
COSC160: Data Structures
Graph Theory

Jeremy Bolton, PhD

Assistant Teaching Professor

Supplemental Slides provided by A. Gates and L. Singh

A special thanks to D. Harder for use of presentation
material.

Outline

A graph is a discrete structure representing adjacency relations

– We start with definitions:

• Vertices, edges, degree and sub-graphs

– We will describe paths in graphs

• Simple paths and cycles

– Definition of connectedness

– Weighted graphs

– We will then reinterpret these in terms of directed graphs

– Directed acyclic graphs

Outline

We will define an Undirected Graph as a collection of vertices and edges

V = {v1, v2, ..., vn}

– The number of vertices is denoted by

|V| = n

– Associated with this is a collection E of unordered pairs {vi, vj} termed edges which
connect the vertices

There are a number of data structures that can be used to implement
abstract undirected graphs
– Adjacency matrices

– Adjacency lists

Graphs

Consider this collection of vertices

V = {v1, v2, ..., v9}

where |V| = n

Undirected graphs

Associated with these vertices are |E| = 5 edges

E = {{v1, v2}, {v3, v5}, {v4, v8}, {v4, v9}, {v6, v9}}

– The pair {vj , vk} indicates that both vertex vj is adjacent to vertex vk and

vertex vk is adjacent to vertex vj

Undirected graphs

We will assume in this course that a vertex is never adjacent to

itself

– For example, {v1, v1} will not define an edge

The maximum number of edges in an undirected graph is

 
 21

O
22

V VV
E V

 
   
 

An undirected graph

Example: given the |V| = 7 vertices

V = {A, B, C, D, E, F, G}

and the |E| = 9 edges
E = {{A, B}, {A, D}, {A, E}, {B, C}, {B, D}, {B, E}, {C, E}, {C, F}, {D, E}}

Degree

The degree of a vertex is defined as the number of adjacent vertices
degree(A) = degree(D) = degree(C) = 3

degree(B) = degree(E) = 4

degree(F) = 1
degree(G) = 0

Those vertices adjacent to a given vertex are its neighbors

Sub-graphs

A sub-graph of a graph a subset of the vertices and a subset of

the edges that connected the subset of vertices in the original

graph

Vertex-induced sub-graphs

A vertex-induced sub-graph is a subset of a the vertices where the

edges are all edges in the original graph that originally

Paths

A path in an undirected graph is an ordered sequence of vertices

(v0, v1, v2, ..., vk)

where {vj – 1, vj} is an edge for j = 1, ..., k

– Termed a path from v0 to vk

– The length of this path is k

Paths

A path of length 4:

(A, B, E, C, F)

Paths

A path of length 5:

(A, B, E, C, B, D)

Paths

A trivial path of length 0:

(A)

Simple paths

A simple path has no repetitions other than perhaps the first and

last vertices

A simple cycle is a simple path of at least two vertices with the first

and last vertices equal

– Note: these definitions are not universal

Connectedness

Two vertices vi, vj are said to be connected if there exists a path

from vi to vj

A graph is connected if there exists a path between any two

vertices

A connected graph An unconnected graph

Weighted graphs

A weight may be associated with each edge in a graph

– This could represent distance, energy consumption, cost, etc.

– Such a graph is called a weighted graph

Pictorially, we will represent weights by numbers next to the

edges

Weighted graphs

The length of a path within a weighted graph is the sum of all of

the edges which make up the path

– The length of the path (A, D, G) in the following graph is 5.1 + 3.7 = 8.8

Weighted graphs

Different paths may have different weights

– Another path is (A, C, F, G) with length 1.2 + 1.4 + 4.5 = 7.1

Weighted graphs

Problem: find the shortest path between two vertices

– Here, the shortest path from A to H is (A, C, F, D, E, G) with length 5.7

Trees

A graph is a tree if it is connected and there is a unique path between any
two vertices
– Three trees on the same eight vertices

Consequences:
– The number of edges is |E| = |V| – 1

– The graph is acyclic, that is, it does not contain any cycles

– Adding one more edge must create a cycle

– Removing any one edge creates two disjoint non-empty sub-graphs

Trees

Any tree can be converted into a rooted tree by:
– Choosing any vertex to be the root

– Defining its neighboring vertices as its children

and then recursively defining:
– All neighboring vertices other than that one designated its parent are now defined to be

that vertices children

Given this tree, here are three rooted trees associated with it

Forests

A forest is any graph that has no cycles

Consequences:
– The number of edges is |E| < |V|

– The number of trees is |V| – |E|

– Removing any one edge adds one more tree to the forest

Here is a forest with 22 vertices and 18 edges
– There are four trees

Directed graphs

In a directed graph, the edges on a graph are be associated with

a direction

– Edges are ordered pairs (vj, vk) denoting a connection from vj to vk

– The edge (vj, vk) is different from the edge (vk, vj)

