus a priority heap may be preferred when the graph is sparse.

Applications of Graphs

• Modeling/Analyzing Networks
– Social networks

– Computer networks

– Markov Processes

– Connected components / Image analysis

• Flows
– Matching Problem

– Critical Paths

– Security: points of weakness

Common Paths on a Graph

• Shortest Paths

– Path connecting two nodes with minimum aggregate weight

• Hamilton Paths:

– Path that visits each node once

• Euler Paths

– Path that traverses each edge once

Source: TRTA, March 2003 - Tokyo rail map

Tokyo Railway Network

78

How would you represent this as a graph?
What are the nodes? Edges?
Analysis
• Shortest Path
• Traffic (max) Flow/ Bottle Neck
• Critical points / critical edges

Social Network Example:
Political Blogs Community Structure

Conservative

Liberal

conservative to conservative

liberal to liberal

between conservative & liberal
Image source: Adamic & Glance, 2005

Strength of Community

Citations of posts of top 20 liberal
& conservative blogs

≥ 5 citations

≥ 25 citations

Difficult Problems on a Graph

• The general graph does not have many constraint imposed on

edges (unlike trees)

– Problems that represented as graphs may have fairly high computational

complexity

• What is the time complexity of the previously noted Shortest Path

Algorithm?

Example: Traveling Salesman Problem

• Assume a salesman must visit a collection of cities to sell a

product. The salesman wishes to minimize the total distance

traveled. What is the best itinerary?

• How would you describe the solution to this problem?

Summary of Graphs

• A very general structure used to model many problem types

• Implementations
– Chaining

– Adjacency Matrix

– Sparse Matrix (graphs in application are generally very very sparse!)

• Time complexities can be fairly high compared to trees (given
reduced structural constraints)

Appendix

Jeremy Bolton, PhD

Assistant Teaching Professor

Spanning Trees

• Idea: Given a graph, produce a subgraph that is a tree (that

connects all nodes with n-1 edges)

• Algorithms

– Kruskals Algorithm

– Prim’s Algorithm

