

COSC160: Data Structures Graph Structures

Jeremy Bolton, PhD Assistant Teaching Professor

Supplemental Slides provided by A. Gates and L. Singh

A special thanks to D. Harder for use of presentation material.

Outline

- I. Graphs vs. Trees
 - I. Terminology
 - I. Paths
 - II. Traversals
 - I. Class Exercise: Design a Traversal Scheme
 - II. DFS
 - III. BFS
- II. Paths
- III. Implementations
- IV. Applications
 - I. Maps / Networks
 - II. Matching Problem

Graphs

- Definition:
 - A graph is a 2-tuple: G = (N,E)
 - N is a set of nodes
 - E is a set of edges
- Note a tree is a type of graph
 - With added constraints

Graph Terminology

- An edge e is **incident** on a node n_1 if $e = (n_1, n_i)$ or $e = (n_i, n_1)$
 - A directed edge e emanates from n1 if $e = (n_1, n_i)$
 - A directed edge e terminates at n1 if $e = (n_i, n_1)$
- A **path** on a graph between two nodes n_1 and n_i , is a sequence of edges e_1, e_2, \ldots, e_j where e_1 emanates at n_1 and e_i terminates at n_i , and all intermediate edges e_k are appropriately connected, ie, e_k terminates at n_{k+1} and e_{k+1} emanates from n_{k+1} .
- A **loop** is a path that emanates and terminates at the same node.
- A simple path is a path that contains no loops

(A,B), (B,C), (C,D), (D,E)

OR (more compactly)

A - B - C - D - E

Graph Terminology

- A directed graph consists of edges which have implied direction.
- An undirected graph consists of edges without implied direction.
- A mixed graph consists of edges with and without direction.
- An attributed graph is a graph where attributes are associated with the edges or nodes (usually the edges)
- A weighted graph is a graph with weight attributes associated with the edges.

Edge Weights

Quantify the relationship between two nodes.

Graph Terminology

- A graph is **connected** if there exists a path from any node to any other node.
- A **fully connected** simple graph is a graph with the maximum number of edges (*Assuming it is not a multi-graph*!):
 - (n-1)² edges: with no self-loops.
 - (n)² edges: with self-loops
- A **simple graph** is a graph such that there is never multiple edges connected the same node pair.
- A multigraph is a graph where there exists multiple edges connecting the same node pair.
- The order or degree of a node is the number of edges incident upon it.
 - In-degree: the number of edges terminating at a node
 - Out-degree: the number of nodes emanating at a node

Node Degree:

The number of neighbors an Individual node has.

In directed graphs, we have in-degrees and out-degrees.

- **Sink**: nodes with out-degree = 0
- **Source:** nodes with in-degree = 0

Images: Jure Leskovec

Implementation of a Graph

- How might we implement a Graph Structure?
- Chaining:
 - Nodes and pointers
- Array:
 - Adjacency Matrix
- Efficient (chain or array):
 - Sparse matrix

Different Ways to Represent a Graph: Adjacency Matrix M

- Representing edges (who is adjacent to whom) as a matrix
 - $M_{ij} = 1$ if node i has an edge to node j = 0 if node i does not have an edge to j
 - $M_{ii} = 1$ if the network has self-loops
 - $M_{ij} = M_{ji}$ if the network is undirected, or if i and j share a reciprocated edge

Adjacency Matrix Example

Compute the Adjacency Matrices

Analysis of Adjacency Matrix Implementation

- Space requirements
 - $O(N^2)$ where N is the number of nodes
- Time requirements
 - Creation / initialization: O(N²)
- In many applications, graphs are very sparse!
 - A sparse representation may be more efficient.

Different Ways to Represent a Graph – Adjacency List

Keep track of all the edges in the graph

- Edge Set

 2 3
 2 4
 3 2
 3 4
 4 5
 5 2
 5 1
- Node Set with edges
 1:
 2: 3 4
 3: 2 4
 4: 5
 5: 1 2

Adjacency List Implementation (Sparse)

- Space Requirements:
 - O(N+E), where $E \le N^2$ is the number of edges
 - Inequality holds assuming there are no repeated edges (with different weights)
 - The number of edges is quite low in sparse graphs
- Time Requirements:
 - Creation / initialization: O(N+E), where E is the number of edges

Traversing a Graph

- Class Discussion:
 - Design a graph traversal algorithm assuming graph is connected.
- Notes: Similar to tree, but there may be cycles!
 - Thus must assure no looping during traversal

