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Graphs

 Definition:
— Agraphis a 2-tuple: G = (N,E)
— N is a set of nodes
— E Is a set of edges

* Note a tree Is a type of graph
— With added constraints
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Graph Terminology

An edge e is incident on a node n, if e = (ny,n;) or e
= (n;, Ny)

— Adirected edge e emanates from nl if e = (ny,n;)

— Adirected edge e terminates at nl if e = (n;, n,)

A path on a graph between two nodes n, and n; , is
a sequence of edges ey, e,, ... ,;where e

emanates at n, and e, termlnates ‘at n, andlall
intermediate edges ek are approprlately connected,
le, e, terminates at n.,, and e,,; emanates from

Myvq-

(A,B), (B,C), (C,D), (D,E)

Aloop is a path that emanates and terminates at
the same node. OR (more compactly)

A simple path is a path that contains no loops A-B-C-D-E
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Graph Terminology

A directed graph consists of edges which have implied direction.
An undirected graph consists of edges without implied direction.
A mixed graph consists of edges with and without direction.

An attributed graph is a graph where attributes are associated with
the edges or nodes (usually the edges)

A weighted graph is a graph with weight attributes associated with the
edges.

Edge Weights

Quantify the relationship

0.3 between two nodes. GEORGETOWIN
UNIVERSITY




Graph Terminology

A graph is connected if there exists a path from any node to any other node.

A fully connected simple graph is a graph with the maximum number of edges (Assuming it
IS not a multi-graph!):

— (n-1)2 edges: with no self-loops.

— (n)? edges: with self-loops

A simple graph is a graph such that there is never multiple edges connected the same node
pair.

A multigraph is a graph where there exists multiple edges connecting the same node pair.

The order or degree of a node is the number of edges incident upon it.
— In-degree: the number of edges terminating at a node
— Out-degree: the number of nodes emanating at a node
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Undirected

Directed

Degreeof A=4

Images: Jure Leskovec

Node Degree:

The number of neighbors an
Individual node has.

In directed graphs, we have in-degrees
and out-degrees.

* Sink: nodes with out-degree =0
e Source: nodes with in-degree =0
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Implementation of a Graph

How might we implement a Graph Structure?

Chaining:
— Nodes and pointers

Array:
— Adjacency Matrix

Efficient (chain or array):
— Sparse matrix
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Different Ways to Represent a
Graph: Adjacency Matrix M

* Representing edges (who is adjacent to
whom) as a matrix

— |\/|J = 1 if node | has an edge to node |

= 0 if node i does not have an edge to |

— M, = 1 if the network has self-loops (b
— M; = M; if the network is undirected,
orif i and ] share a reciprocated edge o

b

FEORGETOW:
glﬂVIVERSI 7*1'2(



Adjacency Matrix Example

1 2 3 4 5
~0 o o0 o0 o0 ) 1
o 0 1 1 0 2
M= 0o 1 0 1 o0 3
o 0 0 0 1 4
_ 1 1 o o o0_) °?
GEORGETOWN.
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Compute the Adjacency Matrices

2 3 1 2 3 4
170 1 0 1)) (o 1 o 1\
2l 1 o o 1 2l o o o o
M=3l 0 o o 1 3l 0 0o 0o o
4 1 1 0 al 0o 1 1 0_J
" » -~
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Analysis of Adjacency Matrix Implementation

* Space requirements
— O(N?) where N is the number of nodes

« Time requirements
— Creation / initialization: O(N?)

* In many applications, graphs are very sparse!
— A sparse representation may be more efficient.
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Different Ways to Represent a Graph
— Adjacency List

Keep track of all the edges in the
graph

— Edge Set
23
24
32
34
45
52
51

— Node Set with edges

aRrNE
_OTN W
INEN

N
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Adjacency List Implementation (Sparse)

e Space Reqguirements:

— O(N+E), where E < N? is the number of edges

 Inequality holds assuming there are no repeated edges (with different weights)
 The number of edges is quite low in sparse graphs

« Time Requirements:
— Creation / initialization: O(N+E), where E is the number of edges
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Traversing a Graph

 Class Discussion:

— Design a graph traversal algorithm
assuming graph is connected.

* Notes: Similar to tree, but there may
be cycles!

