

COSC160: Data Structures Hashing Structures

Jeremy Bolton, PhD Assistant Teaching Professor

Outline

- I. Hashing Structures
 - I. Motivation and Review
- II. Hash Functions

III. HashTables

- I. Implementations
- II. Time Complexity

IV. Collisions

I. Resolution Schemes

Retrieval Time Review

- Unordered Lists
- Trees or ordered lists
- Can we improve?

- Suppose we wanted to store a set of unique numbers within the range 1 1,000
- Is there a structure and storage scheme that would permit searching, inserting and removing in O(1) time?
 - Hint: the answer is yes! Motivation: Constant Time Example

• Simply use an array with indices 1 – 1000.

Insertion

• Example: insert 3

- Time Complexity
 - Direct indexing
 - O(1)

Removal

- Remove 6
- Time Complexity
 - Direct Indexing
 - O(1)

Motivation: Simple Example Analysis

- How are we able to attain such a time complexity?
 - 1. It is known, apriori, where each item is (to be) stored
 - 2. Direct indexing: indexing is accomplished in constant time
- We know where to go, and we can get there fast!

Simple Example: How?

- Direct indexing is no mystery. But how did we know, *apriori*, where each item is (to be) stored
 - The value stored was simply the index!

• This works well if we are storing integers, but what about non-integer data types or values that are not within a good indexing range...?

Direct Indexing with non-integer types

- In our simple example, the key (which is the data itself) is also the index.
 - That is, each data value, directly maps to an appropriate index.
- Solution general case: find a function f that maps from the set of keys to a set of indices.

The hash function

- Remember: a key uniquely identifies a data object
 - Let k be a one-to-one correspondence that maps from data objects to keys
 - $k: dataObjects \rightarrow keys$
- A hash function is a function that maps from a set of keys to a set of indices
 - h: keys \rightarrow indices

Hash Example

- Assume we wish to store student information in an array.
- Example data object
 - (fname, Iname, studid, age, , …)
 - (Bob, Barker, 1111111, 18, , ...)
- Example key: studid
 - k: studentObjects \rightarrow studentIDs
 - k(Bob) = 1111111
- Example hash
 - − h: studentIDs \rightarrow indices
 - $h(x) = x \mod 1000$

Bob ... 0 1 ...

h(key(Bob)) = 1

Domain of Keys

- It is important to identify and define the <u>domain</u> of keys, *K*, of a hash.
- Characteristics of the keys will largely determine the type of hash to be used.
- In many instances the total possible keys |K| is larger than the number of actual keys to be stored N ⊂ K , |N| < |K|
 - For example, the total number of students to be stored may be 10,000, but the total number of possible student id values may be 0 – 999999, numbering 10,000,000
 - In our discussion we may assume these values are the same, <u>which is often not the</u> <u>case.</u>

Hashing: Design Concerns

- Time complexity for search, insert and removal is constant!
 - Why not always use a hash?!
- Design Concerns
 - 1. Space:
 - 1. Cardinality of keys, |K|, is likely large. The space requirements for a hash is not necessarily bound by the size of the input.
 - 2. |N| may or may not be known. Is size static or dynamic?
 - 2. What happens if two different values get mapped to the same index?
 - 1. Collision
 - 3. Finding a hash function that mitigates these concerns is hard
 - 1. Searching over a family of hash functions may not be tractable
 - 2. Time complexity of evaluating the hash, eg computing h(k), may be a concern

Hashing: Space concerns

- Example 1. Reasonable Index Range.
 - Store up to 1000 values within range 1 1000.
 - More generally: store up to n values within range 1 n.
 - Note here the size of the input may be up to n numbers, thus we can bound the memory constraints in terms of n, the size of the input.
 - Use simple hash: h(i) = i
 - Size of input (potentially n), size of space requirements O(n)

Hashing: Space concerns

- Example 2. Unreasonable Index Range.
 - Store up to n values within unknown range, eg, |K| is large.
 - Size of input is n, how big of an array is needed
 - Using simple hash from Ex. 1, is not efficient
 - Use simple hash: h(i) = i
 - Size of input (potentially n), size of space requirements ...?
 - In this simple case, space requirements depend on the value of the input, and not the size of the input.

