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Retrieval Time Review

• Unordered Lists

• Trees or ordered lists

• Can we improve?



Motivation: Simple Example

• Suppose we wanted to store a set of unique numbers within the 

range 1 – 1,000

• Is there a structure and storage scheme that would permit 

searching, inserting and removing in O(1) time?

– Hint: the answer is yes! Motivation: Constant Time Example



Motivation: Simple Example

• Simply use an array with indices 1 – 1000.



Motivation: Simple Example

• Insertion

• Example: insert 3

• Time Complexity
– Direct indexing

– O(1)



Motivation: Simple Example

• Removal

• Remove 6

• Time Complexity

– Direct Indexing

– O(1)



Motivation: Simple Example Analysis

• How are we able to attain such a time complexity?

1. It is known, apriori, where each item is (to be) stored

2. Direct indexing: indexing is accomplished in constant time

• We know where to go, and we can get there fast!



Simple Example: How?

• Direct indexing is no mystery. But how did we know, apriori, where 

each item is (to be) stored

– The value stored was simply the index!

• This works well if we are storing integers, but what about non-integer 

data types or values that are not within a good indexing range…?



Direct Indexing with non-integer types

• In our simple example, the key (which is the data itself) is also the 

index.

– That is, each data value, directly maps to an appropriate index.

• Solution general case: find a function f that maps from the set of 

keys to a set of indices.



The hash function

• Remember: a key uniquely identifies a data object
• Let k be a one-to-one correspondence that maps from data objects to keys

• 𝑘: 𝑑𝑎𝑡𝑎𝑂𝑏𝑗𝑒𝑐𝑡𝑠 → 𝑘𝑒𝑦𝑠

• A hash function is a function that maps from a set of keys to a 

set of indices 
• h: 𝑘𝑒𝑦𝑠 → 𝑖𝑛𝑑𝑖𝑐𝑒𝑠



Hash Example

• Assume we wish to store student information in an array.

• Example data object
– (fname, lname, studid, age, <img>, … ) 

– (Bob, Barker, 1111111, 18, <img>, … ) 

• Example key: studid

– 𝑘: studentObjects → studentIDs

– 𝑘 𝐵𝑜𝑏 = 1111111

• Example hash

– h: studentIDs → indices
– ℎ 𝑥 = 𝑥 mod 1000

ℎ 𝑘𝑒𝑦 𝐵𝑜𝑏 = 1

0 1



Domain of Keys

• It is important to identify and define the domain of keys, 𝐾, of a hash.

• Characteristics of the keys will largely determine the type of hash to be used. 

• In many instances the total possible keys 𝐾 is larger than the number of 
actual keys to be stored N ⊂ 𝐾 , N < |𝐾|
– For example, the total number of students to be stored may be 10,000, but the total 

number of possible student id values may be 0 – 999999, numbering 10,000,000

– In our discussion we may assume these values are the same, which is often not the 
case.



Hashing: Design Concerns

• Time complexity for search, insert and removal is constant! 
– Why not always use a hash?!

• Design Concerns
1. Space: 

1. Cardinality of keys, 𝐾 , is likely large . The space requirements for a hash is not 
necessarily bound by the size of the input.

2. |N| may or may not be known. Is size static or dynamic? 

2. What happens if two different values get mapped to the same index?
1. Collision

3. Finding a hash function that mitigates these concerns is hard
1. Searching over a family of hash functions may not be tractable

2. Time complexity of evaluating the hash, eg computing h(k), may be a concern



Hashing: Space concerns

• Example 1. Reasonable Index Range.

– Store up to 1000 values within range 1 – 1000.

– More generally:  store up to n values within range 1 – n.

• Note here the size of the input may be up to n numbers, thus we can bound the 

memory constraints in terms of n, the size of the input.

– Use simple hash: h(i) = i

• Size of input (potentially n) , size of space requirements O(n)



Hashing: Space concerns

• Example 2. Unreasonable Index Range.

– Store up to n values within unknown range, eg, |K| is large.

