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Depth, Time Complexity, and Disk Access

• Logarithmic time complexity is quite efficient.
– Can we improve efficiency further?

– How?

• Motivation
– Practical Improvements: Disk, Memory and Cache delays

• Useful for databases.

• Linear search (with no memory delays) may be better than a logarithmic search with 
delays

• Von Neuman Bottleneck: accessing low levels of memory hierarchy is slow

– How can we reduce the computational steps associated with a search tree?

• Reduce its height?



Memory Penalties 

• Memory is hierarchical to 
mitigate the effects of the 
Von Neumann bottleneck

• However: Accessing 
secondary memory still 
incurs a significant penalty 
(delay!)

• This penalty is high enough 
to offset many orders of 
magnitude of theoretical 
time complexity reduction



m-way Search Tree

• Observations of multiple branches

– Height

• Height of balanced binary (2-way) tree is 𝑂(log2(𝑛))

• Height of balanced m-way tree is 𝑂(log𝑚(𝑛))

– As m increases the height of tree decreases. “Less” node traversals.

– However this design allows (and may require) multiple keys (m-1) stored 

at each node. The search time at each node increases



m-way Search Tree

• Contiguous vs Non-Contiguous storage:
– Each time a nodes keys are accessed, they are loaded from memory

– THUS Reduce the height of the tree, reduce memory accesses

• Notes: 
– But multiple keys in each node will increase searching time over keys in each 

node 
• If keys in each node are stored contiguously, this is likely done with only 1 access to 

memory chuck.  

– Crux: May not reduce step count but may reduce the total number of disk access 
(where disk access might have a memory delay). 



Using keys to represent large data file

• A Key should uniquely identify a data entry
– Example database entries

• Data entry may be a tuple ( ssn, first name, last name, image, … )

• Key should uniquely identify each data entry, e.g. ssn

• Keys should be “light weight” and stored contiguously in node 
structure.

• Bulky data can then be accessed by pointers associated with each key
– We neglect these pointers in our conceptual introduction here, but they will be 

necessary for a real-world implementation.



Operations on m-way Search Tree

• Similar to BST, but may have m children at most.

• m-way or m-ary tree
– each node has up to m children and m-1 keys

– keys are in some order

– All keys within first i children are less than the ith key

– All keys within last m-i children are greater than the ith key

• Operations: 
– Search

– Insert

– Remove

Example:  5-way tree



B-Trees

• Definition:
– A b-tree of order m is a m-ary (m ≥ 4 ) search tree, with the following properties.

• The root has between 2 and m children (unless it is a leaf)

• All non-leaf nodes (except the root) have between m/2 and m children

• All non-root nodes contain k-1 keys and k pointers to children where m/2 ≤ 𝑘 ≤ 𝑚

• All leaf nodes are the same depth

• Strict balance constraint.
– Note: The depth of all leaf nodes are the same

• How is this maintained? Height only changes by adding or removing root.

– Rotations (reorganization) “similar” to AVL but a bit more complex



B-Tree Nodes

• Each node in a B-Tree of order m has the following information.

1. Up to m-1 keys

2. The number of current keys stored

3. m pointers to children

4. isLeaf: is the node a leaf node

• Even given these standard constraints, there are some variations 

and design decisions to make. We will discuss some later.

– Family of B-Trees



B-Tree Node Illustration

• Each node 
contains children 
array and key 
array

• Intuitively these 
two arrays are 
often illustrated 
in an interleaved 
fashion. Keep in 
mind these are 
two distinct 
arrays in 
implementation!!

Leaf Nodes: the children array can be absent or all values are set to NULL



Example: 4-way B-Tree

Leaf Nodes: the children arrays are absent in this example



Searching in a B-Tree

// assumes subtrtree rooted at root, searching for key value k.