Hash: Collision Concerns

- If a hash function is not a one-to-one correspondence, then a collision is possible
- A collision occurs when a hash function maps two different key values to the same index.

Finding a Desirable Hash Functions

- Desirable characteristics of a hash function
 - Space efficient. If n items to store, O(n) space.
 - Minimize collisions
 - Hash computation is fast
- A hash table of size m is an array of size m that uses a hash function for indexing (for searches, inserts and removals)

Addressing space efficiency

- Our simple hash example is a poor choice
 - h(i) = i
 - This depends on the value of keys and not the number of keys.
- Optimally. If there are n items to store, use an array of size m=n.
 - Finding a hash function that maps each item perfectly (without collision) and has no wasted space is very difficult in the general case.

Addressing space efficiency

- Intuitively, there is a tradeoff between the size of the hash table and frequency of collisions.
- Intuitively, assume indices were randomly assigned to n different keys, the probability of collision would increase if the range of indices was reduced (if the array was smaller)

Addressing Collisions

- Collisions are often inevitable.
- Assume (n 1)m + 1 keys. |K| = (n 1)m + 1. – Table size m
- Notes:
 - Since there are m locations for (n-1)m+1 items, there will be a set of n elements that hash to the same location, (the pigeon-hole principle).
 - If m is less than the number of items to store, there will be collisions!

Some Hashing Schemes

- Division Method
- Folding Method
- Mid-Square Method
- Radix Method
- Universal Hashing
- Perfect Hashing
- Double Hashing

Hash: Division Method

- If nothing is known about the keys prior, the division method is a commonly used solution.
- Use simple int interpretation of full binary representation of k, Hashtable of size m

 $h(k) = k \bmod m$

Variant: keys of vector of ints

Pros: fast, maps to valid indices

Cons: unknown (without more information about distribution of keys). No assurances about collisions.

Folding Method

• Method.

•

- 1. key is partitioned,
- 2. each partition is manipulated,
- 3. then the results are aggregated together (folded together) to produce a final index

- Pros.
 - Provides means to incorporate more digits into index computation.

Hash: Mid square approach

- Mid square approach
 - Interpret binary sequence of key as an int
 - Hash function
 - Square the key value
 - Use the r-inner bits as the index
 - Intuition
 - Pro: <u>All</u> digits will affect the innermost bits of the squared value.
 - Generally good uniform distribution
 - Con: must compute square
- Example:
 - Key 4567
 - R= 2
 - Use 2-inner bits of square. 57 is index

Radix Method

- Radix transform.
 - Rescale range of values by changing the number system.
 - Assume key k is numeric.
 - Map number to different radix (base)
- Example.
 - Assume k = 345, and table size m = 100
 - Change radix to 9
 - $-k = 345_{10} = 423_9$
 - $h(423) = 423 \mod 100 = 23.$

Simple Hashing Schemes

- Simple Schemes.
 - Division Method
 - Folding Method
 - Mid-Square Method
 - Radix Method
- Observations.
 - Provide an means to mathematically map keys to index range.
 - These mapping schemes are
 - Easy to implement
 - Hash is fast to compute
 - But make no assurances about collisions (unless keys are known apriori)

Designing a Hash. Case Study Chars

- Storing ASCII characters
 - chars are stored in 8 bits, thus there are 256 unique chars to store
 - 256 unique data objects
 - Not many, lets simply create a hash table of size 256
 - What is a good key?
 - **Trivial key mapping**. Each char has a unique binary encoding ... which easily can be interpreted as a nonnegative integer using polynomial expansion ... lets use that!
 - Hash is simply the int interpretation of the keys binary value
 - Trivial Hash. one-to-one correspondence and space efficient!