Traversing a Graph

• DFS

function DFS(node)
stack.push(node)
while(stack is not empty)
thisNode ≔ stack.pop()
for all nodes c adjacent to thisNode that have not been previously visited
if c is not null,stack.push(c)

• BFS

Single Source Path Length: unweighted graphs

Problem: find the distance from one vertex v to all other vertices

- Use a breadth-first traversal
- Vertices are added in *layers*
- The starting vertex is defined to be in the zeroeth layer, L_0
- While the k^{th} layer is not empty:
 - All unvisited vertices adjacent to verticies in L_k are added to the $(k + 1)^{st}$ layer

Any unvisited vertices are said to be an infinite distance from v

Consider this graph: find the distance from A to each other vertex

A forms the zeroeth layer, L_0

The unvisited vertices B, F and G are adjacent to A

– These form the first layer, *L*

We now begin popping L_1 vertices: pop B

- H is adjacent to B
- It is tagged L_2

Popping F pushes E onto the queue

– It is also tagged L_2

We pop G which has no other unvisited neighbours

– G is the last L_1 vertex; thus H and E form the second layer, L_2

Popping H in L_2 adds C and I to the third layer L_3

- E has no more adjacent unvisited vertices
- Thus C and I form the third layer, L_3

The unvisited vertex D is adjacent to vertices in L_3

– This vertex forms the fourth layer, L_4

Finding Shortest Paths from 1 source: weighted graphs

- Class Discussion:
 - Given a graph, design an algorithm to find the shortest path between the two nodes
 - What is the shortest path between
 - A and C?
 - A and F?
- How would you do this?
 - Which scheme is most appropriate here?
 - BFS
 - DFS

Dijkstra's Algorithm: Shortest

```
function shortestWeightedPath(s: source) // computes shortest path from 1 source to all other nodes 
N := list of all Nodes 
dist[<math>\forall n \in N] := inf // initialize distance to be inf , dist [j] is distance from source to node j 
dist[s] := 0 // distance to source is 0 
V := \phi // nodes visited 
while V \neq N 
min := argmin_{i \notin V} (dist [i]) 
V := V \cup {min} 
for all nodes v \notin V adjacent to min // check all unvisited neighbors 
if dist[v] > dist[min] + weight(min, v) 
dist[v] := dist[min] + weight(min, v) // update shortest dist
```

return dist

toward node with least aggregate weight

Example Graph Structure Implementation

- Graph Structure: to allow for an efficient shortest path determination
 - Table with N rows, each col would hold
 - · List of nodes names: implemented as a hash to allow for direct indexing
 - Adjacency List (represents edges and weights)
 - Marked (for any traversal)
 - Initialize all nodes as unmarked
 - During traversal, mark a node upon visit
 - Dist (for shortest path)
 - Keep track of shortest path from source to each node
 - Previous (for shortest path)
 - When updating shortest path, keep track of preceding node in shortest path. Allows for easy retrieval of nodes sequence of shortest path (in reverse)

```
 \begin{aligned} function \ shortestWeightedPath(s: \ source) \ // \ computes \ shortest \ path \ from \ source \ to \ all \ other \ nodes \\ N & \coloneqq \ list \ of \ all \ Nodes \\ dist[\forall \ n \in N \ ] := \ inf \ // \ initialize \ distance \ to \ be \ inf \ , \ dist[j] \ is \ distance \ from \ source \ to \ node \ j \\ dist[s] := 0 \ // \ distance \ to \ source \ is \ 0 \\ V & \coloneqq \phi \ // \ nodes \ visited \\ while \ V \neq N \\ & \min \coloneqq \ argmin_{i\notin V}(dist \ [i]) \\ V & \coloneqq V \cup \{min\} \\ for \ all \ nodes \ v \notin \ V \ adjacent \ to \ min \ // \ check \ all \ unvisited \ neighbors \\ if \ dist[v] > \ dist[v] = \ dist[min] + weight(min, v) \\ & dist[v] \coloneqq dist[win] + weight(min, v) \ // \ update \ shortest \ dist \\ & prev[v] \coloneqq min \end{aligned}
```


Graph Structure Example: Source is A.