// returns pointer to “data object” specified by key k

// assumes design 2

𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑠𝑒𝑎𝑟𝑐ℎ𝐵𝑡𝑟𝑒𝑒 𝑟𝑜𝑜𝑡, 𝑘
𝑖 ≔ 1
𝑤ℎ𝑖𝑙𝑒 𝑖 ≤ 𝑟𝑜𝑜𝑡. 𝑛𝑢𝑚𝐶ℎ𝑖𝑙𝑑𝑟𝑒𝑛 𝐴𝑁𝐷 𝑘 > 𝑟𝑜𝑜𝑡. 𝑘𝑒𝑦𝑠 𝑖

𝑖 ≔ 𝑖 + 1
𝑖𝑓 𝑖 ≤ 𝑟𝑜𝑜𝑡. 𝑛𝑢𝑚𝐶ℎ𝑖𝑙𝑑𝑟𝑒𝑛 𝐴𝑁𝐷 𝑘 == 𝑟𝑜𝑜𝑡. 𝑘𝑒𝑦𝑠 𝑖

𝑟𝑒𝑡𝑢𝑟𝑛 𝑟𝑜𝑜𝑡. 𝑑𝑎𝑡𝑎[𝑖] // base case: found it

𝑖𝑓 𝑟𝑜𝑜𝑡 𝑖𝑠 𝑎 𝑙𝑒𝑎𝑓

𝑟𝑒𝑡𝑢𝑟𝑛 𝑁𝑈𝐿𝐿 // base case: did not find it!

𝑒𝑙𝑠𝑒 // recursive case: keep traversing down 

𝑟𝑒𝑡𝑢𝑟𝑛 𝑠𝑒𝑎𝑟𝑐ℎ𝐵𝑡𝑟𝑒𝑒(𝑟𝑜𝑜𝑡. 𝑐ℎ𝑖𝑙𝑑 𝑖 , 𝑘)

Complexity Analysis (worst case)

Traversing down the tree Θ(ℎ) = Θ(log𝑚 𝑛)

At each node in the tree, sequentially 
search keys:Θ(𝑚)

Total computational steps: Θ(𝑚 log𝑚 𝑛)



Searching B-Tree Complexity

• Practical Notes:

– Not a theoretical improvement O(𝑚 log𝑚 𝑛)

– Pro: number of disk accesses is reduced!

• Θ(log𝑚 𝑛)

• Can we improve upon this?

– Try binary search on m-1 keys at each node

• Given the overhead, we may not gain much here

Complexity Analysis (assume m = L)

Traversing down the tree Θ(ℎ) = 
Θ(log𝑚 𝑛)

At each node in the tree, sequentially 
search keys: O(𝑚)

Total computational steps: 
O(𝑚 log𝑚 𝑛)



Inserting a key into a B-Tree

• Insertion is always done at a leaf node

• Insertion is done in a single pass down the tree

• Uses splitChildBtree function

– This function assures b-tree constraints are not violated.

– During traversal to leaf node for insertion, all nodes encountered that have 

a maximum number of keys are split (otherwise a violation may occur).



Inserting into a B-Tree

• Inserting into a B-Tree is 
not simple

• If a node’s keys are full, 
then the node is split 
into two nodes
– Splitting around the 

median key value is 
intuitive

– Median value is moved to 
parents key list

– Must maintain a valid B-
Tree after the split

• NOTE: promotion of child 
median value to parent may 
cause parent to have too 
many keys!



Splitting a node (High-Level)

// parent is a “non-full” internal node 

// child is a “full” child of root

// i is index into key

𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑠𝑝𝑙𝑖𝑡𝐶ℎ𝑖𝑙𝑑𝐵𝑡𝑟𝑒𝑒 𝑝𝑎𝑟𝑒𝑛𝑡, 𝑐ℎ𝑖𝑙𝑑, 𝑖
1. Create new node
2. Identify median entry in child.keys
3. Copy right half (right of median) of  key values into 

new node
4. Copy  right half of children pointers to new node
5. Update child.numKeys and newNode.numKeys

– account for median removal

6. Promote Median to Parent
– Make room for and insert median value into parent.key
– Make room for and insert pointer for newNode in 

parent.child
– Update parent.numKey



Inserting: Inserting into a non-full node
High-Level 

// assumes is leaf

𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑖𝑛𝑠𝑒𝑟𝑡𝑁𝑜𝑛𝐹𝑢𝑙𝑙𝐵𝑡𝑟𝑒𝑒 𝑛𝑜𝑑𝑒, 𝑘

If node is leaf // perform insert

1. Find correct index i for insertion of k into node.key[i]

2. Insert k into node.key[i]

3. Update node.numKeys

𝑒𝑙𝑠𝑒 // continue down to leaf and confirm internal nodes are not full!

