
COSC160: Data Structures
Binary Trees

Jeremy Bolton, PhD

Assistant Teaching Professor



Outline

I. Binary Trees

I. Implementations

I. Memory Management

II. Binary Search Tree

I. Operations



Binary Trees

• A binary tree is a tree where every node has at most 2 children.

– By standard: leftChild and rightChild



Binary Trees

• Observations: number of children constrained
– Mitigates allocation issues related to unconstrained numbers of children

• Permits “simple” implementations 

– The maximum number of nodes is of a binary tree with height h is constrained: 

𝑚𝑎𝑥𝑁𝑢𝑚𝑁𝑜𝑑𝑒𝑠 =  𝑑𝑒𝑝𝑡ℎ=0
ℎ 2𝑑𝑒𝑝𝑡ℎ = 2ℎ+1 − 1

• This constraint is not as helpful as one might think; if fact, it would be much more relevant if 
we could constrain the height of a tree in terms of the height of its subtrees. More on this later!

• Further note: given tree height h. the maximum number of nodes is 2ℎ+1 − 1 the minimum 
number of nodes is h+1.



DF Traversal of Binary Tree

• Traversals are similar to unconstrained 
trees, but only children.

𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝐷𝐹𝑆_𝑝𝑟𝑒𝑜𝑟𝑑𝑒𝑟 𝑟𝑜𝑜𝑡
//𝑃𝑟𝑜𝑐𝑒𝑠𝑠 𝑟𝑜𝑜𝑡 ℎ𝑒𝑟𝑒 (preorder)
𝑖𝑓 𝑟𝑜𝑜𝑡 𝑖𝑠 𝑁𝑢𝑙𝑙 , 𝑟𝑒𝑡𝑢𝑟𝑛
𝐷𝐹𝑆(𝑙𝑒𝑓𝑡𝐶ℎ𝑖𝑙𝑑)
𝐷𝐹𝑆(𝑟𝑖𝑔ℎ𝑡𝐶ℎ𝑖𝑙𝑑)

𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝐷𝐹𝑆_𝑖𝑛𝑜𝑟𝑑𝑒𝑟 𝑟𝑜𝑜𝑡
𝑖𝑓 𝑟𝑜𝑜𝑡 𝑖𝑠 𝑁𝑢𝑙𝑙 , 𝑟𝑒𝑡𝑢𝑟𝑛
𝐷𝐹𝑆(𝑙𝑒𝑓𝑡𝐶ℎ𝑖𝑙𝑑)
//𝑃𝑟𝑜𝑐𝑒𝑠𝑠 𝑟𝑜𝑜𝑡 ℎ𝑒𝑟𝑒 (inorder)
𝐷𝐹𝑆(𝑟𝑖𝑔ℎ𝑡𝐶ℎ𝑖𝑙𝑑)

𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝐷𝐹𝑆_𝑝𝑜𝑠𝑡𝑜𝑟𝑑𝑒𝑟 𝑟𝑜𝑜𝑡
𝑖𝑓 𝑟𝑜𝑜𝑡 𝑖𝑠 𝑁𝑢𝑙𝑙 , 𝑟𝑒𝑡𝑢𝑟𝑛
𝐷𝐹𝑆(𝑙𝑒𝑓𝑡𝐶ℎ𝑖𝑙𝑑)
𝐷𝐹𝑆 𝑟𝑖𝑔ℎ𝑡𝐶ℎ𝑖𝑙𝑑
//𝑃𝑟𝑜𝑐𝑒𝑠𝑠 𝑟𝑜𝑜𝑡 ℎ𝑒𝑟𝑒 (post order)

// iterative
𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝐷𝐹𝑆 𝑟𝑜𝑜𝑡

stack. 𝑝𝑢𝑠ℎ(𝑟𝑜𝑜𝑡)
𝑤ℎ𝑖𝑙𝑒 𝑠𝑡𝑎𝑐𝑘 𝑖𝑠 𝑛𝑜𝑡 𝑒𝑚𝑝𝑡𝑦
𝑡ℎ𝑖𝑠𝑁𝑜𝑑𝑒 ≔ 𝑠𝑡𝑎𝑐𝑘. 𝑝𝑜𝑝
//𝑃𝑟𝑜𝑐𝑒𝑠𝑠 𝑡ℎ𝑖𝑠𝑁𝑜𝑑𝑒 ℎ𝑒𝑟𝑒 (preorder)

