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Outline

A graph is a discrete structure representing adjacency relations

– We start with definitions:

• Vertices, edges, degree and sub-graphs

– We will describe paths in graphs

• Simple paths and cycles

– Definition of connectedness

– Weighted graphs

– We will then reinterpret these in terms of directed graphs

– Directed acyclic graphs



Outline

We will define an Undirected Graph as a collection of vertices and edges

V = {v1, v2, ..., vn}

– The number of vertices is denoted by

|V| = n

– Associated with this is a collection E of unordered pairs {vi, vj} termed edges which 
connect the vertices

There are a number of data structures that can be used to implement 
abstract undirected graphs
– Adjacency matrices

– Adjacency lists



Graphs

Consider this collection of vertices 

V = {v1, v2, ..., v9}

where |V| = n



Undirected graphs

Associated with these vertices are |E| = 5 edges

E = {{v1, v2}, {v3, v5}, {v4, v8}, {v4, v9}, {v6, v9}}

– The pair {vj , vk} indicates that both vertex vj is adjacent to vertex vk and 

vertex vk is adjacent to vertex vj



Undirected graphs

We will assume in this course that a vertex is never adjacent to 

itself

– For example, {v1, v1} will not define an edge 

The maximum number of edges in an undirected graph is
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An undirected graph

Example: given the |V| = 7 vertices

V = {A, B, C, D, E, F, G}

and the |E| = 9 edges
E = {{A, B}, {A, D}, {A, E}, {B, C}, {B, D}, {B, E}, {C, E}, {C, F}, {D, E}}



Degree

The degree of a vertex is defined as the number of adjacent vertices
degree(A) = degree(D) = degree(C) = 3

degree(B) = degree(E) = 4

degree(F) = 1
degree(G) = 0

Those vertices adjacent to a given vertex are its neighbors



Sub-graphs

A sub-graph of a graph a subset of the vertices and a subset of 

the edges that connected the subset of vertices in the original 

graph



Vertex-induced sub-graphs

A vertex-induced sub-graph is a subset of a the vertices where the 

edges are all edges in the original graph that originally



Paths

A path in an undirected graph is an ordered sequence of vertices 

(v0, v1, v2, ..., vk)

where {vj – 1, vj} is an edge for j = 1, ..., k

– Termed a path from v0 to vk

– The length of this path is k 



Paths

A path of length 4:

(A, B, E, C, F)



Paths

A path of length 5:

(A, B, E, C, B, D)



Paths

A trivial path of length 0:

(A)



Simple paths

A simple path has no repetitions other than perhaps the first and 

last vertices

A simple cycle is a simple path of at least two vertices with the first 

and last vertices equal

– Note:  these definitions are not universal



Connectedness

Two vertices vi, vj are said to be connected if there exists a path 

from vi to vj

A graph is connected if there exists a path between any two 

vertices

A connected graph An unconnected graph



Weighted graphs

A weight may be associated with each edge in a graph

– This could represent distance, energy consumption, cost, etc.

– Such a graph is called a weighted graph

Pictorially, we will represent weights by numbers next to the 

edges



Weighted graphs

The length of a path within a weighted graph is the sum of all of 

the edges which make up the path

– The length of the path (A, D, G) in the following graph is 5.1 + 3.7 = 8.8



Weighted graphs

Different paths may have different weights

– Another path is (A, C, F, G) with length 1.2 + 1.4 + 4.5 = 7.1



Weighted graphs

Problem: find the shortest path between two vertices

– Here, the shortest path from A to H is (A, C, F, D, E, G) with length 5.7



Trees

A graph is a tree if it is connected and there is a unique path between any 
two vertices
– Three trees on the same eight vertices

Consequences:
– The number of edges is |E| = |V| – 1 

– The graph is acyclic, that is, it does not contain any cycles

– Adding one more edge must create a cycle

– Removing any one edge creates two disjoint non-empty sub-graphs



Trees

Any tree can be converted into a rooted tree by:
– Choosing any vertex to be the root

– Defining its neighboring vertices as its children

and then recursively defining:
– All neighboring vertices other than that one designated its parent are now defined to be 

that vertices children

Given this tree, here are three rooted trees associated with it



Forests

A forest is any graph that has no cycles

Consequences:
– The number of edges is |E| < |V| 

– The number of trees is |V| – |E|

– Removing any one edge adds one more tree to the forest

Here is a forest with 22 vertices and 18 edges
– There are four trees



Directed graphs

In a directed graph, the edges on a graph are be associated with 

a direction

– Edges are ordered pairs (vj, vk) denoting a connection from vj to vk

– The edge (vj, vk) is different from the edge (vk, vj)