— Thus must assure no looping during
traversal
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Traversing a Graph

DFS

function DFS(node)
stack. push(node)
while( stack is not empty )
thisNode := stack.pop( )
for all nodes c adjacent to thisNode that have not been previously visited
if c is not null, stack. push(c)

BFS

function BFS(node)
queue. add(node)
while( queue is not empty )
thisNode := queue.dequeue( )
for all nodes c adjacent to thisNode that have not been previously visited
if cisnotnull, queue.add(c)
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Single Source Path Length: unweighted graphs

Problem: find the distance from one vertex v to all other vertices
— Use a breadth-first traversal

— Vertices are added in layers

— The starting vertex is defined to be in the zeroeth layer, L,

— While the k" layer is not empty:
+ All unvisited vertices adjacent to verticies in L, are added to the (k + 1) layer

Any unvisited vertices are said to be an infinite distance from v

Ko FORGETOW:
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Determining Distances

Consider this graph: find the distance from A to each other vertex
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Determining Distances

A forms the zeroeth layer, L,
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Determining Distances

The unvisited vertices B, F and G are adjacent to A
— These form the first layer, L
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Determining Distances

We now begin popping L, vertices: pop B
— His adjacent to B
— Itis tagged L,
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Determining Distances

Popping F pushes E onto the queue
— Itis also tagged L,
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Determining Distances

We pop G which has no other unvisited neighbours
— G s the last L, vertex; thus H and E form the second layer, L,
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Determining Distances

Popping H in L, adds C and I to the third layer L,
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Determining Distances

E has no more adjacent unvisited vertices
— Thus C and | form the third layer, L,
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Determining Distances

The unvisited vertex D Is adjacent to vertices in L,
— This vertex forms the fourth layer, L,
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Finding Shortest Paths from 1 source: weighted graphs

 Class Discussion:

— Given a graph, design an algorithm to find the shortest path between the two
nodes
— What is the shortest path between
« Aand C?
« Aand F?

How would you do this?

— Which scheme is most appropriate here?
- BFS
- DFS




Dijkstra’s Algorithm: Shortest

function shortestWeightedPath(s: source) // computes shortest path from 1 source to all other nodes
N :=list of all Nodes

dist/fvn € N J:=iInf //Initialize distance to be inf , dist [j] is distance from source to node j
dist/s|:= 0 //distance to source is ()

V = ¢ //nodes visited
whileV + N

min = argmin;gy (dist [i])

V =V U {min}

for all nodes v & V adjacent to min // check all unvisited neighbors
if dist[v] > dist[min] + weight(min, v)

dist[v] := dist[min] + weight(min, v) // update shortest dist
return dist

A “conditional” BFS: continue BES

toward node with least aggregate weight




Example Graph Structure Implementation

Graph Structure: to allow for an efficient shortest path determination
— Table with N rows, each col would hold

 List of nodes names: implemented as a hash to allow for direct indexing
« Adjacency List (represents edges and weights)
(for any traversal)

— Initialize all nodes as unmarked

— During traversal, mark a node upon visit
« Dist (for shortest path)

— Keep track of shortest path from source to each node

(for shortest path)

— When updating shortest path, keep track of preceding node in shortest path. Allows for easy retrieval of nodes
sequence of shortest path (in reverse)

function shortestWeightedPath(s: source) // computes shortest path from source to all other nodes
N = list of all Nodes

dist/N n € N ] :=inf //initialize distance to be inf , dist [j] is distance from source to node j
dist/s] := 0 / /distance to source is 0
¢ // nodes visited

whileV # N

min = argmin;gy (dist [i])

V =V U{min}

for allnodes v € V adjacent to min // check all unvisited neighbors

if dist[v] > dist[min] + weight(min, v)
dist[v] := dist[min] + weight(min, v) // update shortest dist

FORGETOW,
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Graph Structure

Example:

Source is A.

Run Shortest Path and update

graph table

Step 1: Visit A and Update

Neighbors Distances

Hash
on
Name

Name Marked Dist Prev adj

g A W N

m m O O mw »

0 NULL

4 A
inf NULL

inf  NULL

inf  NULL
inf  NULL

Graph structure
(already initialized)

LL——B(4)

LL———= A(4) " C(10) TE(3) " F(7)
LL B(10) [ D(2)

L c(2) [ EM)

LL. B(3) —|D(1) —F@)
LL——B(7) [|E@)




Graph Structure Example

argmin of dist (not
previously visited)
IS B

B Is visited
— marked

: Hash
— prev is updated

on

Name | Name Marked Dist Prev adj

B’s neighbors are 0
updated in dist :
2
3
4
B

m M O O m »

0 NULL LL—— B@4)

4 A LL— A(4) g0 " F(7)
14 NULL LL B(10) > D(2)

inf NULL LL C(2) " E(1)

7 NULL LL B(3) ~| D(1) - F(4)

11 NULL LL ——— B(7) [ E@4)




Graph Structure Example

4

argmin of dist (not °

previously visited) 4

is E 4 .

