
COSC160: Data Structures
Balanced Trees

Jeremy Bolton, PhD

Assistant Teaching Professor

Outline

I. Balanced Trees

I. AVL Trees

I. Balance Constraint

II. Examples

III. Searching

IV. Insertions

V. Removals

Balancing a Tree

• Binary trees lack a depth constraint. As a result the worst case

insertion, removal and retrieval times are O(n).

Balanced Trees: Time Complexity Implications

• If a tree is “balanced” in some sense. The time complexity of

insertions, removals and retrievals will have a logarithmic bound.

AVL Trees

• AVL trees

– Binary Search Tree with added balance constraint

– Adelson, Veliskii and Landis

– Definition: AVL constraint

• For any node in the tree, the height of the left and subtrees can differ in height

only by one.

• Uses weak notion of “balance”

– Sufficient to ensure logarithmic depth in worst case!

Example AVL trees

Logarithmic Depth

• AVL trees are guaranteed to have logarithmic depth.
– As a result, the worst case time complexities for insert, removal and retrieve is O(log2n).

• Proof idea: Prove the height can be represented as a logarithmic function of n the
number of nodes.
– By definition, the minimum number of nodes is in AVL tree of height h is defined by

recurrence 𝐴𝑉𝐿ℎ:

𝐴𝑉𝐿ℎ = 𝐴𝑉𝐿ℎ−1 + 𝐴𝑉𝐿ℎ−2 + 1
𝐴𝑉𝐿0 = 0
𝐴𝑉𝐿1 = 1

– Solving and bounding this recurrence we get : ℎ < 1.4 log2 𝐴𝑉𝐿ℎ + 2
• See Appendix A.5

– Thus worst case operations based on traversing the height h of the tree are O(log2𝐴𝑉𝐿ℎ)

The Valid State of A Balanced Tree

• Operations on an AVL tree may result in an “invalid” state.

– Insert

• Nodes along the path from the inserted node to the root might violate the balance

condition.

– Remove

• Nodes along the path from the replacement node to the root might violate the balance

condition.

• Re-balancing must be incorporated into these operations.

Insert into AVL Tree

• Assume node thisNode is the deepest node that violates the

balance constraint and must be rebalanced.

• The violation may occur as a result of 1 of 4 Cases:

– Case 1: Insertion into left subtree of the leftChild of thisNode

– Case 2: Insertion into the right subtree of the leftChild of thisNode

– Case 3: Insertion into the left subtree of the rightChild of thisNode

– Case 4: Insertion into right subtree of the rightChild of thisNode

Balancing by
Single Rotation

Case 1

// rotate AVL tree single rotation

// solution for Case 1: Insertion into left subtree of the leftChild of thisNode

// performs rotation and returns new root of subtree, oldLeftChild

𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑟𝑜𝑡𝑎𝑡𝑒𝑊𝑖𝑡ℎ𝐿𝑒𝑓𝑡𝐶ℎ𝑖𝑙𝑑 𝑡ℎ𝑖𝑠𝑁𝑜𝑑𝑒
𝑜𝑙𝑑𝐿𝑒𝑓𝑡𝐶ℎ𝑖𝑙𝑑 ≔ 𝑡ℎ𝑖𝑠𝑁𝑜𝑑𝑒. 𝑙𝑒𝑓𝑡𝐶ℎ𝑖𝑙𝑑
𝑡ℎ𝑖𝑠𝑁𝑜𝑑𝑒. 𝑙𝑒𝑓𝑡𝐶ℎ𝑖𝑙𝑑 ≔ 𝑜𝑙𝑑𝐿𝑒𝑓𝑡𝐶ℎ𝑖𝑙𝑑. 𝑟𝑖𝑔ℎ𝑡𝐶ℎ𝑖𝑙𝑑
𝑜𝑙𝑑𝐿𝑒𝑓𝑡𝐶ℎ𝑖𝑙𝑑. 𝑟𝑖𝑔ℎ𝑡𝐶ℎ𝑖𝑙𝑑 ≔ 𝑡ℎ𝑖𝑠𝑁𝑜𝑑𝑒
return oldLeftChild

