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Balancing a Tree

• Binary trees lack a depth constraint. As a result the worst case 

insertion, removal and retrieval times are O(n).



Balanced Trees: Time Complexity Implications

• If a tree is “balanced” in some sense. The time complexity of 

insertions, removals and retrievals may have a logarithmic bound. 



Heaps

• Another tree structure well suited for a priority queue is a Heap.
– Similar to other BSTs, BUT key order is determined by parent-child relationship alone, not 

necessarily which child (left and right child have no order constraint).

• A binary heap of size n, is a complete, binary tree where key order is 
determined by the heap-order property.
– A complete binary tree of size n has a height of log 𝑛 and the tree is completely filled up 

to depth log 𝑛 − 1 .
– A complete tree, has all nodes at the maximum depth in leftmost position.

• If the tree was implemented as an array and ordered by a BFS, all nodes would be contiguous (no 
vacant spaces until BFS is complete).

– (min) Heap-order: a parents key is less than its children’s key
• min-heap or max-heap



Heap Example: Heap Order

• (min) Heap-order: a 
parents key is less than its 
children’s key

• Structural constraints
– A complete binary tree of 

size n has a height of log 𝑛
and the tree is completely 
filled up to depth log 𝑛 − 1 .

– A complete tree, has all 
nodes at the maximum 
depth in leftmost position.

• If the tree was implemented 
as an array and ordered by a 
BFS, all nodes would be 
contiguous (no vacant 
spaces until BFS is 
complete).

ℎ = log15 = 3

ℎ = log11 = 3

minDepth = log11 − 1 = 2

has all nodes at the maximum depth in leftmost position.



Not Binary Heaps

• Violations of

– Min filled depth

– Heap order

– Leftmost position 



Implementation

• Given that the heap is complete in leftmost position, it is reasonable to 
implement as an array.
– In the simple case, no need for left and right child pointers

– Con: static maximum size (use dynamic array)

– Attributes: 
• Array (for keys / priorities)

– Some use sentinel at 0th position 

• currentSize

• maxSize

• inOrder

• Chaining implementation
– Binary Tree Node 



Traversing an array implementation of a tree

• Assume a (BF) level-ordering of keys in the array.

• Review and Examples of array implementation of trees:

– Implement a method to traverse and print keys in BF order

– Implement a method to traverse and print keys in a DF order

• Observations

– Doubling parentIndex: leftChild index

– Double parentIndex + 1: rightChild index

– childIndex/2 : parentIndex

» Assume floor when odd

Try this at home!



Insertion

• Conceptually
1. Insert the key k in the leftmost available position at height log 𝑛 . 

2. If heap order is not violated by k, then done.

3. Else, swap k with parent key

4. Repeat at step 2.

• Implementation
– Inserting and swapping occurs in array. 

– Must be able to determine parents index.



Heap Insertion

// Assumes array size sufficient

// insert hole into next leftmost location

// swaps hole up to maintain heap order

// inserts val in hole

𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑖𝑛𝑠𝑒𝑟𝑡𝐻𝑒𝑎𝑝 ℎ𝑒𝑎𝑝, 𝑣𝑎𝑙
hole := heap.currentSize := heap.currentSize + 1
while val < heap.array[hole/2]  // swap keys/priorities down

heap.array[hole] := heap.array[hole/2]
hole := hole/2

ℎ𝑒𝑎𝑝. 𝑎𝑟𝑟𝑎𝑦[hole] := val // inserts val at stopped hole location



Insertion Example

1. Insert hole in leftmost 
position

2. Repeatedly swap up 
until insertion does not 
violate heap order 

3. Then insert



Removal

• Find min 
– The min value (in a minHeap) is simply the root of the tree (if heap is inOrder)

• Remove Min
– The item to remove from the priority queue is the item with “highest” priority 

(always the root in a heap!)

– The “last” item is detached (for future insertion at hole) since the number of 
elements is decremented

– Result will be a tree with a hole for a root 
• Fix: propagate hole down and insert the “last” item into the hole when possible

• “last” refers to order in a BF scan.