Streets are directed graphs:

– In most cases, you can go two ways unless it is a one-way street



Directed graphs

Given our graph of nine vertices V = {v1, v2, …v9}

– These six pairs (vj , vk) are directed edges

E = {(v1, v2), (v3, v5), (v5, v3), (v6, v9), (v8, v4), (v9, v4)}



Directed graphs

The maximum number of directed edges in a directed graph is
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In and out degrees

The degree of a vertex must be modified to consider both cases:

– The out-degree of a vertex is the number of vertices which are adjacent to 

the given vertex

– The in-degree of a vertex is the number of vertices which this vertex is 

adjacent to

In this graph:

in_degree(v1) = 0 out_degree(v1) = 2

in_degree(v5) = 2 out_degree(v5) = 3



Sources and sinks

Some definitions:

– Vertices with an in-degree of zero are described as sources

– Vertices with an out-degree of zero are described as sinks

In this graph:

– Sources: v1, v6, v7

– Sinks: v2, v9



Paths

A path in a directed graph is an ordered sequence of vertices 

(v0, v1, v2, ..., vk)

where (vj – 1, vj) is an edge for j = 1, ..., k

A path of length 5 in this graph is
(v1, v4, v5, v3, v5, v2)

A simple cycle of length 3 is
(v8, v4, v5, v8)



Connectedness

Two vertices vj, vk are said to be connected if there exists a path from vj
to vk

– A graph is strongly connected if there exists a directed path between any two 
vertices

– A graph is weakly connected there exists a path between any two vertices that 
ignores the direction

In this graph:
– The sub-graph {v3, v4, v5, v8} is strongly

connected

– The sub-graph {v1, v2, v3, v4, v5, v8} is
weakly connected



Weighted directed graphs

In a weighted directed graphs, each edge is associated with a value

Unlike weighted undirected graphs, if both (vj, vk) and (vj, vk) are edges, 

it is not required that they have the same weight
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Directed acyclic graphs

A directed acyclic graph is a directed graph which has no cycles
– These are commonly referred to as DAGs

– They are graphical representations of partial orders on a finite number of 
elements

These two are DAGs:

This directed graph is not acyclic:



Representations

How do we store the adjacency relations?

– Binary-relation list

– Adjacency matrix

– Adjacency list



Binary-relation list

The most inefficient is a relation list:

– A container storing the edges

{(1, 2), (1, 4), (3, 5), (4, 2), (4, 5), (5, 2), (5, 3), (5, 8), (6, 9), (7, 9), (8, 4)}

– Requires Q(|E|) memory

– Determining if vj is adjacent to vk is O(|E|)

– Finding all neighbors of vj is Q(|E|)



Adjacency matrix

Requiring more memory but also faster, an adjacency matrix
– The matrix entry (j, k) is set to true if there is an edge (vj, vk)

– Requires Q(|V|2) memory

– Determining if vj is adjacent to vk is O(1)

– Finding all neighbors of vj is Q(|V|)

1 2 3 4 5 6 7 8 9

1 T T

2

3 T

4 T T

5 T T T

6 T

7 T

8 T

9



Adjacency list

Most efficient for algorithms is an adjacency list
– Each vertex is associated with a list of its neighbors

– Requires Q(|V| + |E|) memory

– On average:
• Determining if vj is adjacent to vk is 

• Finding all neighbors of vj is 

1    • → 2 → 4

2    •

3    • → 5

4    • → 2 → 5

5    • → 2 → 3 → 8

6    • → 9

7    • → 9

8    • → 4

9    •
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The Graph ADT

The Graph ADT Design Idea…  a container storing an adjacency relation
– Queries include:

• The number of vertices

• The number of edges

• List the vertices adjacent to a given vertex

• Are two vertices adjacent?

• Are two vertices connected?

– Modifications include:
• Inserting or removing an edge

• Inserting or removing a vertex (and all edges containing that vertex) 

The run-time of these operations will depend on the representation



Summary

In this topic, we have covered:
– Basic graph definitions

• Vertex, edge, degree, adjacency 

– Paths, simple paths, and cycles

– Connectedness

– Weighted graphs

– Directed graphs

– Directed acyclic graphs

Moving forward, we will investigate a number of problems related to 
graphs
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Spanning Trees

• Idea: Given a graph, produce a subgraph that is a tree (that 

connects all nodes with n-1 edges)

• Algorithms

– Kruskals Algorithm

– Prim’s Algorithm