Run Shortest Path and update graph table Step 1: Visit A and Update Neighbors Distances

Try this at home:

1. Given a graph table implementation, try to algorithmically update the members of the table when computing the shortest path, that is implement, graph::sp(string node1, string node2)

- argmin of dist (not previously visited) is B
- B is visited
 - marked
 - prev is updated

- argmin of dist (not previously visited) is E
- E is visited
 - marked
 - prev is updated

В

7

4

Α

- argmin of dist (not previously visited) is D
- D is visited
 - marked
 - prev is updated

В

10

7

3

Е

F

4

4

С

D

2

А

- argmin of dist (not previously visited) is C
- C is visited
 - marked
 - prev is updated

- argmin of dist (not previously visited) is B
- B is visited
 - marked
 - prev is updated
- B's neighbors are updated in dist
- All items in dist are marked .. DONE!

Another Example

Find the shortest distance from (K) to every other node

We set up our table

- Which unvisited vertex has the minimum distance to it?

Vertex	Visited	Distance	Previous
А	F	00	Ø
В	F	∞	Ø
С	F	00	Ø
D	F	∞	Ø
Е	F	∞	Ø
F	F	∞	Ø
G	F	∞	Ø
Н	F	∞	Ø
	F	00	Ø
J	F	∞	Ø
K	F	0	Ø
L	F	00	GEOR

We visit vertex K

Vertex	Visited	Distance	Previous
А	F	00	Ø
В	F	00	Ø
С	F	∞	Ø
D	F	∞	Ø
Е	F	∞	Ø
F	F	∞	Ø
G	F	∞	Ø
Н	F	∞	Ø
l	F	∞	Ø
J	F	∞	Ø
K	Т	0	Ø
L	F	∞	GEOR

Vertex K has four neighbors: H, I, J and L

We have now found at least one path to each of these vertices

We're finished with vertex K

- To which vertex are we now guaranteed we have the shortest path?

Vertex	Visited	Distance	Previous
Α	F	œ	Ø
В	F	œ	Ø
С	F	00	Ø
D	F	00	Ø
E	F	00	Ø
F	F	00	Ø
G	F	00	Ø
Н	F	8	K
Ι	F	12	K
J	F	17	K
K	Т	0	Ø
L	F	16	GEOR

We visit vertex H: the shortest path is (K, H) of length 8 – Vertex H has four unvisited neighbors: E, G, I, L

Vertex	Visited	Distance	Previous
Α	F	00	Ø
В	F	œ	Ø
С	F	œ	Ø
D	F	00	Ø
E	F	00	Ø
F	F	00	Ø
G	F	00	Ø
Η	Т	8	K
	F	12	K
J	F	17	K
K	Т	0	Ø
L	F	16	GEOR

Consider these paths:

(K, H, E) of length 8 + 6 = 14 (K, H, G) of length 8 + 11 = 19

(K, H, I) of length 8 + 2 = 10 (K, H, L) of length 8 + 9 = 17

15

Which of these are shorter than any known path?

We already have a shorter path (K, L), but we update the other three

We are finished with vertex H

– Which vertex do we visit next?

Vertex	Visited	Distance	Previous
А	F	00	Ø
В	F	00	Ø
С	F	00	Ø
D	F	∞	Ø
E	F	14	Н
F	F	∞	Ø
G	F	19	Н
Н	Т	8	K
	F	10	Н
J	F	17	K
K	Т	0	Ø
L	F	16	GEORGE

The path (K, H, I) is the shortest path from K to I of length 10

– Vertex I has two unvisited neighbors: G and J

Vertex	Visited	Distance	Previous
А	F	00	Ø
В	F	00	Ø
С	F	∞	Ø
D	F	00	Ø
E	F	14	Н
F	F	00	Ø
G	F	19	Н
	Т	8	K
	Т	10	Н
J	F	17	K
K	Т	0	Ø
L	F	16	GEORO

Consider these paths:

(K, H, I, G) of length 10 + 3 = 13 (K, H, I, J) of length 10 + 18 = 28

19 18 17	
G 3 12 K	0
11	
$\frac{2}{1}$	
н	
9.	

Vertex	Visited	Distance	Previous
А	F	00	Ø
В	F	00	Ø
С	F	00	Ø
D	F	00	Ø
E	F	14	Н
F	F	00	Ø
G	F	19	Н
H /	Т	8	K
	Т	10	Н
J	F	17	K
K	Т	0	Ø
L	F	16	GEOR

We have discovered a shorter path to vertex G, but (K, J) is still the shortest known path to vertex J

Vertex	Visited	Distance	Previous
Α	F	00	Ø
В	F	00	Ø
С	F	00	Ø
D	F	00	Ø
E	F	14	Н
F	F	00	Ø
G	F	13	I
Η/	Т	8	K
	Т	10	Н
J	F	17	K
K	Т	0	Ø
L	F	16	GEOR

Which vertex can we visit next?