Heap Removal Example

1. Remove root (always root 
if heap is inOrder) 

2. Detach “last” item from 
tree to insert  into new 
location

– Last in BF scan

– Right most item at max 
depth

3. Swap hole down until we 
can insert the “last” item



Heap Removal Example (cont)

1. Remove root (always root 
if heap is inOrder) 

2. Detach “last” item from 
tree to insert  into new 
location

– Last in BF scan

– Right most item at max 
depth

3. Swap hole down until we 
can insert the “last” item



Heap Removal 

// Removes item with highest priority

// detaches lastItem

// Swaps hole down and reinserts lastItem so heap is inOrder

𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑅𝑒𝑚𝑜𝑣𝑒 ℎ𝑒𝑎𝑝
returnVal := heap.array[1] 
temp := heap.array[heap.currentSize]
heap.currentSize := heap.currentSize – 1
hole := 1
while hole <= heap.currentSize // while there exists a child , traverse down

child := hole * 2   // check left child
if child != heap.currentSize AND heap.array[child+1] < heap.array[child]  // swap down to lesser of two children

child := child + 1
if heap.array[child] < temp   // not ready to insert … continue swapping down

heap.array[hole] := heap.array[child]
else

break // ready  to insert
heap.array[hole] := toInsert
return returnVal



RE-write removal using helper function

𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑠𝑤𝑎𝑝𝐷𝑜𝑤𝑛 ℎ𝑒𝑎𝑝, ℎ𝑜𝑙𝑒
temp := heap.array[hole] // assumes last item was copied to hole location
while hole <= heap.currentSize // while there exists a child , traverse down

child := hole * 2   // check left child
if child != heap.currentSize AND heap.array[child+1] < heap.array[child]  // swap down to lesser of two children

child := child + 1
if heap.array[child] < temp   // not ready to insert … continue swapping down

heap.array[hole] := heap.array[child]
hole := child

else
break // ready  to insert

hole := child  // update and continue traversal
heap.array[hole] := temp

// Removes item with highest priority

// detaches lastItem

// Swaps hole down and reinserts lastItem so heap is inOrder

𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑅𝑒𝑚𝑜𝑣𝑒 ℎ𝑒𝑎𝑝
returnVal := heap.array[1] 
heap.array[1] := heap.array[heap.currentSize] // copy last item to hold location

heap.currentSize := heap.currentSize – 1
swapDown(heap , 1)
return returnVal



Analysis of Insert and Remove

• Insert 
1. Add hole to next leftmost position

2. Swap up hole until insertion does not violate heap order

– Worst case: O(log n)

• Remove
1. Replace root with hole

2. Detach rightmost item at max depth

3. Swap hole down until insertion of detached item does not violate heap order

– Worst case: O(log n)



Heap uses

• Observe we have sacrificed “order” for “balance”

• When can we make use of a heap?

• Only partial order matters

– Min or max



Queue

• FIFO and LIFO

– Removal from queue is based on order of entry

– As a result, access can be restricted to head or tail (base or top) only

• Priority Queue

– Removal is based on priority ranking

– Tracking priority rankings is necessary to determine removal order



Priority Queue

• Using a list implementation
– Array or linked list

– Option 1 unordered:
• Insert: O(1)

• Remove: O(n)

– Option 2 ordered:
• Insert: O(n)

• Remove: O(1)

• Using a BST
– Insert, remove, search: Average case, O(log n)

– AVL: worst case O(log n) ** (later!)



“Lazy” Insertion: Heap

• O(log n) insertion time is not bad.

• Can we do better … ? Sometimes.

– Lazy insertion.

• Simply place the item in the heap, without consideration for heap order.

• Time: O(1)

• Why? … If we plan to perform many insertions, before attempting any removals, then 

why waste time maintaining hash order. Instead delay ordering until the next removal.

• Before a removal must “fixHeap” aka “heapify” – update heap such that heap order is 

maintained.