Designing a Hash. Case Study Strings

- Store a set of n strings
 - String: Simply a sequence of chars
 - Key ideas
 - Strings are unique based on uniqueness of each char at each location
 - Simple concatenation of binary sequence of chars
 - Hash ideas
 - (Bad) Idea 1: Using int interpretation of FULL binary sequence
 - Would provide for no collisions, but at what cost!
 - » Assume: Each char may use up to 8-bits. Longest string will be 25 chars long
 - » Possible indices needed (for no collisions): 2²⁰⁰

Designing a Hash: Case Study String (cont)

- Idea 2: Simple design scheme.
 - Fix the table size to something reasonable, m = 1000.
 - Use Folding Scheme. Sum numeric interpretation of each characters
 - hash function: h(string) = sum mod 1000
 - Alleviates space concerns, but may result in collisions.
 - Note here N < |K| is likely and so allocating |K| spaces may be unnecessary and impractical
 - <u>Observation</u>: may not map to range 0 999 very uniformly. May result in more collisions that desired.
 - EG: all of the following strings would map to the same key
 - » az, za, by, yb, cx, xc, ...

Designing a Hash: Case Study Strings

- Universal
 - Randomly construct b-u random matrix
 - $b = \log_2 m$
 - u is number of bits for keys (200 bits)
 - Randomly select k numbers and use variant.
- Perfect (using $O(|K|^2)$ space approach)
 - Choose $m = |K|^2 = 2^{200^2}$ (not practical!)
 - $b = \log_2 2^{200^2} = 40000$
- Double Hash
 - (often) an efficient solution
- Another Method. Cichelli's Method.
 - Searches for a Hash Map that works well.
 - Search time may be expensive.
 - See Readings and HW questions.

Collision Resolution

- In some instances collisions may be hard to avoid.
- Having an efficient resolution scheme is important.
 - Annex / Cellars
 - Probing
 - Chaining

Collision Resolution: Annex or Cellar

- Example table of size 10
- Scheme: reserve c spots to end of array; designate as cellar. Store collisions there sequentially.
- Worst Case Complexity: O(c)
- Cons:
 - Cellar size = c is fixed
 - may fill up
 - Is unordered and generally large

Collision Resolution Scheme: Probing

Linear Probing

- Scheme: rather than store collisions in cellar, store them in an empty location near correct hash index. Use linear probe to find nearby empty locations.
- Linear probe is generally a simple sequential scan (with mod wraparound)
 - Ex: h(k), h(k) + 1, h(k) + 2, ...
- Complexity analysis:
 - Dependent on load of table
 - **Load**, λ , is percentage of occupied locations
 - Average Case: $O\left(\frac{1}{1-\lambda}\right)$

Collision Resolution Scheme: Probing

Quadratic Probing

- Linear probing may suffer if keys are not uniformly distributed. "Clustering" in some regions of the table will occur which will increase the number of overall collisions.
- Scheme: Search for empty spaces, further away.
 - $h(k), h(k)+1, h(k)+4, h(k)+9, \dots$
- Complexity:
 - Must be sure to traverse indices without repetition.
 - This is assured if m is prime.

Collision Resolution: Chaining

- Each Array entry is a linked list
- Collision is implicitly handled by adding to top of list.
- Pros:
 - Dynamic size,
 - Static size issues resolved: cellar overflow, or table overflow (probing)
- Complexity:
 - Conceptually better than cellar as the collision space is organized by original hash entry
 - Assume c is number of total collided items over m buckets. Average case: O(c/m)
 - Practical Concerns: memory not contiguous, may have disk access delays
- Alternative (to linked list) approaches
 - Implement Hash table, where each bucket is a B-Tree
 - Implement Hash table, where each bucket is a hash table

Collision Resolution Schemes

- Cellar
 - Static Size
 - Sequential search in cellar if collision
- Probing
 - Static size
 - Searching is done locally if collision
 - Efficiency highly dependent on average load of table
- Chaining
 - Dynamic size
 - Possible delays related to non-contiguous allocation
 - Organized search if collision