Vertex	Visited	Distance	Previous
А	F	00	Ø
В	F	00	Ø
С	F	00	Ø
D	F	∞	Ø
Е	F	14	Н
F	F	∞	Ø
G	F	13	
Н	Т	8	K
	Т	10	Н
J	F	17	K
K	Т	0	Ø
L	F	16	GEOR

The path (K, H, I, G) is the shortest path from K to G of length 13

- Vertex G has three unvisited neighbors: E, F and J

Vertex	Visited	Distance	Previous
Α	F	00	Ø
В	F	00	Ø
С	F	00	Ø
D	F	œ	Ø
E	F	14	Н
F	F	00	Ø
G	Т	13	I
Н	Т	8	K
	Т	10	Н
J	F	17	K
K	Т	0	Ø
L	F	16	GEORG

Consider these paths:

(K, H, I, G, E) of length 13 + 15 = 28 (K, H, I, G, F) of length 13 + 4 = 17

(K, H, I, G, J) of length 13 + 19 = 32

– Which do we update?

Vertex	Visited	Distance	Previous
А	F	00	Ø
В	F	00	Ø
С	F	00	Ø
D	F	00	Ø
Е	F	14	Н
F	F	00	Ø
G	Т	13	
Н	Т	8	K
	Т	10	Н
J	F	17	K
K	Т	0	Ø
L	F	16	GEOR

We have now found a path to vertex F

Vertex	Visited	Distance	Previous
А	F	00	Ø
В	F	00	Ø
С	F	00	Ø
D	F	00	Ø
Е	F	14	Н
F	F	17	G
G	Т	13	
Н	Т	8	K
	Т	10	Н
J	F	17	K
K	Т	0	Ø
L	F	16	GEOR

Where do we visit next?

Vertex	Visited	Distance	Previous
А	F	00	Ø
В	F	00	Ø
С	F	00	Ø
D	F	00	Ø
E	F	14	Н
F	F	17	G
G	Т	13	
Н	Т	8	K
	Т	10	Н
J	F	17	K
K	Т	0	Ø
L	F	16	GEOR

Example

The path (K, H, E) is the shortest path from K to E of length 14

- Vertex G has four unvisited neighbors: B, C, D and F

Vertex	Visited	Distance	Previous
А	F	00	Ø
В	F	00	Ø
С	F	00	Ø
D	F	00	Ø
E	Т	14	Η
F	F	17	G
G	Т	13	
	Т	8	K
	Т	10	$\left \cdot \right $
J	F	17	K
K	Т	0	Ø
L	F	16	GEOR

Example

The path (K, H, E) is the shortest path from K to E of length 14

– Vertex G has four unvisited neighbors: B, C, D and F

Vertex	Visited	Distance	Previous
Α	F	00	Ø
В	F	00	Ø
С	F	00	Ø
D	F	00	Ø
Ε	Т	14	Н
F	F	17	G
G	Т	13	
Н	Т	8	K
	Т	10	H
J	F	17	K
K	Т	0	Ø
	F	16	GEOR

Consider these paths:

(K, H, E, B) of length 14 + 5 = 19 (K, H, E, C) of length 14 + 1 = 15

(K, H, E, D) of length 14 + 10 = 24 (K, H, E, F) of length 14 + 22 = 36

Vertex	Visited	Distance	Previous
А	F	00	Ø
В	F	00	Ø
С	F	00	Ø
D	F	00	Ø
E	Т	14	Н
F	F	17	G
G	Т	13	
Н	Т	8	K
	Т	10	Н
J	F	17	K
K	Т	0	Ø
	F	16	GEOR

We've discovered paths to vertices B, C, D

Vertex	Visited	Distance	Previous
А	F	00	Ø
В	F	19	E
С	F	15	E
D	F	24	E
E	Т	14	Н
F	F	17	G
G	Т	13	
$\left - \right $	Т	8	K
	Т	10	Н
J	F	17	K
K	T	0	Ø
	F	16	GEOR

ER

Which vertex is next?