Lazy insert or “tossIn”

// insert vals into next leftmost location, no check for heap 
order

𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑡𝑜𝑠𝑠𝐼𝑛 ℎ𝑒𝑎𝑝, 𝑣𝑎𝑙
heap.currentSize := heap.currentSize + 1
ℎ𝑒𝑎𝑝. 𝑎𝑟𝑟𝑎𝑦[currentSize] := val
if(val < heap.array[currentSize/2])

heap.inOrder := false // set flag

Lazy Insert: 12, 33, 31



Binary Heap Example: fixHeap aka heapify

// for use with lazy insert

// repeatedly check with swap down

𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑓𝑖𝑥𝐻𝑒𝑎𝑝 ℎ𝑒𝑎𝑝
i := heap.currentSize / 2
while  i > 0

swapDown(heap , i)
i := i - 1

heap.inOrder = true



Binary Heap Example: fixHeap aka heapify

// for use with lazy insert

// repeatedly check with swap down

𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑓𝑖𝑥𝐻𝑒𝑎𝑝 ℎ𝑒𝑎𝑝
i := heap.currentSize / 2
while  i > 0

swapDown(heap , i)
i := i - 1

heap.inOrder = true

Try at home: create a 
worst case unordered 

heap. How many swaps 
are needed?



Binary Heap Example: 
fixHeap aka heapify

Another heap order 
violation. Swap 

down is applied.



Binary Heap Example: fixHeap aka 
heapify

• Observations:  The initial 
swap of 12 and 35 is 
progress, however, there 
is a violation still with 35 
and 33. The swap down 
method will repeatedly 
swap down, thus assuring 
heap property order.

• Result: Swap down in the 
worst case will result in 
O(log n); swapping down 
the height of the tree. 

Swap Down may need 
to perform repeated 

swaps to ensure heap 
order is preserved



Analysis of tossIn and fixHeap (heapify)

• tossIn
– all cases time (assuming size is sufficient): O(1)

• fixHeap
– Fix heap performs a reverse BFS O(n) and potentially swaps down at each step 

of the traversal O(log n), for a total upperbound of O(n log n)

• Swap down has a worst case of O(log n), BUT is this worst case possible in every 

iteration of our reverse  BFS in fixHeap – NO. 
• In fact we can limit the total number of swaps performed by swap down when used in 

conjunction with this reverse BFS.

• The Result: O(n)



Bounding fixHeap

• How can we more tightly bound fixHeap by O(n) ?

• Proof idea: 
– Observe: Each node can be swapped down, at maximum the distance to its 

furthest leaf node (the height of that specific node)

– Thus we need only compute the sum of the heights of all nodes to compute an 
upper bound (teaser alert! Its O(n)).

The maximum number 
of swaps 25 could 

potentially have is 2 
(the distance to 89), 

this is its height



Proof idea: fixHeap is O(n)

• Show the sum of the heights of all nodes in a BST is linear.
– 1 node (the root node), will have the maximum height log2 𝑛 , its children (2 nodes) will have 

heights log2 𝑛 - 1, continuing on in this fashion we have the following sum of heights:

• Sum of heights =

 𝑖=0
log2 𝑛 2𝑖 ∗ log2 𝑛 − 𝑖 =  𝑖=0

ℎ 2𝑖 ℎ − 𝑖 = 2ℎ 0 + 2ℎ−1 1 +…+20 ℎ =

2ℎ[ 0 + 2−1 1 +…+2−ℎ ℎ ] =

=𝑛 𝑖=0
ℎ 𝑖

2𝑖
≤ 2𝑛

Note that when h 
approaches inf, this sum 
converges to 2, thus we 

can upperbound it.

Side note: this proof shows that we 
can upper bound the number of total 

swaps linearly! In fact we can more 
strictly bound this expression:

Sum of heights = n – h.
Try a proof by induction.

See our example on previous slide:
Sum of heights = 9

n – h =  12 - 3



Repeated inserts vs. toss and heapify

• Which is more efficient?

• Assume we start with an empty heap and perform n inserts.

– tossIn and fixHeap

• O(n) + O(n) = O(n)

– Repeated Inserts

• O(n log n)



Priority Queues (with changing priorities)

• Array implementation permits efficient implementation 

– Previous implementation priorities were fixed

• Permitting priority updates

– Concerns

1. Identifying item to be updated

2. Updating item and updating heap order



updatePriority

• Updating a nodes priority

– Assume location of priority to be updated is known.