Avoiding Collisions: Statistical Perspective

- If all the keys are known *apriori*, then we can construct a simple hash that avoids all collisions. However, this is not often the case.
- Some CS problems are hard (eg collision-free hashing when little is known about the keys *apriori*), and finding an *optimal solution* is impractical.
 - Sometimes its more appropriate to find a *good* solution (with high probability) fast.
 - Statistical approaches: Quantify probability of poor result.
 - Rather than trying to avoid all collisions, quantify (*minimize*) how often they might occur.
- Universal Hash Idea. (Monte Carlo Scheme)
 - Assume n items are assigned indices randomly by h.
 - We can statistically bound the number of collisions, if we construct the hash in a "random" sense.
 - We can choose the size of m to bound the number of expected collisions.

Uniform Hash

- Having a hash function that uniformly assigns keys to buckets is desirable
 - Reduces "clustering" and collisions
- A uniform hash has a uniform probability of collision

$$P(h(k_i) == h(k_j)) = P(C_{ij}) \le \frac{1}{m}$$

Universal Hashing

- A Universal Class of Hash Functions H is a set of hash functions with the following bound on collisions.
- When any hash function h ∈ H is chosen <u>randomly</u> from H, the probability of collision of any two keys (key i and key j) is bounded as follows:

$$P(h(k_i) == h(k_j)) = P(C_{ij}) \le \frac{1}{m}$$

Observe: The number of collisions of key i with *any other* key can be bounded (proof upcoming)

- Constructing a hash function with this property is not as difficult as it might seem (given some assumptions about the data).
 - The crux is having the means to randomize the selection.

Universal Hashing: Expected Number of Collisions

- Similar to previous slide (here we take expectation of Boolean variable collision.)
- The expected number of collisions between x and other elements in S is at most N/M
- Proof ...
- Since $P(C_{ij}) \leq \frac{1}{m}$
- Let $C_{ij} = 1$, when i and j collide.
- Let C_i be the total number of collisions for i. $C_i = \sum_{j=1}^n C_{ij}$
- We assume $E[C_{ij}] \leq \frac{1}{m}$.
- Thus $E[C_i] = \sum_{j=1}^{n} E[C_{ij}] \leq \frac{n}{m}$, by linearity of expectations

What is a class or family of functions?

• Example: Consider a set of functions F

 $-F = \{f_1, f_2, \dots, f_{100}\}, \text{ where } f_i(x) = \frac{2x}{i}$

- Observe F is a class of 100 distinct functions, which vary based on some parameter $i \in \{1, 2, ..., 100\}$.
- If we can randomly select i, then we can randomly select a function in F.
 - Crux: find a family that meets the universal property!

Designing a Universal Hash Family (Matrix Method)

- Assume
 - keys are u-bits long
 - Table size m is a power of 2, $m = 2^{b}$
- Define hash function h in terms of random 0-1 matrix H, that is b x u. $h_H(k) = Hk$
- Example H k Hk M = 4 Keys: 3-bits $\begin{bmatrix} 1 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$

Pro. This is a universal hash, *ie*, $P(h(k_i) == h(k_j)) = \frac{1}{2^b} = \frac{1}{m}$ Con. Hash computation cost: $O(\log_2 m x \log_2 |k|)$

Universal Hash Familty: Division Method

- Represent keys as d-dimensional vectors of integers
 - Rather than vector of binary values,
- Key example. $\mathbf{x} = [x_1, x_2, \dots, x_d]^T$
- Hash Table
 - Size: m
 - Choose d random non-negative integers, $r_{i \in \{1,...,d\}} < m$
 - $h(x) = [r_1, r_2, \dots, r_d] [x_1, x_2, \dots, x_d]^T = \left[\sum_{i=1}^d r_i x_i\right] \mod m$
- Notes:
 - Computation of key (and storage of hash parameters) is seemingly less than matrix method
 - If m is prime, then a universal hash is guaranteed.