1. Find correct index i for traversal node.children[i]

2. if node.child[i] is full

𝑠𝑝𝑙𝑖𝑡𝐶ℎ𝑖𝑙𝑑𝐵𝑡𝑟𝑒𝑒(𝑛𝑜𝑑𝑒, 𝑛𝑜𝑑𝑒. 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 𝑖 , 𝑖)
update i as needed, if split occurred

3.      𝑖𝑛𝑠𝑒𝑟𝑡𝑁𝑜𝑛𝐹𝑢𝑙𝑙𝐵𝑡𝑟𝑒𝑒 𝑛𝑜𝑑𝑒. 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛[𝑖], 𝑘



Inserting into a B-Tree
High-Level

// The only reason we need this “wrapper” function is to account for the 

// case where the root is full! The main work is being done by the helper 

// methods previously defined

𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑖𝑛𝑠𝑒𝑟𝑡𝐵𝑡𝑟𝑒𝑒 𝑇, 𝑘
𝑜𝑙𝑑𝑅𝑜𝑜𝑡 ≔ 𝑇𝑟𝑒𝑒. 𝑟𝑜𝑜𝑡
// if root is full, we must create a new root and increase tree depth by 1
𝑖𝑓 𝑟𝑜𝑜𝑡 𝑖𝑠 𝑓𝑢𝑙𝑙
1. Create newRoot

2. Make oldRoot the first child of newRoot

3. 𝑠𝑝𝑙𝑖𝑡𝐶ℎ𝑖𝑙𝑑𝐵𝑡𝑟𝑒𝑒(𝑛𝑒𝑤𝑅𝑜𝑜𝑡, 𝑟𝑜𝑜𝑡, 1)
// the old root is full, need to split it before we can insert

𝑖𝑛𝑠𝑒𝑟𝑡𝑁𝑜𝑛𝐹𝑢𝑙𝑙𝐵𝑡𝑟𝑒𝑒 𝑛𝑒𝑤𝑅𝑜𝑜𝑡, 𝑘
𝑒𝑙𝑠𝑒 // if root is not full, we can use standard insert

𝑖𝑛𝑠𝑒𝑟𝑡𝑁𝑜𝑛𝐹𝑢𝑙𝑙𝐵𝑡𝑟𝑒𝑒 𝑟𝑜𝑜𝑡, 𝑘



Insert Examples

• B-tree, m = 6

max keys is 5

• Example Insert 7



Insert Example

• B-tree, m = 6

max keys is 5

• Insert into full node.

• Run split node 

procedure



Deleting a Key from a B-tree

• Similar to insertion, but a few more cases to consider

• Single pass down the tree, key to be deleted is “moved” to the leaf 

and deletion occurs at the leaf

• If key is deleted from internal node, then there are a few cases of 

concern.

– Is resulting b-tree valid

– Constraint: All non-leaf nodes (except the root) have between m/2 and m 

children



Deleting a Key from a B-tree

• During traversal for deletion there are 3 Cases

– General idea: 

– Traverse down the tree in search of key k, at each node identify the 

case and proceed appropriately 

• If a node with a min number of keys is encountered, we will “adjust” keys so that 

the number is not min.  (case 3)

– (Why? Removal in the subtree may decrease the number of keys in a parent 

potentially causing a violation. )

• Key to remove is found in internal node, recursively demote the key down to a 

leaf node for deletion. (case 2)

• Key is found in leaf node. Delete key (case 1)



Deleting a Key from a B-tree

– Cases 1 + 2

– Key k is deleted from node thisNode

1. thisNode is a leaf node. Simple – just delete k. base case.

2. thisNode is an internal node
1. Assume k is the ith key in thisNode. thisNode.childi has more than the minimum number 

of keys, find predecessor key k’ in subtree rooted by thisNode.childi . Delete k’  and 
replace k with k’ in thisNode. (Goal: repeatedly demote k down to a leaf node with a 
series of “swaps”). Continue traversal down tree (to continue demotion).