E is visited °

— marked

: Hash
— prev is updated éh
Name | Name Marked Dist Prev adj

E's nelgh_bor§ are 0 n —— 5

updated in dist
] B t A LL——| A@4) [—]C(10) M E@) [—1F(7)
2 C 14 NULL LL B(10) —{ D)
3 D 8 NULL LL c@) TEM)
v | E reE L 83) —{0() |—[F@)
5 F 11 NULL LL———|B(7) [ E(4)




Graph Structure Example B 4

h 10 3 @
« argmin of dist (not @

previously visited) | 4
Is D | (E
| D
 Disvisited
— marked
: Hash
— prev is updated oh
Name | Name Marked Dist Prev adj
e D’s nelghbor.s are 0 n ; o — 5
updated in dist
1 1B L 4 A LL——1A@) [—]c(0) E@) [ F)
2 C 0 10 NULL LL 8(10) — D@)
3 D 1 8 E LL —Ice) =
«1&8 T TE 8@ {00 |—[F@
5 F 0 11 NULL LL——B(7) [ E@4)




Graph Structure Example

« argmin of dist (not

previously visited)
Is C

e Cisvisited
— marked
— prev is updated

 C’s neighbors are
updated in dist

| A
| C
4
2
D
Hash
on
Name | Name Marked Dist Prev adj
0 A 1 0 NULL LL——{B@)
1 1B 1 4 A LL——{A@4) [ cH0) [ E@) [F®)
2 C 1 10 D LL B(10) I D)
3 D 1 8 E LL cQ) {Eq)
« &8 X TH R 8@ {00 |—{F®
5 F 0 11 NULL LL——B(7) [ E@4)




Graph Structure Example

4
(A .
10 3 F
argmin of dist (not IR
previously visited) |
Is B 2 e
19
B is visited .
— marked
— prev is updated Hash
_ Ng;,e Name Marked Dist Prev adj
B’s neighbors are
updated in dist 0 & i R T T
1 B 1 4 A LL——— A(4) " C(10) [ E(3) 1 F(7)
. . C 1 10 D LL :
All items in dist are )
marked .. DONE! 3 D 1 8 E LL c@) 1 E(1)
4 | E L re K B@) —|Db() —{F@)
5 F 1 11 (EorB) LL——— B(7) [ E@4)




Another Example

Find the shortest distance from (K) to every other node

7\
/ 18 17

R / 12--'\K

F— 3\|----
/\ \11 | 8/
S EN/T
/ \9
D\10 \/6 ~L
T——
/21/\13\ : Egl
A 20 B/7""b

FEORGETOW:
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We set up our table

Example

— Which unvisited vertex has the minimum distance to it?

F—*

A

G

A\

11

| —

A\
/

/

\l/

/ \

17
\

12—K

16

Vertex Visited Distance Previous

rFrXGG—ITOTTMOO m®>

F

S e I e v I o A v M i R

8 08 8 88 8 8 8 8 8 8

o

1&&&&&&&&&&&

(

KGETOW
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Example

We visit vertex K

Vertex Visited Distance Previous

/ A F 00 (]
F | — C F o0 (]
/\ 1)l g D F o0 o
14 15 16 E F o @
/ 22 \||_|/ F F o0 ]
5 \ " \9\ G F i %
/ \\10\E/ L H F 0 %
/ \ /5 1 J F o0 (]
A——20—B—7—C K T 0 9
RGETOW,
L F 0 @E’{{HZERSIT}?(



Example

Vertex K has four neighbors: H, |, Jand L

19 12 1;7 Vertex Visited Distance Previous
é12£@
8
22? [ 16

d

O

H F 00 1)
| F 00 )]
J F 00 %)
K T 0) 2



Example

We have now found at least one path to each of these vertices

/19 12 1;7 Vertex Visited Distance Previous
G
8
Ezf [ 16

O

H F 8 K
I F 12 K
J F 17 K
K T 0 9



Example

We’'re finished with vertex K
— To which vertex are we now guaranteed we have the shortest path?