– **If location is not assumed, must search heap before update

// updates priority value at node index with newVal

𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑢𝑝𝑑𝑎𝑡𝑒𝑃 ℎ𝑒𝑎𝑝, 𝑖𝑛𝑑𝑒𝑥, 𝑛𝑒𝑤𝑉𝑎𝑙
if heap.array[index] < newVal // lowering priority

heap.array[index] := newVal
swapDown(heap, index)

else  // increasing priority

heap.array[index] := newVal
swapUp(heap, index)



Side Note: Applications

• Priority Queues

• Sorting

– Data structures are used to store data

– Data structures are also used to help facilitate computational tasks 

efficiently

– Heaps are useful for sorting 

• Takes advantage of efficiency of fixHeap (aka heapify)

• First weakly orders elements, then removes min



Heap Sort

• Input: n orderable items

• Heap sort algorithm

1. Build heap

1. tossIn all n items  ,  O(n)

2. fixHeap ,  O(n)

2. Iteratively disassemble heap and build ordered list 

• Repeatedly Remove O(n log n)

1. remove root (min thus far) and add to tail of growing list

2. swapDown(heap,1)



Analysis of some sorting algorithms

• Insertion Sort
– Time

• Worst Case: O(n2)

• Best Case: O(n)

– Space:
• In-place: YES

• Heap Sort
– Time

• Worst Case: ?

• Best Case: ?

– Space:
• In-place: YES

• Bubble Sort
– Time

• Worst Case: O(n2)

• Best Case: O(n)

– Space:
• In-place: YES

• Selection
– Time

• Worst Case: O(n2)

• Best Case: O(n)

– Space:
• In-place: YES



Merging Heaps

• In some applications, merging or combining priority queues is 
fundamental
– Eg a set of queues is formed for set of resources and a resource is eliminated.

• Implementation Implications
– Array

• Idea: copy items from array into appropriate locations into other array (likely with some 
extra rearrangements)

• At best, linear time given contiguous allocation (must at least copy over one of the 
hashes)

• One simple scheme
1. newHeap := concatenate(heap1 ,heap2) // repeated lazy insertions

2. fixHeap(newHeap)



Merging Examples

One simple scheme (assuming array implementation)

1. newHeap := concatenate(heap1 ,heap2) 
// repeated lazy insertions

2. fixHeap(newHeap)



Merging Heaps

• Array vs. Chaining
– Simple merging for array implementation required O(sizeHeap1 + 

sizeHeap2)

• Chaining
• If the priority queue requires a merging operation, then a chaining implementation 

may be more efficient.

• Merging can be done with O(log n) with the following design changes

– Chaining with nodes (not array)

– Relax height constraint (really ?!?)

• The skew heap!



Skew heaps

• A skew heap is a binary tree with heap order (and no balance 

constraint) and a skew merging scheme

– Result: may have linear depth in worst case (though as we have shown, 

with BST, the average depth is logarithmic)

– All operations will have logarithmic time for the average case.

• Implementation (structurally)

– Chaining with pointers: leftChild and rightChild

– Node similar to node used in BST



Merging Skew Heaps

• Scheme to merge heap1 and heap2, with root nodes r1 and r2

– Repeatedly merge

1. Base Case: if one tree is empty, return the other

2. Recursive Case:

1. temp := r1.rightChild

2. r1.rightChild := r1.leftChild

3. r1.leftChild := merge(temp, r2)

4. return r1

- Remove right child of left tree
- Make left child of left tree, the right child
- Make new left child of left tree, the result of 
merging the right tree with the old right child.



Merge Skew Heap

// assume 𝑟1 and 𝑟2 are the roots of heap1 and heap2 initially

// recursively merges the heaps using skew scheme 

𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑚𝑒𝑟𝑔𝑒𝑆𝑘𝑒𝑤𝐻𝑒𝑎𝑝 𝑟1, 𝑟2
if 𝑟1 𝑖𝑠 𝑁𝑈𝐿𝐿 , 𝑟𝑒𝑡𝑢𝑟𝑛 𝑟2
if 𝑟2 𝑖𝑠 𝑁𝑈𝐿𝐿 , 𝑟𝑒𝑡𝑢𝑟𝑛 𝑟1
𝑖𝑓 𝑟1. 𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦 < 𝑟2. 𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦

temp := 𝑟1.rChild
𝑟1.rChild := 𝑟1.lChild
𝑟1.lChild := mergeSkewHeap(𝑟2, 𝑡𝑒𝑚𝑝)
𝑟𝑒𝑡𝑢𝑟𝑛 𝑟1