2. ELSE if thisNode.childi does not have more than minimum number of keys: perform the 
step above with the thisNode.childi+1. Continue traversal down tree (to continue 
demotion).

3. ELSE if both thisNode.childi and thisNode.childi+1 do not have the minimum number of 
keys, demote k and merge k and the contents of thisNode.childi+1 into thisNode.childi. 
Adjust thisNodes keys appropriately. Continue traversal down tree (to continue 
demotion).



Deleting a Key from a B-tree

• Final Case: traversing down tree, searching for key k. Ensure 
appropriate number of keys on the way down
3. k is not contained in internal node iNode. Determine which child iNode.childi

roots the subtree that contains k 

1. If iNode.childi has the minimum number of keys, but has a sibling with more than the 
minimum number of keys. Transfer an extra key into iNode.childi from iNode: move a 
key from sibling iNode.childi+1 or iNode.childi-1 to iNode , and “promote” the appropriate 
child from sibling to iNode. Continue traversal down tree (in search of k).

2. If all children of iNode have the minimum number of keys, merge two of the sibling into 
one. Move a key down from iNode to the new merged node to become the median key 
for the new node. Adjust iNodes appropriately. Continue traversal down tree (in search 
of k).

3. iNode.childi has the MORE THAN minimum number of keys, Continue traversal down 
tree (in search of k).



Example: Deleting from a B-Tree

• Case 1:

• Remove 22 



Example: Deleting from a B-Tree



Example: Deleting from a B-Tree

• Case 2.3

• Note that thisNode’s

children do not have more 

than the minimum number 

of keys

• Therefore merge two 

children into a new node 



Example: Deleting from a B-Tree

• Case 3.1

• Remove 7

• The resulting node, 
thisNode, will not 
have a sufficient 
number of keys. 

• Therefore “demote” 
key from iNode and 
“promote” key from 
sibling



Example: Deleting from a B-Tree

• Case 3.2 

• Since both siblings (5,11) and (58,70) 
do not have more than the min 
number of keys we cannot simply 
perform a demotion-promotion swap 
(case 3.1)

• Therefore we must merge node (5,11) 
with one of its siblings and use iNodes
key as the new median

– Special case: demoting the root. Since 
the only key in iNode has been 
demoted. All other keys at iNode must 
be adjusted (but there are no others!) 

• Delete oldRoot

– Observe the height of the tree changes 
only in this case – with the deletion of 
the oldRoot.

• Once this merge occurs, the recursive 
search for the key 10 can proceed. 10 
is finally removed (case 1)



Readings

• Family of B-Trees
– B* Trees

• If node is full, only split if sibling is also full; otherwise swap values with parent and sibling to avoid split.
– Idea: reduces the frequency of splitting which can be time consuming.

• Variation of “fullness” constraint for splitting nodes. 

• Result minimum fullness is 
2

3
instead of 

1

2
. 

• Bn Trees (generalization): a node is full at ratio (n+1)/(n+2) 

– B+ Trees
• Observe: B-tree still have a very inefficient in-order traversal.

• Internal nodes contain keys (only)

• Leaf nodes contain keys and pointers associated with corresponding data
– Leaves also generally contain pointer to the next leaf node (in order)

• Result 
– Leaves contain all keys and all data references

– Internal nodes are only used as indices to search for data. 

– Thus a key found in an internal node is also found in a leaf node!



Summary of B-Trees

• Practical benefits to be gained when storing large structures in memory

• Accessing memory off chip is slow! B-trees reduce the number of memory 
accesses in the worst case as compared to BSTs
– O(𝑚 log𝑚 𝑛) vs O( log2 𝑛)

– Number of disk accesses is reduced for large m.

• Θ(log𝑚 𝑛)

• Investigation: How does the choice of m affect the overall complexity?
– Theoretically?

– In practice?
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Design Scheme: B+ trees

• Data only at the 
leaves

• Keys are only used to 
guide a search to data

• Key values are by 
standard the smallest 
value in the right 
subtree



Design Scheme: B+ trees• Data only at 
the leaves

• Keys are only 
used to guide 
a search to 
data

• Key values are 
by standard 
the smallest 
value in the 
right subtree

• Here m = 4