𝑠𝑡𝑎𝑐𝑘. 𝑝𝑢𝑠ℎ(𝑟𝑖𝑔ℎ𝑡𝐶ℎ𝑖𝑙𝑑)
𝑠𝑡𝑎𝑐𝑘. 𝑝𝑢𝑠ℎ(𝑙𝑒𝑓𝑡𝐶ℎ𝑖𝑙𝑑)



BF (level-order) Traversal of Binary Tree

• Traversals are similar to unconstrained 
trees, but only children.

𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝐵𝐹𝑆 𝑟𝑜𝑜𝑡
queue. 𝑎𝑑𝑑(𝑟𝑜𝑜𝑡)
𝑤ℎ𝑖𝑙𝑒 𝑞𝑢𝑒𝑢𝑒 𝑖𝑠 𝑛𝑜𝑡 𝑒𝑚𝑝𝑡𝑦

𝑡ℎ𝑖𝑠𝑁𝑜𝑑𝑒 ∶= 𝑞𝑢𝑒𝑢𝑒. 𝑑𝑒𝑞𝑢𝑒𝑢𝑒
//𝑃𝑟𝑜𝑐𝑒𝑠𝑠 𝑡ℎ𝑖𝑠𝑁𝑜𝑑𝑒 ℎ𝑒𝑟𝑒
if leftChild is not null, 𝑞𝑢𝑒𝑢𝑒. 𝑎𝑑𝑑 𝑙𝑒𝑓𝑡𝐶ℎ𝑖𝑙𝑑
if rightChild is not null, 𝑞𝑢𝑒𝑢𝑒. 𝑎𝑑𝑑 𝑟𝑖𝑔ℎ𝑡𝐶ℎ𝑖𝑙𝑑

//𝑟𝑒𝑐𝑢𝑟𝑠𝑖𝑣𝑒 (not practical)
𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝐵𝐹𝑆 𝑟𝑜𝑜𝑡

queue := new queue
queue. 𝑎𝑑𝑑(𝑟𝑜𝑜𝑡)
𝐵𝐹𝑆_ℎ𝑒𝑙𝑝𝑒𝑟 𝑞𝑢𝑒𝑢𝑒

𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝐵𝐹𝑆_ℎ𝑒𝑙𝑝𝑒𝑟 𝑞𝑢𝑒𝑢𝑒

𝑡ℎ𝑖𝑠𝑁𝑜𝑑𝑒 ∶= 𝑞𝑢𝑒𝑢𝑒. 𝑑𝑒𝑞𝑢𝑒𝑢𝑒
//𝑃𝑟𝑜𝑐𝑒𝑠𝑠 𝑡ℎ𝑖𝑠𝑁𝑜𝑑𝑒 ℎ𝑒𝑟𝑒
if c is not 𝑛𝑢𝑙𝑙, 𝑡ℎ𝑒𝑛 𝑞𝑢𝑒𝑢𝑒. 𝑎𝑑𝑑 𝑙𝑒𝑓𝑡𝐶ℎ𝑖𝑙𝑑
if c is not 𝑛𝑢𝑙𝑙, 𝑡ℎ𝑒𝑛 𝑞𝑢𝑒𝑢𝑒. 𝑎𝑑𝑑 𝑟𝑖𝑔ℎ𝑡𝐶ℎ𝑖𝑙𝑑
𝐵𝐹𝑆(𝑞𝑢𝑒𝑢𝑒)



Implementation of Binary Tree

• Chaining:
– It is intuitive to implement a binary tree using a node entity that has attributes: data, leftChild, 

rightChild.