𝑒𝑙𝑠𝑒
𝑟𝑒𝑡𝑢𝑟𝑛 𝑚𝑒𝑟𝑔𝑒(𝑟2, 𝑟1)



Merge Skew 
Heaps 

Example
// assume 𝑟1 and 𝑟2 are the roots of heap1 and heap2
initially

// recursively merges the heaps using skew scheme 

𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑚𝑒𝑟𝑔𝑒𝑆𝑘𝑒𝑤𝐻𝑒𝑎𝑝 𝑟1, 𝑟2
if 𝑟1 𝑖𝑠 𝑁𝑈𝐿𝐿 , 𝑟𝑒𝑡𝑢𝑟𝑛 𝑟2
if 𝑟2 𝑖𝑠 𝑁𝑈𝐿𝐿 , 𝑟𝑒𝑡𝑢𝑟𝑛 𝑟1
𝑖𝑓 𝑟1. 𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦 < 𝑟2. 𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦

temp := 𝑟1.rChild
𝑟1.rChild := 𝑟1.lChild
𝑟1.lChild := mergeSkewHeap(𝑟2, 𝑡𝑒𝑚𝑝)
𝑟𝑒𝑡𝑢𝑟𝑛 𝑟1

𝑒𝑙𝑠𝑒
𝑟𝑒𝑡𝑢𝑟𝑛 𝑚𝑒𝑟𝑔𝑒𝑆𝑘𝑒𝑤𝐻𝑒𝑎𝑝(𝑟2, 𝑟1)

1
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Merge Skew 
Heaps 

Example

// assume 𝑟1 and 𝑟2 are the roots of heap1 and 
heap2 initially

// recursively merges the heaps using skew 
scheme 

𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑚𝑒𝑟𝑔𝑒𝑆𝑘𝑒𝑤𝐻𝑒𝑎𝑝 𝑟1, 𝑟2
if 𝑟1 𝑖𝑠 𝑁𝑈𝐿𝐿 , 𝑟𝑒𝑡𝑢𝑟𝑛 𝑟2
if 𝑟2 𝑖𝑠 𝑁𝑈𝐿𝐿 , 𝑟𝑒𝑡𝑢𝑟𝑛 𝑟1
𝑖𝑓 𝑟1. 𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦 < 𝑟2. 𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦

temp := 𝑟1.rChild
𝑟1.rChild := 𝑟1.lChild
𝑟1.lChild := mergeSkewHeap(𝑟2, 𝑡𝑒𝑚𝑝)
𝑟𝑒𝑡𝑢𝑟𝑛 𝑟1

𝑒𝑙𝑠𝑒
𝑟𝑒𝑡𝑢𝑟𝑛 𝑚𝑒𝑟𝑔𝑒𝑆𝑘𝑒𝑤𝐻𝑒𝑎𝑝(𝑟2, 𝑟1)
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Notes

• Other operations on skew heaps

– Since Skew Heaps are not array implementations, nor are they balanced, the 
insertion operation and update priority operations are somewhat different as 
compared to the Binary Heap

– Interestingly, these operations can be managed with using merges
• Insert(val):  merge(heapRoot, newNode(val))

• Remove:  
1. newRoot : =merge(root.lChild, root.rChild)

2. return oldRoot

• updatePriority(node, newVal): 
1. node.priority := newVal

2. detach node from parent // this requires pointer to parent 

3. newRoot := merge(root, node) 



Summary

• Binary Heaps
– Relaxed order compared to BSTs

– Strict balance and leftmost structure

– Provides for log time worst case for all operations except merge

– Array implementation provides for efficient space and time

– Not bad for sorting

• Skew Heaps
– Chaining implementation

– Binary Tree with Heap order (but no balance constraint)

– Provides for average logarithmic time for all operations, including merge


