

COSC160: Data Structures Trees

Jeremy Bolton, PhD Assistant Teaching Professor

Outline

I. Trees

- I. Terminology
- II. Traversals
 - I. DFS
 - I. InOrder
 - II. PreOrder
 - III. PostOrder
 - II. BFS
- III. Pseudocode Examples

Trees

- A tree is a fundamental discrete structure used in computer science.
 - In computer science we are generally interested in *rooted* trees.
 Henceforth when we will refer to all rooted trees simply as trees.
 - Uses: compiler design, file hierarchy representation, data organization, ...

Trees

- Definitions:
 - A node is an entity, visually displayed as a circle, that may have a name and attributes.
 - A <u>directed edge</u> is a 2-tuple, e.g. edge1 = (node1,node2), that is said to connect two nodes. The edge is directed and so, node1 is connected to node2 but the reverse may not be so.
 - A <u>path</u> of length n between node i and node j is a sequence of edges where the first element of edge 1 is node i, the second element of edge n is node j, all neighboring edges in the sequence share the same connecting node.
 - EG Path from node 1 to node 5 of length 3: (1,2) (2,4) (4,5)
 - A (rooted) tree is a set of nodes and a set of directed edges with the following properties
 - One node is designated as the root
 - There is no path from any node (that is not the root) to the root node.
 - There is a unique *path* between the root node and each node.

Trees: terminology

- A directed edge connects a parent node and a child node
 - EG, assume edge = (node A, node B). A is the parent of B and B is the child of A.
 - Observations:
 - The root node has no parent.
 - Nodes that have no children are called *leaves*.
 - Nodes that share a parent are called siblings
 - If there is a path from node i to node j, then i is an ancestor of j and j is a descendent of i.
- The depth of a node j is the length of the path from the root to node j
 - The root node is at depth 0.
 - The depth of any node j is equal to the depth of the parent of node j + 1
 - The height of the tree is equal to the maximum depth over all nodes in the tree.

Recursive Definition of Trees

- The following are trees (shown as a set of nodes and set of edges)
 - The empty tree. No nodes, no edges
 - ({},{})
 - A (root) node
 - $(\{n_1\}, \{\})$
 - If T_1 and T_2 are two trees, then T_3 , formed by connecting any node from T_1 to the root node of T_2 , is a tree.
 - $T_1 = (N_1, E_1)$
 - $T_2 = (N_2, E_2)$
 - $T_3 = (N_3, E_3),$
 - where $N_3 = N_1 \cup N_2$
 - $E_3 = E_1 \cup E_2 \cup \{e\}$, where $e = (n_1, r_2)$ where $n_1 \in N_1$ and $r_2 \in N_2$ and r_2 is the root of T_2
 - Observe: root of tree 1 is the root of tree 3

Subtrees

- A subtree st of a tree t is a tree whose set of nodes and edges are subsets of (n,e) = t.
 - $st = (N_1, E_1)$, where t = (N, E), where $N_1 \subseteq N$ and $E_1 \subseteq E$ AND st is a tree.
- Given the recursive definition of trees observe the following:
 All nodes in a tree are a root of a subtree

Tree Implementation (version 1)

- Designing a generic tree structure
 - Design concern: <u>the number of children</u> for any parent is unknown and may change dynamically (depending on usage).
 - Basic Design Option (list of children implementation):
 - Node class
 - Attributes include: data, listOfChildren
 - Tree class
 - Attributes include: rootNode
 - How can we design a list of children that is variable in size (between nodes) and may change in size?
 - Implement listOfChildren as Linked List

65

Tree Implementation (version 2)

- Rather than implementing a linked list of children, we can make the "number" of attributes for each node constant. "Alleviates" allocation concerns related to variable number of children per node.
 - left child / right sibling implementation
 - Instead of listOfChildren as a linked list, create a node class that has the following attributes
 - Node class
 - » Attributes include: data, leftMostChild, rightSibling

Actual Tree	Left Child / Right Sibling Representation	
		Node <t></t>
	A	+ Node* leftChild + Node* rightSibling + <t> Data</t>
BQD	$(B) \rightarrow (D) \rightarrow (D)$	
E E E	E ESSX	