• Size of input is n, how big of an array is needed

– Using simple hash from Ex. 1, is not efficient

• Use simple hash: h(i) = i

– Size of input (potentially n) , size of space requirements …?

• In this simple case, space requirements depend on the value of the input, and not the 

size of the input. 



Hash: Collision Concerns

• If a hash function is not a 

one-to-one correspondence, 

then a collision is possible

• A collision occurs when a 

hash function maps two 

different key values to the 

same index. 



Finding a Desirable Hash Functions

• Desirable characteristics of a hash function

– Space efficient. If n items to store, O(n) space.

– Minimize collisions

– Hash computation is fast

• A hash table of size m is an array of size m that uses a hash 

function for indexing (for searches, inserts and removals)



Addressing space efficiency

• Our simple hash example is a poor choice

– h(i) = i

– This depends on the value of keys and not the number of keys.

• Optimally. If there are n items to store, use an array of size m=n.

– Finding a hash function that maps each item perfectly (without collision) and 

has no wasted space is very difficult in the general case.



Addressing space efficiency

• Intuitively, there is a tradeoff between the 
size of the hash table and frequency of 
collisions.

• Intuitively, assume indices were randomly 
assigned to n different keys, the 
probability of collision would increase if 
the range of indices was reduced (if the 
array was smaller)



Addressing Collisions

• Collisions are often inevitable.

• Assume 𝑛 − 1 𝑚 + 1 keys. K = 𝑛 − 1 𝑚 + 1 .
– Table size m

• Notes:
– Since there are m locations for 𝑛 − 1 𝑚 + 1 items, there will be a set of n 

elements that hash to the same location, (the pigeon-hole principle).
• If m is less than the number of items to store, there will be collisions!



Some Hashing Schemes

• Division Method

• Folding Method

• Mid-Square Method

• Radix Method

• Universal Hashing

• Perfect Hashing

• Double Hashing



Hash: Division Method

• If nothing is known about the keys prior, the division method is a commonly 
used solution.

• Use simple int interpretation of full binary representation of k, Hashtable of 
size m

ℎ 𝑘 = 𝑘 𝑚𝑜𝑑 𝑚
Variant: keys of vector of ints

Pros: fast, maps to valid indices

Cons: unknown (without more information about distribution of keys). No assurances about 
collisions.



Folding Method

• Method.
1. key is partitioned, 

2. each partition is manipulated, 

3. then the results are aggregated together (folded together) to produce a final index

• Example. 
– SSN key. 

– Partition into 3 sections.

– Add three parts 

– Perform division on resulting scheme (table size m = 1000)

• Pros.
– Provides means to incorporate more digits into index computation.

Key k:  123- 45-6789

Partition and Add:  123 + 45 + 6789

Sum:      6,957

index = 
6,957 mod 1000 =
957 



Hash: Mid square approach

• Mid square approach
– Interpret binary sequence of key as an int

– Hash function
• Square the key value

• Use the r-inner bits as the index

– Intuition
• Pro:  All digits will affect the innermost bits of the squared value.

• Generally good uniform distribution

• Con: must compute square

• Example: 
– Key 4567

– R= 2

– Use 2-inner bits of square. 57 is index



Radix Method

• Radix transform.
– Rescale range of values by changing the number system.

– Assume key k is numeric.

– Map number to different radix (base)

• Example.
– Assume k = 345, and table size m = 100

– Change radix to 9

– 𝑘 = 34510 = 4239
– h(423) = 423 mod 100 = 23.



Simple Hashing Schemes

• Simple Schemes.
– Division Method

– Folding Method

– Mid-Square Method

– Radix Method

• Observations.
– Provide an means to mathematically map keys to index range.

– These mapping schemes are
• Easy to implement

• Hash is fast to compute

• But make no assurances about collisions (unless keys are known apriori)



Designing a Hash. Case Study Chars

• Storing ASCII characters
– chars are stored in 8 bits, thus there are 256 unique chars to store

– 256 unique data objects
• Not many, lets simply create a hash table of size 256

– What is a good key?
• Trivial key mapping. Each char has a unique binary encoding … which easily can be interpreted as a non-

negative integer using polynomial expansion … lets use that!