Balancing by
Single Rotation

Case 4

// rotate AVL tree single rotation

// solution for Case 4: Insertion into right subtree of the rightChild of thisNode

// performs rotation and returns new root of subtree, oldRightChild

𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑟𝑜𝑡𝑎𝑡𝑒𝑊𝑖𝑡ℎ𝑅𝑖𝑔ℎ𝑡𝐶ℎ𝑖𝑙𝑑 𝑡ℎ𝑖𝑠𝑁𝑜𝑑𝑒
𝑜𝑙𝑑𝑅𝑖𝑔ℎ𝑡𝐶ℎ𝑖𝑙𝑑 ≔ 𝑡ℎ𝑖𝑠𝑁𝑜𝑑𝑒. 𝑟𝑖𝑔ℎ𝑡𝐶ℎ𝑖𝑙𝑑
𝑡ℎ𝑖𝑠𝑁𝑜𝑑𝑒. 𝑟𝑖𝑔ℎ𝑡𝐶ℎ𝑖𝑙𝑑 ≔ 𝑜𝑙𝑑𝑅𝑖𝑔ℎ𝑡𝐶ℎ𝑖𝑙𝑑. 𝑙𝑒𝑓𝑡𝐶ℎ𝑖𝑙𝑑
𝑜𝑙𝑑𝑅𝑖𝑔ℎ𝑡𝐶ℎ𝑖𝑙𝑑. 𝑙𝑒𝑓𝑡𝐶ℎ𝑖𝑙𝑑 ≔ 𝑡ℎ𝑖𝑠𝑁𝑜𝑑𝑒
return oldRightChild

Balancing by Single Rotation

Single Rotation fails when “inner” subtree is largest

Double Rotations.

• Example: Double rotation balances case 2 (and 3)

– Rotate between thisNode’s child and grandchild

– Rotate between thisNode and its new child

Double rotate
with left child:

Case 2

// rotate AVL tree single rotation

// solution for Case 2:

// performs double rotation and returns new root of subtree

𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑑𝑜𝑢𝑏𝑙𝑒𝑅𝑜𝑡𝑎𝑡𝑒𝑊𝑖𝑡ℎ𝐿𝑒𝑓𝑡𝐶ℎ𝑖𝑙𝑑 𝑡ℎ𝑖𝑠𝑁𝑜𝑑𝑒
𝑡ℎ𝑖𝑠𝑁𝑜𝑑𝑒. 𝑙𝑒𝑓𝑡𝐶ℎ𝑖𝑙𝑑 ≔ 𝑟𝑜𝑡𝑎𝑡𝑒𝑊𝑖𝑡ℎ𝑅𝑖𝑔ℎ𝑡𝐶ℎ𝑖𝑙𝑑 𝑡ℎ𝑖𝑠𝑁𝑜𝑑𝑒. 𝑙𝑒𝑓𝑡𝐶ℎ𝑖𝑙𝑑
𝑟𝑒𝑡𝑢𝑟𝑛 𝑟𝑜𝑡𝑎𝑡𝑒𝑊𝑖𝑡ℎ𝐿𝑒𝑓𝑡𝐶ℎ𝑖𝑙𝑑 𝑡ℎ𝑖𝑠𝑁𝑜𝑑𝑒

Example: Balancing by Double Rotation

Double rotate
with right child:

Case 3

// rotate AVL tree single rotation

// solution for Case 3

// performs double rotation and returns new root of subtree

𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑑𝑜𝑢𝑏𝑙𝑒𝑅𝑜𝑡𝑎𝑡𝑒𝑊𝑖𝑡ℎ𝑅𝑖𝑔ℎ𝑡𝐶ℎ𝑖𝑙𝑑 𝑡ℎ𝑖𝑠𝑁𝑜𝑑𝑒
𝑡ℎ𝑖𝑠𝑁𝑜𝑑𝑒. 𝑟𝑖𝑔ℎ𝑡𝐶ℎ𝑖𝑙𝑑 ≔ 𝑟𝑜𝑡𝑎𝑡𝑒𝑊𝑖𝑡ℎ𝐿𝑒𝑓𝑡𝐶ℎ𝑖𝑙𝑑 𝑡ℎ𝑖𝑠𝑁𝑜𝑑𝑒. 𝑟𝑖𝑔ℎ𝑡𝐶ℎ𝑖𝑙𝑑
𝑟𝑒𝑡𝑢𝑟𝑛 𝑟𝑜𝑡𝑎𝑡𝑒𝑊𝑖𝑡ℎ𝑅𝑖𝑔ℎ𝑡𝐶ℎ𝑖𝑙𝑑 𝑡ℎ𝑖𝑠𝑁𝑜𝑑𝑒

3

Insert into AVL Tree

// insert key in AVL tree rooted at root

𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑖𝑛𝑠𝑒𝑟𝑡𝐴𝑉𝐿(&𝑟𝑜𝑜𝑡, 𝑘𝑒𝑦)
𝑖𝑓 𝑟𝑜𝑜𝑡 𝑖𝑠 𝑁𝑈𝐿𝐿 // base case: insert node here!

𝑟𝑜𝑜𝑡 ≔ 𝑛𝑒𝑤 𝑛𝑜𝑑𝑒
𝑟𝑜𝑜𝑡. 𝑘𝑒𝑦 ≔ 𝑘𝑒𝑦

𝑖𝑓 𝑟𝑜𝑜𝑡. 𝑘𝑒𝑦 == 𝑘𝑒𝑦, 𝑡ℎ𝑒𝑛 𝑟𝑒𝑡𝑢𝑟𝑛 // assume no duplicates

𝑖𝑓 𝑟𝑜𝑜𝑡. 𝑘𝑒𝑦 > 𝑘𝑒𝑦 // continue down left subtree

𝑖𝑛𝑠𝑒𝑟𝑡𝐴𝑉𝐿(𝑟𝑜𝑜𝑡. 𝑙𝑒𝑓𝑡𝐶ℎ𝑖𝑙𝑑, 𝑘𝑒𝑦)
𝑖𝑓 |ℎ𝑒𝑖𝑔ℎ𝑡 𝑟𝑜𝑜𝑡. 𝑙𝑒𝑓𝑡𝐶ℎ𝑖𝑙𝑑 − ℎ𝑒𝑖𝑔ℎ𝑡 𝑟𝑜𝑜𝑡. 𝑟𝑖𝑔ℎ𝑡𝐶ℎ𝑖𝑙𝑑 | == 2

𝑖𝑓 𝑟𝑜𝑜𝑡. 𝑙𝑒𝑓𝑡𝐶ℎ𝑖𝑙𝑑. 𝑘𝑒𝑦 > 𝑘𝑒𝑦 // case 1

𝑟𝑜𝑜𝑡 ≔ 𝑟𝑜𝑡𝑎𝑡𝑒𝑊𝑖𝑡ℎ𝐿𝑒𝑓𝑡𝐶ℎ𝑖𝑙𝑑(𝑟𝑜𝑜𝑡)
𝑒𝑙𝑠𝑒 // case 2

𝑟𝑜𝑜𝑡 ≔ 𝑑𝑜𝑢𝑏𝑙𝑒𝑅𝑜𝑡𝑎𝑡𝑒𝑊𝑖𝑡ℎ𝐿𝑒𝑓𝑡𝐶ℎ𝑖𝑙𝑑(𝑟𝑜𝑜𝑡)
𝑖𝑓 𝑟𝑜𝑜𝑡. 𝑘𝑒𝑦 < 𝑘𝑒𝑦 // continue down right subtree