• Array implementation
– If the height of the tree is known, the maximum number of nodes is known and thus we can 

allocate contiguous space in memory (an array). We can index each node in the binary given 
a breadth first scan of the tree, and use this index to store each node into an array.

• Not efficient if the number of nodes is not near maximum

• If the height of the tree can change dynamically, a dynamic array implementation would be necessary (and 
possibly inefficient). 

• Exercise:
– Implement Breadth First Traversal

– Implement Depth First Traversal

A B C D E F G



Operations on a Binary Tree

• Common Operations – will depend on application
– Make copy or delete (discussed during generic trees)

– Determine height 

– Count number of elements

– Insert item

– Search for item (traversals)

• Important: for all data structures, it is important to identify the “valid” 
state of the structure and maintain that state through each operation.

• Application example:
– Binary search tree



Example: Binary Search Tree

• When searching for data in a list
– Performing a sequential search yielded a 

worst case complexity of O(n)

– Note: when employing binary search we 
were able to achieve a significant 
reduction O(log n)

• REMEMBER: This was achieved by 
employing a divide and conquer scheme –
this process can be visualized as a decision 
tree

• We can achieve a similar result when 
explicitly using a tree structure as well! (in 
some cases)



Binary Search Tree: Binary Search using a Tree

• The data stored in each node is referred to as the key. 

• Binary Search Tree is a binary tree where, for each node n all the keys in the 
left subtree are less than the key of n, and all keys in the right subtree are 
greater than the key at n. 

• Note that we get a similar traversal by using an explicit BST or a sorted array 
using binary search 



Binary Search Tree

• Search Binary Search Tree for key i.

– How should we traverse the tree: DF-like or BF-like?

• Note, there is no need to “backtrack” so we do not need a stack

𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑠𝑒𝑎𝑟𝑐ℎ 𝑟𝑜𝑜𝑡, 𝑖
𝑡ℎ𝑖𝑠𝑁𝑜𝑑𝑒 ≔ 𝑟𝑜𝑜𝑡
𝑤ℎ𝑖𝑙𝑒 𝑡ℎ𝑖𝑠𝑁𝑜𝑑𝑒 ! = 𝑁𝑈𝐿𝐿

𝑖𝑓 𝑖 > 𝑡ℎ𝑖𝑠𝑁𝑜𝑑𝑒. 𝑘𝑒𝑦 // go to right subtree 
𝑡ℎ𝑖𝑠𝑁𝑜𝑑𝑒 ≔ 𝑡ℎ𝑖𝑠𝑁𝑜𝑑𝑒. 𝑟𝑖𝑔ℎ𝑡𝐶ℎ𝑖𝑙𝑑

el𝑠𝑒𝑖𝑓 𝑖 < 𝑡ℎ𝑖𝑠𝑁𝑜𝑑𝑒. 𝑘𝑒𝑦 // go to left subtree 
𝑡ℎ𝑖𝑠𝑁𝑜𝑑𝑒 ≔ 𝑡ℎ𝑖𝑠𝑁𝑜𝑑𝑒. 𝑙𝑒𝑓𝑡𝐶ℎ𝑖𝑙𝑑

else //  𝑖 == 𝑡ℎ𝑖𝑠𝑁𝑜𝑑𝑒. 𝑘𝑒𝑦
return thisNode

return NULL; // not found



BST: Insert

• Worse Case Time Complexity: O(h), where h is the height of the tree. 

– … but what is this in terms of the number of nodes n?

– This depends on the structure of the tree. (More discussion later.)

𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑖𝑛𝑠𝑒𝑟𝑡 𝑟𝑜𝑜𝑡, 𝑖
𝑡ℎ𝑖𝑠𝑁𝑜𝑑𝑒 ≔ 𝑟𝑜𝑜𝑡
𝑤ℎ𝑖𝑙𝑒 𝑡ℎ𝑖𝑠𝑁𝑜𝑑𝑒 ! = 𝑁𝑈𝐿𝐿

𝑖𝑓 𝑖 > 𝑡ℎ𝑖𝑠𝑁𝑜𝑑𝑒. 𝑘𝑒𝑦 // go to right subtree 
if 𝑟𝑖𝑔ℎ𝑡𝐶ℎ𝑖𝑙𝑑 𝑛𝑜𝑡 𝑛𝑢𝑙𝑙, 𝑡ℎ𝑖𝑠𝑁𝑜𝑑𝑒 ≔ 𝑡ℎ𝑖𝑠𝑁𝑜𝑑𝑒. 𝑟𝑖𝑔ℎ𝑡𝐶ℎ𝑖𝑙𝑑
𝑒𝑙𝑠𝑒, 𝑡ℎ𝑖𝑠𝑁𝑜𝑑𝑒. 𝑟𝑖𝑔ℎ𝑡𝐶ℎ𝑖𝑙𝑑: = 𝑛𝑒𝑤 𝑁𝑜𝑑𝑒(𝑖)

el𝑠𝑒𝑖𝑓 𝑖 < 𝑡ℎ𝑖𝑠𝑁𝑜𝑑𝑒. 𝑘𝑒𝑦 // go to left subtree 
if 𝑙𝑒𝑓𝑡𝐶ℎ𝑖𝑙𝑑 𝑛𝑜𝑡 𝑛𝑢𝑙𝑙, 𝑡ℎ𝑖𝑠𝑁𝑜𝑑𝑒 ≔ 𝑡ℎ𝑖𝑠𝑁𝑜𝑑𝑒. 𝑙𝑒𝑓𝑡𝐶ℎ𝑖𝑙𝑑
𝑒𝑙𝑠𝑒, 𝑡ℎ𝑖𝑠𝑁𝑜𝑑𝑒. 𝑙𝑒𝑓𝑡𝐶ℎ𝑖𝑙𝑑:= 𝑛𝑒𝑤 𝑁𝑜𝑑𝑒(𝑖)

else //  𝑎𝑠𝑠𝑢𝑚𝑒 𝑢𝑛𝑖𝑞𝑢𝑒 𝑖𝑡𝑒𝑚𝑠: do not add



BST: Remove

• Removing Nodes from a BST is a bit more 
difficult. We must assure the resulting structure 
a valid BST. 
– Removing a node may create a “disconnected” 

tree – not valid!

– The node we remove may have 0,1 or 2 children. 

– Cases 0 and 1 are fairly simple.
• Case 0: deletion requires no further action

• Case 1: connect child to deleted nodes parent

• Case 2: ?

• Time Complexity: O(h), where h is the height 
of the tree. In terms of the size of the tree (the 
number of nodes in the tree), what is the worst 
case complexity? What is the best case 
complexity?



BST: Remove

• Example Remove 5.
– Note this is case 2. Removed node has two children

– Which node should replace 5?
• Max value is left subtree or min value in right subtree.

• Note we cannot simply remove the min value from the right 
subtree as this may also create a disconnect. How can we create 
a general solution. 

– Observe: if node m is the min value in the right subtree, it will not 
have a left child (removal of this item is simple: case 1)

– First, we define a method to remove the min value from a tree 
(below), then we can define a method to remove any node from a 
tree

𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑟𝑒𝑚𝑜𝑣𝑒𝑀𝑖𝑛 𝑝𝑎𝑟𝑒𝑛𝑡, 𝑛𝑜𝑑𝑒
// removes node, but does not delete, returns ptr instead;
if 𝑛𝑜𝑑𝑒! = 𝑁𝑈𝐿𝐿