Vertex	Visited	Distance	Previous
А	F	00	Ø
В	F	19	E
С	F	15	E
D	F	24	E
Е	Т	14	Н
F	F	17	G
G	Т	13	
Н	Т	8	K
	Т	10	Н
J	F	17	K
K	Т	0	Ø
L	F	16	GEOR

We've found that the path (K, H, E, C) of length 15 is the shortest path from K to C

- Vertex C has one unvisited neighbor, B

Vertex	Visited	Distance	Previous
А	F	00	Ø
В	F	19	E
С	Т	15	Ε
D	F	24	Е
	Т	14	Н
F	F	17	G
G	Т	13	
$\left - \right $	Т	8	K
	Т	10	Н
J	F	17	K
K	Т	0	Ø
L	F	16	GEOR

The path (K, H, E, C, B) is of length 15 + 7 = 22 We have already discovered a shorter path through vertex E

Vertex	Visited	Distance	Previous
А	F	00	Ø
В	F	19	Е
С	Т	15	E
D	F	24	E
Ε /	Т	14	H
F/	F	17	G
G	Т	13	
Н	Т	8	K
	Т	10	
J	F	17	K
K	Т	0	Ø
L	F	16	GEOR

Where to next?

Vertex	Visited	Distance	Previous
А	F	∞	Ø
В	F	19	Е
С	Т	15	E
D	F	24	E
Е	Т	14	Н
F	F	17	G
G	Т	13	
Н	Т	8	K
	Т	10	Н
J	F	17	K
K	Т	0	Ø
L	F	16	GEOR

Where to next?

– Does it matter if we visit vertex F first or vertex J first?

Vertex	Visited	Distance	Previous
А	F	00	Ø
В	F	19	E
С	Т	15	E
D	F	24	E
Е	Т	14	Н
F	F	17	G
G	Т	13	
Н	Т	8	K
	Т	10	Н
J	F	17	K
K	Т	0	Ø
	Т	16	GEOR

Let's visit vertex F first

- It has one unvisited neighbor, vertex D

Vertex	Visited	Distance	Previous
A	F	00	Ø
В	F	19	Е
С	Т	15	E
D	F	24	E
Е	Т	14	Н
F	Т	17	G
G	Т	13	
Н	Т	8	K
	Т	10	H
J	F	17	K
K	Т	0	Ø
L	Т	16	GEOR

The path (K, H, I, G, F, D) is of length 17 + 14 = 31– This is longer than the path we've already discovered

Vertex	Visited	Distance	Previous
А	F	00	Ø
В	F	19	Е
С	Т	15	E
D	F	24	Е
Е	Т	14	
F	Т	17	G
G	Т	13	
Н	Т	8	K
	Т	10	$\left - \right $
J	F	17	K
K	Т	0	Ø
L	Т	16	GEOR

Now we visit vertex J

- It has no unvisited neighbors

Vertex	Visited	Distance	Previous	
А	F	00	Ø	
В	F	19	E	
С	Т	15	E	
D	F	24	E	
Е	Т	14	Η	
F	Т	17	G	
G	Т	13		
Н	Т	8	K	
	Т	10	Η	
J	Т	17	K	
K	Т	0	Ø	~
	Т	16	GEOR	FE FR

Next we visit vertex B, which has two unvisited neighbors:

(K, H, E, B, A) of length 19 + 20 = 39 (K, H, E, B, D) of length 19 + 13 = 32

- We update the path length to A

Vertex	Visited	Distance	Previous
А	F	39	В
В	Т	19	E
С	Т	15	E
D	F	24	Е
E	Т	14	Н
F	Т	17	G
G	Т	13	
Н	Т	8	K
	Т	10	H
J	Т	17	K
K	Т	0	Ø
L	Т	16	GEOR

Next we visit vertex D

- The path (K, H, E, D, A) is of length 24 + 21 = 45
- We don't update A

Vertex	Visited	Distance	Previous
Α	F	39	В
В	Т	19	E
С	Т	15	E
D	Т	24	Ε
E	Т	14	Н
F	Т	17	G
G	Т	13	
Н	Т	8	K
	Т	10	Н
J	Т	17	K
K	Т	0	Ø
L	Т	16	GEOR

Finally, we visit vertex A

- It has no unvisited neighbors and there are no unvisited vertices left
- We are done

Vertex	Visited	Distance	Previous
Α	Т	39	В
В	Т	19	E
С	Т	15	E
D	Т	24	E
Е	Т	14	$\left - \right $
F	Т	17	G
G	Т	13	
Н	Т	8	K
	Т	10	Н
J	Т	17	K
K	Т	0	Ø
	Т	16	GEOR

Thus, we have found the shortest path from vertex K to each of

the other vertices

1		1	
Vertex	Visited	Distance	Previous
Α	Т	39	В
В	Т	19	E
С	Т	15	E
D	Т	24	E
E	Т	14	Н
F	Т	17	G
G	Т	13	
Н	Т	8	K
	Т	10	Н
J	Т	17	K
K	Т	0	Ø
L	Т	16	GRORG