J
191/8/ \17

Vertex Visited Distance Previous

/ A F 00 %]

/4/GH3-\_ /12—-—-\K B F © %)

F \ | — / C F o0 %]

/\ 11 g D F . %

14 15 16 E i - @

/ 22 \Il-l/ = - . z

5 \ o7 9 G F 0 @

/ \\10\ L L H F 8 K

21 13 N | F 12 K

/ \ % | J F 17 K
A——20—B—7—C ] - 6 GEORGETOWN(

'NIVERSITY

(



Example

We visit vertex H: the shortest path is (K, H) of length 8

— Vertex H has four unvisited neighbors: E, G, I, L

J

191/8/\17

,G...__// \

g4 \3\|#127K
|

/\\1 1 8

2
14 5 16
/A E@{
\ 9
10

5] ~~

/D\ —F -

Vertex Visited Distance Previous

O—TOTMOO m@™>

—

F

M T = T T T T T T

n

R, 888 88 88

=
®»

AXAQQQQQQQQAR

e a— m—

TENIVERSITY



Example

Consider these paths:
(K, H, E) oflength8+6 =14 (K, H, G) of length 8 + 11 = 19
(K,H,Doflength8+2=10 (K, H,L)oflength8 +9 =17

— Which of these are Vertex Visited Distance Previous

shorter than any q K
known path? 12#

E F 00 )]
5 9 G F o0 %)
Eﬁ XD w8 |«
| F 12 K

L = 16 g""“ RGETOWIN_

VIVERSITY



Example

We already have a shorter path (K, L), but we update the other

three

E

G \
Q/sqﬁ'”f
11
8
15 &i 1

6

6

O

Vertex Visited Distance Previous

— I ®

14

19

10

16

I X I

e a— m—

TENIVERSITY



Example

We are finished with vertex H
— Which vertex do we visit next?

J
19//\
18 17
¢/
4 3 K
F \ \l....12/
/\ 11 1 4
S EN/T
H
/ \9
D\10 \/6 ~
T—
21/\13 /E‘
\

OTMMmMmoOoO m@>

F

M T M T M T

n

o0
o0
o0
o0

14

o0

19

10
17

16

Vertex Visited Distance Previous

T QI QA8

AN L

GEORGETOW:
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Example

The path (K, H, I) Is the shortest path from K to | of length 10

— Vertex | has two unvisited neighbors: G and J

J
191/8/ \17

F—* /GR3Q§,12-*\K
/ \ 11 8/
22 ) \?/ \*
/ /H\g
R0 \ ° L

Vertex Visited Distance Previous

OTMMmMmoOoO m@>

F

M T M T M T

-

o0
o0
o0
o0

14

o0

19

10
17

16

T QI QA8

AN L
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Example

Consider these paths:
(K, H, I, G) of length 10 + 3 13 (K, H, I, J) of length 10 + 18 = 28

12--'K

"'h..

Vertex Visited Distance Previous

G F 19 H
I T 10 H
J F 17 K

GEORGETOW:,
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Example

We have discovered a shorter path to vertex G, but (K, J) is still
the shortest known path to vertex J

Vertex Visited Distance Previous

18 17\
3@927*?
11
8
2
\|/
H
G F 13 |
| T 10 H
J F 17 K

GEORGET
TUNIVERSITY



Example

Which vertex can we visit next?

19//J\17
4’G< /18 ..-\K
NN
14 15 \I/ 16

/ 22
/N9
/D\\m\\E/G ~L

Vertex Visited Distance Previous

OTMMmMmoOoO m@>

F

M T M T M T

o0
o0
o0
o0

14

o0

13

17

16

— QT

K

s —

IE

ORGETOWN,,

'NIVERSITY



Example

The path (K, H, I, G) is the shortest path from K to G of length 13

— Vertex G has three unvisited neighbors: E,FandJ

A\

F—4 3 |/....12/
/\ 11|

by 1° \l/ 10
/ \ / \9
D\10 6 ~L

Vertex Visited Distance Previous

OTMMmMmooO W@ >

F

- T T T M M

o0
o0
o0
o0

14

o0

13

17

16

— QT

K

GEORGETOW:
(J 4, V.ERSIZ*IQ\C



_ Example
Consider these paths:

(K, H, I, G, E)oflength 13 + 15=28 (K, H, I, G, F) of
length 13 +4 =17

(K, H, |, G, J) of length 13 + 19 = 32

— Which do we 185 1 Vertex Visited Distance Previous
update? G
g:{“ |/....12
2

14 15 E F 14 H

2 \||_|/ F F 0 )

o G T 13 |
E

1 J F 17 K

GEORGETOW:,
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Example

We have now found a path to vertex F

19 f ;- Vertex Visited Distance Previous

E
22 H F ; 17 G
/S G T 13 |
5]
E
1 J F 17 K

GEORGETOW:,
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Example

Where do we visit next?