𝑖𝑓 𝑛𝑜𝑑𝑒. 𝑙𝑒𝑓𝑡𝐶ℎ𝑖𝑙𝑑 ! = 𝑁𝑈𝐿𝐿 // go to leftmost child in right subtree 
𝑟𝑒𝑡𝑢𝑟𝑛 𝑟𝑒𝑚𝑜𝑣𝑒𝑀𝑖𝑛(𝑛𝑜𝑑𝑒, 𝑛𝑜𝑑𝑒. 𝑙𝑒𝑓𝑡𝐶ℎ𝑖𝑙𝑑)

else // min val
𝑝𝑎𝑟𝑒𝑛𝑡. 𝑙𝑒𝑓𝑡𝐶ℎ𝑖𝑙𝑑 = 𝑛𝑜𝑑𝑒. 𝑟𝑖𝑔ℎ𝑡𝐶ℎ𝑖𝑙𝑑 // removes root from tree (case 1)
return node

else // subtree is empty: incorrect use of function
return NULL



BST: Remove

• Note:
– Must account for all cases. Uses 

helper function removeMin to find 
min value in right subtree.

• Time Complexity?
– How many recursive function calls 

(iterations) will occur in the
• Best case?

• Worst case? 

𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑟𝑒𝑚𝑜𝑣𝑒 &𝑟𝑜𝑜𝑡, 𝑖𝑡𝑒𝑚
if 𝑟𝑜𝑜𝑡! = 𝑁𝑈𝐿𝐿

𝑖𝑓 𝑟𝑜𝑜𝑡. 𝑘𝑒𝑦 < 𝑖𝑡𝑒𝑚 // go to right subtree 
𝑟𝑒𝑚𝑜𝑣𝑒(𝑟𝑜𝑜𝑡. 𝑟𝑖𝑔ℎ𝑡𝐶ℎ𝑖𝑙𝑑, 𝑖𝑡𝑒𝑚)

else if 𝑟𝑜𝑜𝑡. 𝑘𝑒𝑦 > 𝑖𝑡𝑒𝑚 // go to left subtree
𝑟𝑒𝑚𝑜𝑣𝑒(𝑟𝑜𝑜𝑡. 𝑙𝑒𝑓𝑡, 𝑖𝑡𝑒𝑚)

else if 𝑟𝑜𝑜𝑡. 𝑙𝑒𝑓𝑡𝐶ℎ𝑖𝑙𝑑 ! = 𝑁𝑈𝐿𝐿 &&𝑟𝑜𝑜𝑡. 𝑟𝑖𝑔ℎ𝑡𝐶ℎ𝑖𝑙𝑑 ! = 𝑁𝑈𝐿𝐿
// node found – two children (case 2)
// remove min of right subtree and copy its value into root
𝑁𝑜𝑑𝑒 𝑚𝑖𝑛𝑅𝑖𝑔ℎ𝑡𝑆𝑢𝑏𝑡𝑟𝑒𝑒 ∶= 𝑟𝑒𝑚𝑜𝑣𝑒𝑀𝑖𝑛 𝑟𝑜𝑜𝑡, 𝑟𝑜𝑜𝑡. 𝑟𝑖𝑔ℎ𝑡𝐶ℎ𝑖𝑙𝑑
𝑟𝑜𝑜𝑡. 𝑘𝑒𝑦 ∶= 𝑚𝑖𝑛𝑅𝑖𝑔ℎ𝑡𝑆𝑢𝑏𝑡𝑟𝑒𝑒. 𝑘𝑒𝑦 // copy other data as needed
𝑑𝑒𝑙𝑒𝑡𝑒 𝑚𝑖𝑛𝑅𝑖𝑔ℎ𝑡𝑆𝑢𝑏𝑡𝑟𝑒𝑒

else  // node to remove only has 0 or 1 child 
𝑡𝑟𝑎𝑠ℎ ≔ 𝑟𝑜𝑜𝑡
𝑖𝑓 𝑟𝑜𝑜𝑡. 𝑙𝑒𝑓𝑡𝐶ℎ𝑖𝑙𝑑 ! = 𝑁𝑈𝐿𝐿

𝑟𝑜𝑜𝑡 ≔ 𝑟𝑜𝑜𝑡. 𝑙𝑒𝑓𝑡𝐶ℎ𝑖𝑙𝑑 // copy other data as needed
else

𝑟𝑜𝑜𝑡 ≔ 𝑟𝑜𝑜𝑡. 𝑟𝑖𝑔ℎ𝑡𝐶ℎ𝑖𝑙𝑑 // copy other data as needed
𝑑𝑒𝑙𝑒𝑡𝑒 𝑡𝑟𝑎𝑠ℎ

else // subtree is empty: item not found?