Tree Traversals

- Traversing structures
 - Designing a traversal strategy is important for any data structure.
 - Visiting each element of a structure for processing, searching, ...
 - EG Lists: sequential, divide and conquer traversal, ...
- Traversing Trees (common approaches)
 - Breadth First Traversal (level-order traversal): traversing a tree node-by-node in order of depth.
 - Favors breadth
 - Depth First Traversal: traversing a tree node-by-node, starting at the root and proceeding as quickly as possibly to the leaves.
 - Favors depth
 - By standard, both traversal types traverse children in left to right order

Depth First Search (traversal)

• Pseudo code

Algorithm 1

```
Require: keyword 'this' is used to refer to calling Tree object

function DFS(Tree this)

stack \leftarrow initialize new Stack

<math>stack.push(this \rightarrow root)

while \neg stack.isEmpty() do

thisNode \leftarrow stack.pop())

// Process thisNode Here

for \forall c \in (thisNode \rightarrow childList) do

stack.push(c)
```

• Try Example

DFS: recurrence perspective

- Given our recursive definition of a tree, it should come as no surprise that we can define operations on a tree (such as a traversal), recursively.
- Recurrence Idea
 - To perform a DFS on a tree with root r, perform a DFS on each subtree rooted by each child c.

DFS (recursive)

- Pseudo code
- Note: stack is implicit

Algorithm 1

Require: recursive function initially called with root as parameter **function** DFS(Node* thisNode) // Process thisNode here for preorder traversal **for** $\forall c \in (thisNode \rightarrow childList)$ **do** DFS(c)// Process thisNode here for postorder traversal

• Try Example

Breadth First Search (traversal)

• Pseudo code

Algorithm 1

```
Require: keyword this refers to calling Tree object

function DFS(Tree this)

q \leftarrow \text{initialize new fifeQueue}

q.enqueue(this \rightarrow root)

while \neg q.isEmpty() do

thisNode \leftarrow q.dequeue())

// \text{Process thisNode here}

for \forall c \in (thisNode \rightarrow childList) do

q.enqueue(c)
```

• Try Example

Observations concerning DFS and BFS

- Observation: DFS lends itself to a simple recursive implementation. Why?
 - DFS makes use of a stack.
 - BFS makes use of a queue (FIFO).
 - A recursive, function call chain implicitly makes use of a stack (the runtime stack!)
 - Thus a recursive implementation is befitting (has a simple implementation)

DFS forms

- Common types of traversals
 - Prefix / Pre-order
 - A node is processed before processing its children
 - Example use: copy tree
 - Infix / In-order
 - A node is processed after j of its children are processed, where, in general, j is greater than 1 and less than the total number of children.
 - Example use: parser
 - Postfix / Post-order
 - A node is processed after all of its children are processed
 - Example use: deallocate tree

Pre-order

• Recursive Pseudo code

Algorithm 1

Require: recursive function initially called with root as parameter function DFS(Node* thisNode)

// Process thisNode here for preorder traversal for $\forall c \in (thisNode \rightarrow childList)$ do

or $\forall c \in (tnist) oae \rightarrow cnitaList)$ DFS(c)

// Process thisNode here for postorder traversal

• Try Example: A-B-E-F-C-G-H-I-D

In-order

Pseudo code for inorder traversal. Process node after visiting left child

• Try Example E-B-F-A-H-G-I-C-D

Post-order

Pseudo code for postorder traversal. Process node after visiting all children nodes

Algorithm 1

Require: recursive function initially called with root as parameter **function** DFS(Node* thisNode) // Process thisNode here for preorder traversal **for** $\forall c \in (thisNode \rightarrow childList)$ **do** DFS(c)// Process thisNode here for postorder traversal

Try Example
 E-F-B-H-I-G-C-D-A

Example Use

 Copy tree intuitively implements a preorder traversal

Algorithm 1

Require: initially thisNode is assumed root of a tree function COPYTREE(Node* thisNode) $newNode \leftarrow newNode(thisNode \rightarrow data)$ for $\forall c \in (thisNode \rightarrow childList)$ do newNode.addToChildList(copyTree(c))return newNode

Example Use

Deallocate tree intuitively implements a postorder traversal

Algorithm 1

Require: initially thisNode is assumed root of a tree **function** DELETETREE(Node* thisNode) **for** $\forall c \in (thisNode \rightarrow childList)$ **do** deleteTree(c)) delete thisNode

Other examples

- As a practice exercise implement methods for the following:
 - Determine height of tree
 - Count number of elements
 - Make copy or delete
- Next Binary Trees
 - Similar to generic tree with extra constraint that each node has a maximum of two children, by standard, leftChild and rightChild.