– Hash is simply the int interpretation of the keys binary value
• Trivial Hash. one-to-one correspondence and space efficient!



Designing a Hash. Case Study Strings

• Store a set of n strings

– String: Simply a sequence of chars

– Key ideas

• Strings are unique based on uniqueness of each char at each location

• Simple concatenation of binary sequence of chars

– Hash ideas

• (Bad) Idea 1: Using int interpretation of FULL binary sequence

– Would provide for no collisions, but at what cost!

» Assume: Each char may use up to 8-bits. Longest string will be 25 chars long

» Possible indices needed (for no collisions): 2200



Designing a Hash: Case Study String (cont)

• Idea 2: Simple design scheme. 
– Fix the table size to something reasonable, m = 1000. 

– Use Folding Scheme. Sum numeric interpretation of each characters
• hash function: h(string) = sum mod 1000

– Alleviates space concerns, but may result in collisions. 

– Note here N < |K| is likely and so allocating |K| spaces may be unnecessary and 
impractical

– Observation: may not map to range 0 – 999 very uniformly. May result in 
more collisions that desired.

– EG: all of the following strings would map to the same key

» az, za, by, yb, cx, xc, … 



Designing a Hash: Case Study Strings

• Universal 
– Randomly construct b-u random matrix

• b = log2𝑚
• u is number of bits for keys (200 bits)

– Randomly select k numbers and use variant.

• Perfect (using O( 𝐾 2) space approach)

– Choose m = 𝐾 2 = 2200
2

(not practical!)

– b = log2 2
2002 = 40000

• Double Hash
– (often) an efficient solution

• Another Method. Cichelli’s Method.
– Searches for a Hash Map that works well.

– Search time may be expensive.

– See Readings and HW questions.



Collision Resolution

• In some instances collisions may be hard to avoid. 

• Having an efficient resolution scheme is important.

– Annex / Cellars

– Probing 

– Chaining



Collision Resolution: Annex or Cellar

• Example table of size 10

• Scheme: reserve c spots to 
end of array; designate as 
cellar. Store collisions there 
sequentially.

• Worst Case Complexity: O(c)

• Cons:
– Cellar size = c is fixed

• may fill up

• Is unordered and generally large



Collision Resolution Scheme: Probing

• Linear Probing

• Scheme: rather than store collisions in 
cellar, store them in an empty location 
near correct hash index. Use linear 
probe to find nearby empty locations.

• Linear probe is generally a simple 
sequential scan (with mod 
wraparound)
– Ex:  h(k) , h(k) + 1, h(k) + 2, … 

• Complexity analysis: 
– Dependent on load of table

– Load, 𝜆,  is percentage of occupied 
locations

– Average Case:  𝑂
1

1−𝜆



Collision Resolution Scheme: Probing

• Quadratic Probing

• Linear probing may suffer if keys are not 
uniformly distributed. “Clustering” in some 
regions of the table will occur which will 
increase the number of overall collisions.

• Scheme: Search for empty spaces, further 
away.

– h(k), h(k)+1, h(k)+4, h(k) + 9, … 

• Complexity:
– Must be sure to traverse indices without 

repetition.

– This is assured if m is prime.



Collision Resolution: Chaining

• Each Array entry is a linked list

• Collision is implicitly handled by adding to top of list.

• Pros:
– Dynamic size, 

– Static size issues resolved: cellar overflow, or table overflow 
(probing)

• Complexity:
– Conceptually better than cellar as the collision space is 

organized by original hash entry

– Assume c is number of total collided items over m buckets. 
Average case: O(c/m)

– Practical Concerns: memory not contiguous, may have disk 
access delays

• Alternative (to linked list) approaches
– Implement Hash table, where each bucket is a B-Tree

– Implement Hash table, where each bucket is a hash table



Collision Resolution Schemes

• Cellar
– Static Size

– Sequential search in cellar if collision

• Probing
– Static size

– Searching is done locally if collision

– Efficiency highly dependent on average load of table

• Chaining
– Dynamic size

– Possible delays related to non-contiguous allocation

– Organized search if collision



Avoiding Collisions: Statistical Perspective

• If all the keys are known apriori, then we can construct a simple hash that 
avoids all collisions. However, this is not often the case.