J
/)
/ 18 17
4"G\3\ /12...-\K

\

T
AN
H
/ \9
Aol

F/

Vertex Visited Distance Previous

TmMmOoOO @™ >

F

M T M T m

o0
o0
o0
o0

14
17

17

16

O IR

K

GEORGETOW:
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Example

The path (K, H, E) Is the shortest path from K to E

of length 14

— Vertex G has four )76\
Y

G-....

\3

4/\22 11\l/

/1
/ ~g
3 — %3 h
10
21/ \13\ E1

/

| —

12--'K

/

7

1

Mmoo m@>

F

M| = T/ T T

o0
o0
o0
o0

14
17

17

16

Isited neighbors: B, C, D and F

Vertex Visited Distance Previous

(RSSO

K

GEORGETOW:
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Example

The path (K, H, E) Is the shortest path from K to E
of length 14

— Vertex G has four unvisited neighbors: B, C, D and F
Vertex Visited Distance Previous

N LN
\

o @

(@) //

- w
/

I\J.
mmGoO O o
M= T M| M

18188
O QR

5 1
! @ (3"" RGETOWJ\C

UNIVERSITY



| Example
Consider these paths:

(K, H, E, B) of length 14 + 5=19 (K, H, E, C) of length 14

+1=15
(K,H, E, D) oflength 14 + 10 =24 (K, H, E, F) of length
14 + 22 = 36
Vertex Visited Distance Previous
- Whichdowe _ g~ .
update? \’ -

mmoO W
it I
8
O I QN

5 1
! @ GEORGETOWINC

UNIVERSITY



Example

We've discovered paths to vertices B, C, D

Vertex Visited Distance Previous

/
41— G, B F 19 E
\ C F 15 E
n ) D F 24 E
14 15\ E T 14 H
F F G

|
22 H/ 17
/ \5
6
10
E
13
5

5
g GEORGETOW:,
1 UNIVERST 7*1'2\('



Example

Which vertex i1s next?

J
7N
)
/\ \11\;#182/
14 15 \Ii/ 16
/ N~

/ 22
9
/D\\m \E/6 L

F/

Vertex Visited Distance Previous

OO >

F

F
F
F

o0
19
15
24

17

17

16

mmmQ

@

K

GEORGETOW:
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Example

We've found that the path (K, H, E, C) of length 15
IS the shortest
path from Kto C

— Vertex C has one unvisited neithbor, B

19 1 8/ \17 Vertex Visited Distance Previous
G/ \ A F 00 %)
F“’4/ ~3 /____12..-K B F 19 E
\ | / C T 15 E
/ \ 11 é 8 D F 24 E
14 15 \ 16
2 ||_|/ F F 17 G
N
D \ e O
/N 10—\ L
21 13 / N\
/ 5 1 J F 17 K
-
A—20 . - 16 | GRORGETOWN

UNIVERSITY



Example

The path (K, H, E, C, B) iIs of length 15 + 7 = 22

— We have already discovered a shorter path through
vertex E

Vertex Visited Distance Previous

B F 19 E
C T 15 E
D F 24 E

5 1
! @ GEORGETOWINC

UNIVERSITY



Example

Where to next?

S

\
£ 4”GR3\ I/""127K

ANy
D/ \ 6/H\
/ \\10 L

8

9

A\

16

L

Vertex Visited Distance Previous

A
B

D

F
F

F

o0

19

24

17

17

16

%]
E

E

G

K

GEORGETOW:
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Example

We now know that (K, L) Is the shortest path
between these

two points /J\
— Vertex L has }oh?m1 isited ne!i\;‘,ﬂﬁAEbré{iS;ted Distance Pfe\éious
-8,/ ____\K B F 19 E
F \ ~ | ....12/
/ \ 11 g D F 24 E
/14 20 P \l/ 1P

H F F 17 G
D \ 6/ \9
\ L
/\ 10 / \<>

\E
21 13 /
/ \ /5 1 J F 17 K

LT 16 YERERSITY



Where to next?