Perfect Hashing

- A perfect hash is a hash function where search, insert and removal are all O(1).
 - IE, no collisions (or constant bound on collisions).
- If the set of keys (to be inserted) is known apriori, finding a perfect hash may be practical.
- What if we do not know all keys apriori?
 - <u>One solution</u>: repeatedly pick a (random) universal hash until it is perfect.
 - But how long will this take?
 - If we select $m = |K|^2 = n^2$, the probability of no collisions is greater than $\frac{1}{2}$
 - Cost: $O(|K|^2)$ space

Perfect Universal Hash: Quadratic Space Method

- Conjecture: Let h be a draw from a Universal Hash family. If $m = |K|^2 = n^2$, then the probability of no collisions is greater than $\frac{1}{2}$.
- Proof
 - Let C_{ij} denote a collision between key i and j
 - The number of pairwise collisions possible in K, where |K| = N is n choose 2, $\binom{n}{2}$
 - Recall $P(C_{ij}) \leq \frac{1}{m}$

- Thus, the
$$P(\exists_{ij} C_{ij} == 1) \leq \frac{\binom{n}{2}}{m} = \frac{\binom{n}{2}}{n^2} = \frac{\frac{n!}{2!(n-2)!}}{n^2} = \frac{n (n-1)}{2n^2} = \frac{n (n-1)}{2n^2} = \frac{(n-1)}{2n^2} \leq \frac{1}{2}$$

Hash of Hashes Scheme: Universal and Perfect!

- Previously we discussed using a O(|K|²) space approach to attain a perfect hash (by repeatedly, selecting a random universal hash)
 Good, but we can do better than O(|K|²) space!
- Scheme: create a hash table of hash tables!
 - 1. Create a universal hash of size |K| (or N, the number of items to insert if we know N *apriori*)
 - This may result in some collisions, c_i , for each bin i in the table, which is OK.
 - 2. For each bin i, create a hash function using the O($|K|^2$) space approach , where $|K|^2 = |c_i|^2$
 - Intuition: the number of collisions in each bin should not be very much
 - Note: the total $\sum_i |c_i|^2$ can be bounded linearly by N with high probability.
 - Result: O(|K|) space

Perfect Universal Hash: Linear Space

- Conjecture: Assume a universal hash h is chosen where m = n. Let c_i be the number of collisions in bucket i, then $E[\sum_i c_i^2] < 2n$, thus the total space is linearly bound.
- Proof

$$- \operatorname{E}\left[\sum_{i} c_{i}^{2}\right] = \operatorname{E}\left[\sum_{i} \sum_{j} C_{ij}\right] = N + \sum_{i} \sum_{\substack{j \neq i}} \operatorname{E}\left[C_{ij}\right] = \dots$$

The rest of this proof is left as an exercise.

RE-Hashing

- Sometimes the choice of hash or size of hashtable is poor, and should be changed.
 - In general this results in a complete reconstruction of the hash table, which is slow: O(|K|)

Hash Summary and Time Complexity

- The crux finding a hash with a good balance of space requirements and minimal collisions.
- Hash table of size m allocation: O(m)
- Search, Insert, Remove (assuming constant hash computation)
 Without collision: O(1)
 - With collision (cases may be): O(c) or $O\left(\frac{c}{m}\right)$ or $O\left(\log\left(\frac{c}{m}\right)\right)$ or ...
 - If you expect many collisions, employ an efficient collision resolution scheme (and/or consider increasing the size of your table)
- Using universal hashing we can statistically bound the number of collisions and space requirements resulting in an Perfect, Linear Space, Hash!

Bonus: Radix Sort

- Sort items in list, one digit at a time using a (simple) hash with chaining
- See supplemental PPT for animated example.

Algorithm 1

```
Require: Array is an array of ints of length n.

function RADIXSORT(int* array, int n)

radix \leftarrow = 10

digits \leftarrow = 10 // max num digits in an int

q \leftarrow intialize an array of FIFOqueues of length digits

for d from 0 to digits do

for i from 0 to n - 1 do

q[ dth digit of array[i] ].enqueue(data[i])

k \leftarrow 0

for j from 0 to radix - 1 do

while \neg q[ j ].isEmpty() do

array[ k++ ] \leftarrow q[j].dequeue()
```