• Some CS problems are hard (eg collision-free hashing when little is known 
about the keys apriori), and finding an optimal solution is impractical. 
– Sometimes its more appropriate to find a good solution (with high probability) fast. 

– Statistical approaches: Quantify probability of poor result.

– Rather than trying to avoid all collisions, quantify (minimize) how often they might occur.

• Universal Hash Idea. (Monte Carlo Scheme)
– Assume n items are assigned indices randomly by h.

– We can statistically bound the number of collisions, if we construct the hash in a 
“random” sense.

• We can choose the size of m to bound the number of expected collisions.



Uniform Hash

• Having a hash function that uniformly assigns keys to buckets is 

desirable

– Reduces “clustering” and collisions 

• A uniform hash has a uniform probability of collision

𝑃 ℎ(𝑘𝑖 == ℎ(𝑘𝑗)) = 𝑃(𝐶𝑖𝑗) ≤
1

𝑚



Universal Hashing

• A Universal Class of Hash Functions H is a set of hash functions with the 
following bound on collisions.

• When any hash function ℎ ∈ 𝐻 is chosen randomly from H, the probability of 
collision of any two keys (key i and key j) is bounded as follows:

𝑃(ℎ(𝑘𝑖) == ℎ(𝑘𝑗)) = 𝑃(𝐶𝑖𝑗) ≤
1

𝑚

Observe: The number of collisions of key i with any other key can be bounded

(proof upcoming)

• Constructing a hash function with this property is not as difficult as it might seem 
(given some assumptions about the data).
– The crux is having the means to randomize the selection.



Universal Hashing: Expected Number of Collisions

• Similar to previous slide (here we take expectation of Boolean variable collision.)

• The expected number of collisions between x and other elements in S is at most N/M

• Proof …  

• Since 𝑃(𝐶𝑖𝑗) ≤
1

𝑚

• Let 𝐶𝑖𝑗 = 1 , when i and j collide.

• Let  𝐶𝑖 be the total number of collisions for i. Ci =  𝑗=1
𝑛 𝐶𝑖𝑗

• We assume 𝐸[𝐶𝑖𝑗] ≤
1

𝑚
.

• Thus 𝐸[𝐶𝑖] =  𝑗
𝑛𝐸[𝐶𝑖𝑗] ≤

𝑛

𝑚
. , by linearity of expectations



What is a class or family of functions?

• Example: Consider a set of functions F

– 𝐹 = {𝑓1, 𝑓2, … , 𝑓100}, where 𝑓𝑖 𝑥 =
2𝑥

𝑖

• Observe F is a class of 100 distinct functions, which vary based 
on some parameter 𝑖 ∈ {1,2,… , 100}. 

• If we can randomly select i, then we can randomly select a 
function in F.
– Crux: find a family that meets the universal property!



Designing a Universal Hash Family (Matrix Method)

• Assume 
– keys are u-bits long

– Table size m is a power of 2, m = 2b

• Define hash function h in terms of random 0-1 matrix H, that is b x u.
ℎ𝐻(𝑘) = 𝐻𝑘

• Example
M = 4

Keys: 3-bits

Pro. This is a universal hash, ie, 𝑃(ℎ(𝑘𝑖) == ℎ(𝑘𝑗)) =
1

2𝑏
=

1

𝑚
Con. Hash computation cost: O(log2m x log2|k|)

1 0 1
0 0 1

1
1
0
=
1
0

H k Hk



Universal Hash Familty: Division Method

• Represent keys as d-dimensional vectors of integers 
– Rather than vector of binary values, 

• Key example.  x = 𝑥1, 𝑥2, … , 𝑥𝑑
𝑇

• Hash Table
– Size: m

– Choose d random non-negative integers, ri∈ 1,…,𝑑 < 𝑚

– ℎ 𝑥 = 𝑟1, 𝑟2, … , 𝑟𝑑 𝑥1, 𝑥2, … , 𝑥𝑑
𝑇 =  𝑖=1

𝑑 𝑟𝑖𝑥𝑖 𝑚𝑜𝑑 𝑚

• Notes:
– Computation of key (and storage of hash parameters) is seemingly less than matrix method

– If m is prime, then a universal hash is guaranteed.