Streets are directed graphs:

– In most cases, you can go two ways unless it is a one-way street

Directed graphs

Given our graph of nine vertices V = {v1, v2, …v9}

– These six pairs (vj , vk) are directed edges

E = {(v1, v2), (v3, v5), (v5, v3), (v6, v9), (v8, v4), (v9, v4)}

Directed graphs

The maximum number of directed edges in a directed graph is

 
   21

2 2 1 O
22

V VV
E V V V

 
     

 

In and out degrees

The degree of a vertex must be modified to consider both cases:

– The out-degree of a vertex is the number of vertices which are adjacent to

the given vertex

– The in-degree of a vertex is the number of vertices which this vertex is

adjacent to

In this graph:

in_degree(v1) = 0 out_degree(v1) = 2

in_degree(v5) = 2 out_degree(v5) = 3

Sources and sinks

Some definitions:

– Vertices with an in-degree of zero are described as sources

– Vertices with an out-degree of zero are described as sinks

In this graph:

– Sources: v1, v6, v7

– Sinks: v2, v9

Paths

A path in a directed graph is an ordered sequence of vertices

(v0, v1, v2, ..., vk)

where (vj – 1, vj) is an edge for j = 1, ..., k

A path of length 5 in this graph is
(v1, v4, v5, v3, v5, v2)

A simple cycle of length 3 is
(v8, v4, v5, v8)

Connectedness

Two vertices vj, vk are said to be connected if there exists a path from vj
to vk

– A graph is strongly connected if there exists a directed path between any two
vertices

– A graph is weakly connected there exists a path between any two vertices that
ignores the direction

In this graph:
– The sub-graph {v3, v4, v5, v8} is strongly

connected

– The sub-graph {v1, v2, v3, v4, v5, v8} is
weakly connected

Weighted directed graphs

In a weighted directed graphs, each edge is associated with a value

Unlike weighted undirected graphs, if both (vj, vk) and (vj, vk) are edges,

it is not required that they have the same weight

6.7

6.4

7.5

5.4 4.5

4.1

7.3 6.8

5.9

4.7
3.2

Directed acyclic graphs

A directed acyclic graph is a directed graph which has no cycles
– These are commonly referred to as DAGs

– They are graphical representations of partial orders on a finite number of
elements

These two are DAGs:

This directed graph is not acyclic:

Representations

How do we store the adjacency relations?

– Binary-relation list

– Adjacency matrix

– Adjacency list

Binary-relation list

The most inefficient is a relation list:

– A container storing the edges

{(1, 2), (1, 4), (3, 5), (4, 2), (4, 5), (5, 2), (5, 3), (5, 8), (6, 9), (7, 9), (8, 4)}

– Requires Q(|E|) memory

– Determining if vj is adjacent to vk is O(|E|)

– Finding all neighbors of vj is Q(|E|)

Adjacency matrix

Requiring more memory but also faster, an adjacency matrix
– The matrix entry (j, k) is set to true if there is an edge (vj, vk)

– Requires Q(|V|2) memory

– Determining if vj is adjacent to vk is O(1)

– Finding all neighbors of vj is Q(|V|)

1 2 3 4 5 6 7 8 9

1 T T

2

3 T

4 T T

5 T T T

6 T

7 T

8 T

9

Adjacency list

Most efficient for algorithms is an adjacency list
– Each vertex is associated with a list of its neighbors

– Requires Q(|V| + |E|) memory

– On average:
• Determining if vj is adjacent to vk is

• Finding all neighbors of vj is

1 • → 2 → 4

2 •

3 • → 5

4 • → 2 → 5

5 • → 2 → 3 → 8

6 • → 9

7 • → 9

8 • → 4

9 •

E

V

 
Q 
 

O
E

V

 
 
 

The Graph ADT

The Graph ADT Design Idea… a container storing an adjacency relation
– Queries include:

• The number of vertices

• The number of edges

• List the vertices adjacent to a given vertex

• Are two vertices adjacent?

• Are two vertices connected?

– Modifications include:
• Inserting or removing an edge

• Inserting or removing a vertex (and all edges containing that vertex)

The run-time of these operations will depend on the representation

Summary

In this topic, we have covered:
– Basic graph definitions

• Vertex, edge, degree, adjacency

– Paths, simple paths, and cycles

– Connectedness

– Weighted graphs

– Directed graphs

– Directed acyclic graphs

Moving forward, we will investigate a number of problems related to
graphs

Appendix

Jeremy Bolton, PhD

Assistant Teaching Professor

Spanning Trees

• Idea: Given a graph, produce a subgraph that is a tree (that

connects all nodes with n-1 edges)

• Algorithms

– Kruskals Algorithm

– Prim’s Algorithm