𝑖𝑛𝑠𝑒𝑟𝑡𝐴𝑉𝐿(𝑟𝑜𝑜𝑡. 𝑟𝑖𝑔ℎ𝑡𝐶ℎ𝑖𝑙𝑑, 𝑘𝑒𝑦)
𝑖𝑓 |ℎ𝑒𝑖𝑔ℎ𝑡 𝑟𝑜𝑜𝑡. 𝑙𝑒𝑓𝑡𝐶ℎ𝑖𝑙𝑑 − ℎ𝑒𝑖𝑔ℎ𝑡 𝑟𝑜𝑜𝑡. 𝑟𝑖𝑔ℎ𝑡𝐶ℎ𝑖𝑙𝑑 | == 2

𝑖𝑓 𝑟𝑜𝑜𝑡. 𝑙𝑒𝑓𝑡𝐶ℎ𝑖𝑙𝑑. 𝑘𝑒𝑦 < 𝑘𝑒𝑦 // case 4

𝑟𝑜𝑜𝑡 ≔ 𝑟𝑜𝑡𝑎𝑡𝑒𝑊𝑖𝑡ℎ𝑅𝑖𝑔ℎ𝑡𝐶ℎ𝑖𝑙𝑑(𝑟𝑜𝑜𝑡)
𝑒𝑙𝑠𝑒 // case 3

𝑟𝑜𝑜𝑡 ≔ 𝑑𝑜𝑢𝑏𝑙𝑒𝑅𝑜𝑡𝑎𝑡𝑒𝑊𝑖𝑡ℎ𝑅𝑖𝑔ℎ𝑡𝐶ℎ𝑖𝑙𝑑(𝑟𝑜𝑜𝑡)

Note: root must be passed by
reference in this implementation!
This allows for appropriate linking

to parents for base case and
rotations

Code facilitating insertion shown
in blue

Code enforcing balance shown in
orange

Try this at home

• Note: we must check the height of each subtree to check for

balance. Change the insert pseudocode so we do not need to

recompute the height during each step of traversal for an insert!

– In the pseudocode provided, this was done by calling a height function

• This is slow! How slow?

• Instead a height attribute -- AKA balance factor -- should be maintained at each node

and updated during any insertion or removal.

Balance Factor

• Balance Factor.

– Stored at each node in AVL tree

– balanceFactor = height of right subtree less

height of left subtree

– Valid values are -1, 0, and +1.

– During insertion and removal, all affected

balance factors must be updated

– Balance factors are then checked to determine

if rotation is necessary

AVL Tree: Remove

• Removal is similar to insertion: perform alteration, then rebalance

– Rebalance using single and double rotations

– Difference: imbalance may propagate upwards, rotations at multiple nodes

along the path to the root may be necessary

Cases for Removal from AVL tree

• Similar to cases for standard BST

• Delete node from AVL tree
– Case 0: 0 children. delete node.

– Case 1: 1 child. Connect child to parent.

– Case 2: 2 children. Choose replacement node (e.g. min val in right subtree) and make
the appropriate substitution.

• re-balance as needed
– Case 0: all nodes from removed node to root must be checked

– Case 1: all nodes from removed node to root must be checked

– Case 2: all nodes from deleted replacement node to root must be checked

• Can rebalance while returning along the path.

Remove Example

Try at home

• Create pseudocode for AVL node removal

– Cases and reconnection of separated tree similar to BST node removal

– Height condition checks and rotations similar to AVL insert

Time Complexity including Balance

• Search: Θ(log2 𝑛)

• Note: Height Balancing only adds constant factor to complexity since
– Balancing is performed while simultaneously traversing the tree for insert or remove

– ie the traversal is “free”, and each balance case in done in a constant number of
operations.

– Should keep height attribute at each node; otherwise complexity may increase

• Insertion: Θ(log2 𝑛)

• Removal: Θ(log2 𝑛)

Summary: AVL Trees

• Efficient
– Constraint ensures logarithmic depth

• Theoretically fast, but rebalancing will decrease execution by a constant
factor.

• Other Notes:
– For large trees, the log time will be a huge savings

– But there are practical issues related to cache, memory, and other delays to consider
• For example linear search time (without any memory delays) may be better than log search time

(with memory delays).

• B-Trees …