• Note

– Root is passed in by 

reference



BST: Complexity Analysis

• For insert and remove, where n = number of nodes:
– Best case: O(1)

• Item searched for is at root

– Worst case: O(n)
• Worst Case: Item is at leaf node.

• Different worst cases for different tree structures
– If n = h. Worst case O(n)

– If n = log(h). Worst case is O(log n)

• Observe the worst case is still O(n) which is not necessarily an 
improvement over using a standard list. In fact, the worst case 
binary tree is a list.

• Is complexity reduced on average when using a tree? What is the 
average case complexity?

– For a tree with n nodes, there are many different cases that will affect 
search complexity. These different cases correspond to the different 
possible tree structures given n nodes. We can attempt to compute the 
approx. computation steps for all cases and take the average … but how?



BST search: Average Case with proof 

• Given a tree structure, How do we compute the average search time?

– Two major factors that result in different step counts:
1. Structure of tree

2. Depth of searched item in tree

– Assume Tn is the set of all possible tree structures with n nodes and 𝑡 ∈ 𝑇𝑛 is one 
such structure.

– Assume N is the set of all nodes in the tree.
• Average step count for tree structure t with n nodes  

𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝑆𝑡𝑒𝑝𝐶𝑜𝑢𝑛𝑡𝑡 =
 𝑛𝑖∈𝑁

𝑠𝑡𝑒𝑝𝐶𝑜𝑢𝑛𝑡𝑡(𝑛𝑖)

𝑛



Using IPL to Compute Average Case

– Average step count (assuming each tree structure is equally likely) is

𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝑆𝑡𝑒𝑝𝐶𝑜𝑢𝑛𝑡 =
 𝑡∈𝑇𝑛 𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝑆𝑡𝑒𝑝𝐶𝑜𝑢𝑛𝑡𝑡

|𝑇𝑛|

– However computing this value for all possible tree structures iteratively, may be tedious. If we can define 
this in terms of a recurrence for any tree structure, we can simplify the computation.

• To simplify the computation, we define the Internal Path Length (IPL) of a binary tree t with 
n nodes: 
– Conceptually this is simply the sum of the depths of all of its nodes, which is proportional to step count 

for a search operation.

– Observe, the IPL can be computed given a tree structure t

𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝐼𝑃𝐿 =
 𝑡∈𝑇𝑛 𝐼𝑃𝐿𝑡

|𝑇𝑛|



Define recurrence to compute averageIPL

• Determine a recurrence
– Define function D(n) to be the averageIPL for a tree of n nodes. 

• An n-node tree has a root and two subtrees: one with i nodes (left) and one (right) with n - i -1 nodes. 

• Here we use i to constrain the tree structure at each stage of the recurrence. And we assume each 
tree structure is equally likely, and thus each i chosen is equally likely

– For a given i, D(i) is the average internal path length for the left subtree (for a tree of i nodes).

– Big Picture: If we average over i, we effectively average over tree configurations

– 𝐷 𝑛 = 𝑛 − 1 + 𝐷 𝑖 + 𝐷(𝑛 − 𝑖 − 1)
• The root contributes 1 to the path length of each of the remaining n-1 nodes (for a total of n-1).

– Average over all possible i, 0 ≤ 𝑖 ≤ 𝑛 − 1 (over subtree configurations)

• 𝐷 𝑛 = 𝑛 − 1 + 2 ∗
𝐷 0 +𝐷 1 +𝐷 2 +⋯+𝐷 𝑛−1

𝑛
= 𝑛 − 1 +

2

𝑛
 𝑖=1
𝑛−1𝐷(𝑖)

– Note: This recurrence is difficult to evaluate since D(n) is in terms of all of ALL of its 
predecessors in the recurrence. 