4

/

11

Example

/

| —

18

17

\

12—K

/

\l/

/ \

1

B

D

F

F
F

F

o0

19

24

17

17

It vertex F first or vertex J first?

— Does it matter if V\iéj
19

d

G

A\

Vertex Visited Distance Previous
A

%]
E

E

G

K

GEOR
77 UNI

v

GETOW:
IVERSIT 7*1'2\('



Example

Let’s visit vertex F first

— It has one unvisited neighbor, vertex D

7\
/ 1

18 7\
4/Gi3\l/""127K

11 |

/14 b P \l/ 10
D\10 \ 6/ \Q\L

/\ Y
/21 13\ Y
\

20 B/7-—C

Vertex Visited Distance Previous

A
B

D

F
F

F

00 %]
19 E
24 E
17 G
17 K

GEORGETOW:,
IL “TI’.ERSIZTI'?C



Example

The path (K, H, I, G, F, D) is of length 17 + 14 = 31
— This is longer than the path we’ve already discovered

Vertex Visited Distance Previous

G/ A F o0 %]

41— ig B F 19 E
S z 1 D F 24 E
14 15
22 F T 17 G
10 \ %
\E‘

/
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Example

Now we visit vertex J

— It has no unvisited/n;j?hbors
19 Vertex Visited Distance Previous

17
18 \ A F o @

F/4/Gi3\ /12___K B F 19 E

11I#/ D F 24 E
I\

/ 22
/ \9
D\10 \ 6 ~L

/\ —~F
2 R 5 ‘1 J T 17 K
/e Nr—b B
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Example

Next we visit vertex B, which has two unvisited

neighbors:

(K, H, E, B, A) of length 19 + 20 = 39 (K, H, E, B, D) of

length 19 + 13 = 32 |

— We update the path length to A 19// \17
18

d

Vertex Visited Distance Previous

\ A F 39 B
|:/4.,G......3\ /12...-K B T 19 E
\ (=17
/ 1) s D F 24 E
14 \ 16
by 19 Il-I/
@é AL s
L
10— \l/
21 13 / N\

CERcAE
AF—20—Br " GEORGETOWNC
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Example

Next we visit vertex D
— The path (K, H, E, D, A) is of length 24 + 21 = 45
— We don’t update A

J
191/8/ \17

R / 12--'\K

Vertex Visited Distance Previous
A F 39 B

O/ W

A)—20 B—7—C 92
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Finally, we visit vertex A
— It has no unvisited neighbors and there are no unvisited

vertices left
— We are done

F/

I\
/
/D\\m \/

/19

4/G“"

22

\

21 13

1
@ 20 \B{—7-—C

)\
5

\

N

1

Example

I..---'1
|

\l/

6

/ \

J
//\
18 17

\K
2/

9

~

16

L

Vertex Visited Distance Previous

A

T

39

B

GEOR
(J?\

GETOWN(
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Example

Thus, we have found the shortest path from vertex

K to each of
the other vertices

J

/19//\17
F’4/Gi3“‘ | ___12.-\K
/\ 11| /
/14 2y 1° \l/ 1P
D\m \ 6/ 9\L

Vertex Visited Distance Previous

rFrXGG—ITOTTMOO m®>

T

4 A4 A4 A A4 A4-A-4-44

39
19
15
24
14
17
13

8
10
17

0
16

1®7<Ix—G)Irnrnrr|w

TEN
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Example

Using the previous pointers, we can reconstruct the
paths

Vertex Visited Distance Previous
T 39
19
15
24
14
17
13
8
10
17

0

I&xIx—OImmmw

rAXe—TITOTMOO m@>
— A4 A4 A4 4 A4 444 -4



Example

Note that this table defines a rooted parental tree
— The source vertex K is at the root
— The previous pointer is the parent of the vertex in the tree

/T\L Vertex Previous
N\
e \

A F

G

rAXe—IOmMmMmMmooO WX
AQARAIX—OImMmMmMmMmES.
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Comments on Dijkstra’s algorithm

Questions:

— What if at some point, all unvisited vertices have a distance «?
« This means that the graph is unconnected

« We have found the shortest paths to all vertices in the connected subgraph containing
the source vertex

— What if we just want to find the shortest path between vertices v;and v,?
* Apply the same algorithm, but stop when we are visiting vertex v,

— Does the algorithm change if we have a directed graph?
* No
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Implementation and analysis

The initialization requires ®(|V|) memory and run time

We iterate |V| -1 times, each time finding next closest vertex to the source
— lterating through the table requires is ®(|V|) time
— Each time we find a vertex, we must check all of its neighbors
— With an adjacency matrix, the run time is O(|V|(|V| + [V])) = ©(|V|?)
— With an adjacency list, the run time is O(|V[]? + [E|) = ©(|V|?) as |E| = O(|V]?)