Using the *previous* pointers, we can reconstruct the paths

Vertex	Visited	Distance	Previous
А	Т	39	В
В	Т	19	E
С	Т	15	E
D	Т	24	E
Е	Т	14	Н
F	Т	17	G
G	Т	13	
Н	Т	8	K
	Т	10	Н
J	Т	17	K
K	Т	0	Ø
L	Т	16	GEOR

Note that this table defines a rooted parental tree

- The source vertex K is at the root
- The previous pointer is the *parent* of the vertex in the tree

В

Ε

Е
Comments on Dijkstra's algorithm

Questions:

- What if at some point, all unvisited vertices have a distance ∞ ?
 - This means that the graph is unconnected
 - We have found the shortest paths to all vertices in the connected subgraph containing the source vertex
- What if we just want to find the shortest path between vertices v_i and v_k ?
 - Apply the same algorithm, but stop when we are <u>visiting</u> vertex v_k
- Does the algorithm change if we have a directed graph?
 - No

Implementation and analysis

The initialization requires $\Theta(|V|)$ memory and run time

We iterate |V| - 1 times, each time finding next closest vertex to the source

- Iterating through the table requires is $\Theta(|V|)$ time
- Each time we find a vertex, we must check all of its neighbors
- With an adjacency matrix, the run time is $\Theta(|V|(|V| + |V|)) = \Theta(|V|^2)$
- With an adjacency list, the run time is $\Theta(|V|^2 + |E|) = \Theta(|V|^2)$ as $|E| = O(|V|^2)$

Can we do better?

- Recall, we only need the closest vertex
- How about a priority queue?
 - Try using a binary min heap

Implementation and analysis

The initialization still requires $\Theta(|V|)$ memory and run time

- The priority queue will also requires O(|V|) memory
- We must use an adjacency list, not an adjacency matrix

<u>Pick Min From Heap</u>: We iterate |V| times, each time finding the *closest* vertex to the source

- Initialize: Place the distances into a priority queue
- The size of the priority queue is O(|V|)
- Each pick is constant, but then must swapDown $O(\ln(|V|))$
- Each p, the work required for this is $O(|V| \ln(|V|))$

Repeatedly Update Heap:

- Recall that each edge visited may result in a new edge being placed to the very top of the heap.
- Thus, the work required for this is $O(|E| \ln(|V|))$
- NOTE: there must be a way to "eliminate" repeated nodes in the heap to keep the size restricted to V. But How? Can we do this in constant time?

Thus, the total run time is $O(|V| \ln(|V|) + |E| \ln(|V|))$

Thus a priority heap may be preferred when the graph is sparse.

Applications of Graphs

- Modeling/Analyzing Networks
 - Social networks
 - Computer networks
 - Markov Processes
 - Connected components / Image analysis
- Flows
 - Matching Problem
 - Critical Paths
 - Security: points of weakness

Common Paths on a Graph

- Shortest Paths
 - Path connecting two nodes with minimum aggregate weight
- Hamilton Paths:
 - Path that visits each node once
- Euler Paths
 - Path that traverses each edge once

Tokyo Railway Network

How would you represent this as a graph? What are the nodes? Edges? Analysis

- Shortest Path
- Traffic (max) Flow/ Bottle Neck
- Critical points / critical edges

Source: TRTA, March 2003 - Tokyo rail map

Social Network Example: Political Blogs Community Structure

Strength of Community

Citations of posts of top 20 liberal & conservative blogs

≥ 25 citations GEORGETOWN

Difficult Problems on a Graph

- The general graph does not have many constraint imposed on edges (unlike trees)
 - Problems that represented as graphs may have fairly high computational complexity
- What is the time complexity of the previously noted Shortest Path Algorithm?

Example: Traveling Salesman Problem

- Assume a salesman must visit a collection of cities to sell a product. The salesman wishes to *minimize* the total distance traveled. What is the best itinerary?
- How would you describe the solution to this problem?

Summary of Graphs

- A very general structure used to model many problem types
- Implementations
 - Chaining
 - Adjacency Matrix
 - Sparse Matrix (graphs in application are generally very very sparse!)
- Time complexities can be fairly high compared to trees (given reduced structural constraints)

Appendix

Jeremy Bolton, PhD Assistant Teaching Professor

Spanning Trees

- Idea: Given a graph, produce a subgraph that is a tree (that connects all nodes with n-1 edges)
- Algorithms
 - Kruskals Algorithm
 - Prim's Algorithm