Solving averageIPL recurrence

n𝐷 𝑛 = 𝑛(𝑛 − 1) + 2 ∗
𝐷 0 +𝐷 1 +𝐷 2 +⋯+𝐷 𝑛−1

1

(𝑛 − 1)𝐷 𝑛 − 1 = (𝑛 − 1)(𝑛 − 2) + 2 ∗
𝐷 0 + 𝐷 1 + 𝐷 2 +⋯+ 𝐷 𝑛 − 2

1

Subtracting equations we arrive at the following equation:

n𝐷 𝑛 − (𝑛 − 1)𝐷 𝑛 − 1 = 2𝑛 + 2 + 2 ∗ 𝐷(𝑛 − 1)
n𝐷 𝑛 = 2𝑛 + (𝑛 + 1)𝐷(𝑛 − 1) , rearranging terms, and ignoring constants

𝐷 𝑛

𝑛 + 1
=
𝐷 𝑛 − 1

𝑛
+
2

𝑛 + 1

Telescoping these terms we have
𝐷 𝑛

𝑛 + 1
=
𝐷 𝑛 − 1

𝑛
+
2

𝑛 + 1
𝐷 𝑛 − 1

𝑛
=
𝐷 𝑛 − 2

𝑛 − 1
+
2

𝑛
𝐷 𝑛 − 2

𝑛 − 1
=
𝐷 𝑛 − 3

𝑛 − 2
+
2

𝑛 − 1
…
𝐷 2

3
=
𝐷 1

2
+
2

3
𝐷 1

2
=
𝐷 0

1
+
2

2
D(0) = 0

Recurrence is difficult to compute since the nth term contains ALL previous terms

Try to manipulate equation to solve for 1st order recurrence (only 1 previous term).

Start by multiplying both sides by n.

Next, derive equation for (n-1)st term and subtract. (common “trick”)

Dividing both side by n(n+1) , by experience, we know this will simplify the 
next step by clearly flushing out a harmonic series

Next, Solve recurrence by summing telescoping terms. Observe there are 
many cancellations and we get a closed form for D(n).



BST search: Average case using averageIPL recurrence

We can now compute the value of each term in the recurrence, via sequential substitution. The result is a sum including previous terms.

𝐷 𝑛

𝑛+1
=
𝐷 1

2
+ 2 ∗ (

1

2
+
1

3
+⋯+

1

𝑛+1
) , we add and subtract (2) to the RHS to rearrange the terms in the sum to match a harmonic series

𝐷 𝑛

𝑛+1
= 1 + 2 ∗ 1 +

1

2
+
1

3
+
1

4
+⋯+

1

𝑛+1
− 2

𝐷 𝑛

𝑛+1
= 2 ∗ 1 +

1

2
+
1

3
+
1

4
+⋯+

1

𝑛+1
− 1 , using harmonic series inequality we have

𝐷 𝑛

𝑛+1
= 2 ∗ 1 +

1

2
+
1

3
+
1

4
+⋯+

1

𝑛+1
− 1 ≤ 2 ∗ log(𝑛) +1

D n ≤ 𝑛 + 1 (2 log 𝑛 + 1)

Thus D(n) is O(𝑛 𝑙𝑜𝑔(𝑛))

Use Fact: Harmonic Series

 

𝑖=1

𝑛
1

𝑖
≤ log(𝑛) + 1



BST search: Average Case

• Final Step:

– Thus D(n) is O(𝑛 log(𝑛))

– D(n) is the sum of the depths for all nodes. Thus the average depth 

(proportional to the average search/traversal time) for a tree with n nodes 

is O 𝑛 log(𝑛) /n which is O log(𝑛)



Why Use Binary Trees?

• What is gained with the use of a tree?
– The average case for standard operations is O(log n)

– BUT the worst case is still O(n)

• Can we do better?
– Yes! The worst case and others like it are O(n). Why? Because the height 

of the tree is approximately equal to n, the number of nodes (the tree is 
list-like). 

– If we add constraints that limit the depth of the tree we can eliminate 
these cases.

• Balanced Trees … 