Can we do better?
— Recall, we only need the closest vertex

— How about a priority queue?
* Try using a binary min heap
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gUZVI VERSI ZTIL:Z\C



Implementation and analysis

The initialization still requires ®(|V[) memory and run time
— The priority queue will also requires O(|V|) memory
— We must use an adjacency list, not an adjacency matrix

Pick Min From Heap: We iterate |V| times, each time finding the closest vertex to the source
— Initialize: Place the distances into a priority queue
— The size of the priority queue is O(|V|)
— Each pick is constant, but then must swapDown O(In(|V]))
— Each p, the work required for this is O(|V| In(|V]))

Repeatedly Update Heap:
— Recall that each edge visited may result in a new edge being placed to the very top of the heap.
— Thus, the work required for this is O(|E| In(|V]))

— NOTE: there must be a way to “eliminate” repeated nodes in the heap to keep the size restricted to V. But How? Can we do this in
constant time?

Thus, the total run time is O(|V| In(|V]) + |E| In(|V]))

Thus a priority heap may be preferred when the graph is sparse.
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Applications of Graphs

* Modeling/Analyzing Networks
— Social networks
— Computer networks
— Markov Processes
— Connected components / Image analysis

* Flows
— Matching Problem
— Critical Paths
— Security: points of weakness
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Common Paths on a Graph

» Shortest Paths
— Path connecting two nodes with minimum aggregate weight

« Hamilton Paths:
— Path that visits each node once

* Euler Paths
— Path that traverses each edge once
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How would you represent this as a graph?

Tokyo Railway Network What are the nodes? Edges?

Analysis
* Shortest Path

» Traffic (max) Flow/ Bottle Neck
» Critical points / critical edges

A B c D E F
E":"“"‘“ A ﬁ;‘;@‘ Lt —
Ralway S
M <0 Y 25 sl D) e by
& 'gf’ M o o 63@,,»““ y ;@3” ’M ‘ﬁy"” ‘9»““5; - &y R . B o
0 ° 0 ° . 0 ° ° ° O s gﬁf ol e |
- - T “fe N\ = I ;
mmvm
s
Hikihune
1 fud Rt
Hoajo- Wt Keselne  Thru trains run on Keisel Lino
= azumgasn @y_gg;mn
2 Ly o 2
.
Thaito
] -
Thru trains run on Kaio Line. Kaid Line =] ;“sluné::‘um

o

MR

-

=3
gs{-&m
4 4

Desgred by Bignt vemationas

©March 2008 TRTA

Source: TRTA, March 2003 - Tokyo rail map
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Social Network Example:
Political Blogs Community Structure

. Conservative

‘ Liberal

Emmm—— conservative to conservative ’ o4 Ty '
s |iberal to liberal "

between conservative & liberal

Image source: Adamic & Glance, 2005
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Strength of Community

1 , ;25 citations

Citations of posts of top 20 liberal
& conservative blogs

2 25 citations
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Difficult Problems on a Graph

* The general graph does not have many constraint imposed on
edges (unlike trees)

— Problems that represented as graphs may have fairly high computational
complexity

« What is the time complexity of the previously noted Shortest Path
Algorithm?
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Example: Traveling Salesman Problem

« Assume a salesman must visit a collection of cities to sell a

product. The salesman wishes to minimize the total distance
traveled. What is the best itinerary?

 How would you describe the solution to this problem?
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Summary of Graphs

« Avery general structure used to model many problem types

* Implementations
— Chaining
— Adjacency Matrix
— Sparse Matrix (graphs in application are generally very very sparse!)

« Time complexities can be fairly high compared to trees (given
reduced structural constraints)
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Appendix

Jeremy Bolton, PhD
Assistant Teaching Professor
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Spanning Trees

 |dea: Given a graph, produce a subgraph that is a tree (that
connects all nodes with n-1 edges)

 Algorithms
— Kruskals Algorithm
— Prim’s Algorithm
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