Perfect Hashing

• A perfect hash is a hash function where search, insert and removal are 
all O(1). 
– IE, no collisions (or constant bound on collisions).

• If the set of keys (to be inserted) is known apriori, finding a perfect 
hash may be practical.

• What if we do not know all keys apriori?
– One solution: repeatedly pick a (random) universal hash until it is perfect. 

• But how long will this take?

• If we select m = 𝐾 2 = 𝑛2, the probability of no collisions is greater than 
1

2
• Cost: O( 𝐾 2) space



Perfect Universal Hash: Quadratic Space Method

• Conjecture: Let h be a draw from a Universal Hash family. If m =
𝐾 2 = 𝑛2, then the probability of no collisions is greater than ½ .

• Proof

– Let 𝐶𝑖𝑗 denote a collision between key i and j 

– The number of pairwise collisions possible in K, where |K| = N is n choose 2, 
𝑛
2

– Recall 𝑃(𝐶𝑖𝑗) ≤
1

𝑚

– Thus, the  𝑃( ∃𝑖𝑗 𝐶𝑖𝑗 == 1) ≤
𝑛
2
𝑚

=  

𝑛
2
𝑛2

=

𝑛!

2! 𝑛−2 !

𝑛2
=
𝑛 (𝑛−1)

2𝑛2
=
𝑛 (𝑛−1)

2𝑛2
=

(𝑛−1)

2𝑛
≤
1

2



Hash of Hashes Scheme: Universal and Perfect!

• Previously we discussed using a O( 𝐾 2) space approach to attain a 
perfect hash (by repeatedly, selecting a random universal hash)
– Good, but we can do better than O( 𝐾 2) space! 

• Scheme: create a hash table of hash tables!
1. Create a universal hash of size 𝐾 (or 𝑁 , the number of items to insert if we 

know N apriori)
• This may result in some collisions, 𝑐𝑖, for each bin i in the table, which is OK.

2. For each bin i, create a hash function using the O( 𝐾 2) space approach , where 
𝐾 2 = 𝑐𝑖

2

• Intuition: the number of collisions in each bin should not be very much

• Note: the total  𝑖 𝑐𝑖
2

can be bounded linearly by N with high probability. 

• Result: O( 𝐾 ) space



Perfect Universal Hash: Linear Space

• Conjecture: Assume a universal hash h is chosen where m = n. 

Let 𝑐𝑖 be the number of collisions in bucket i , then E  𝑖 𝑐𝑖
2 < 2𝑛, 

thus the total space is linearly bound.

• Proof

– E  𝑖 𝑐𝑖
2 = 𝐸  𝑖 𝑗 𝐶𝑖𝑗 = 𝑁 +  𝑖 𝑗

𝑗≠𝑖

𝐸[𝐶𝑖𝑗 ] = …

The rest of this proof is left as an exercise.



RE-Hashing

• Sometimes the choice of hash or size of hashtable is poor, and 

should be changed.

– In general this results in a complete reconstruction of the hash table, 

which is slow: O( 𝐾 )



Hash Summary and Time Complexity

• The crux – finding a hash with a good balance of space requirements and 
minimal collisions. 

• Hash table of size m allocation: O(m)

• Search, Insert, Remove (assuming constant hash computation)
– Without collision: O(1)

– With collision (cases may be): O(c) or 𝑂
𝑐

𝑚
or 𝑂 𝑙𝑜𝑔

𝑐

𝑚
or … 

• If you expect many collisions, employ an efficient collision resolution scheme (and/or consider 
increasing the size of your table)

• Using universal hashing we can statistically bound the number of collisions 
and space requirements resulting in an Perfect, Linear Space, Hash!



Bonus:  Radix Sort

• Sort items in list, one digit at 

a time using a (simple) hash 

with chaining

• See supplemental PPT for 

animated example.


