COSC160: Data Structures
Trees

Jeremy Bolton, PhD
Assistant Teaching Professor

FORGETOW:
gUNI VERSIT Tg\c




Trees
|.  Terminology

II. Traversals

l. DFS
l. InOrder
1. PreOrder
lIl.  PostOrder

.  BFS
Ill. Pseudocode Examples

Outline

FEORGETOW:
gUZVI VERSI ZTIL:Z\C



Trees

« Atree is a fundamental discrete structure used in computer
science.

— In computer science we are generally interested in rooted trees.
Henceforth when we will refer to all rooted trees simply as trees.

— Uses: compiler design, file hierarchy representation, data organization, ...

FEORGETOW:
gUZVI VERSI ZTIL:Z\C



Trees

Definitions:

A node is an entity, visually displayed as a circle, that may have a name and attributes.

A directed edge is a 2-tuple, e.g. edgel = (nodel,node2), that is said to connect two

nodes. The edge is directed and so, nodel is connected to nodeZ2 but the reverse may
not be so.

A path of length n between node i and node j is a sequence of edges where the first
element of edge 1 is node i, the second element of edge n is node |, all neighboring
edges in the sequence share the same connecting node.

« EG Path from node 1 to node 5 of length 3: (1,2) (2,4) (4,5)
A (rooted) tree is a set of nodes and a set of directed edges with the following properties
» One node is designated as the root

« There is no path from any node (that is not the root) to the root node.
« There is a unique path between the root node and each node.

FEORGETOW:
gUZVI VERSI ZTIL:Z\C



Trees: terminology

« Adirected edge connects a parent node and a child node

— EG, assume edge = (node A, node B). Ais the parent of B and
B is the child of A.

— Observations:
* The root node has no parent.
* Nodes that have no children are called leaves.

— Nodes that share a parent are called siblings

— If there is a path from node i to node j, then i is an ancestor of j
and j is a descendent of |.

 The depth of a node | is the length of the path from the L
root to node |

— The root node is at depth 0.

— The depth of any node j is equal to the depth of the parent of
nodej+1

— The height of the tree is equal to the maximum depth over all
nodes in the tree.

FEORGETOW:
gUZVI VERSI ZTIL:Z\C



Recursive Definition of Trees

« The following are trees (shown as a set of nodes and
set of edges)

— The empty tree. No nodes, no edges

At
— A(root) node

* ({ruh{h)
— If T, and T,are two trees, then T;, formed by connecting any
node from T; to the root node of T, is a tree.
* Ty =(Nq, Eq)
* T, = (Ny, Ey) subtree
* T3 = (N3, E3), eftmost oy
— where N3 = N; UN,

of A
— E3 = E; UE, U{e}, where e = (ny,1,) where n; € N; andr, € N, and r,
is the root of T,

— Observe: root of tree 1 is the root of tree 3

subtree

subtree rooted at
rooted at

rightmost child of A

FEORGETOW:
gUZVI VERSI ZTIL:Z\C



Subtrees

« Asubtree st of atreetis a tree whose set of nodes and edges are
subsets of (n,e) =1t.

— st = (N, E;) ,wheret = (N,E ), where N, € N and E; € E AND st is a tree.

« Given the recursive definition of trees observe the following:
— All nodes In a tree are a root of a subtree @ Tree rooted at A

subtree
rooted at

center child
f A

subtree rooted at
rightmost child of A

subtree
rooted at
leftmost chi
of A




Tree Implementation (version 1)

* Designing a generic tree structure

— Design concern: the number of children for
any parent is unknown and may change
dynamically (depending on usage).

— Basic Design Option (list of children
Implementation):

* Node class

— Attributes include: data, listOfChildren Tree <T>
* Tree class + Node* Root Node <T>
— Attributes include: rootNode :ﬁjggeéaggi'dtfst
— How can we design a list of children that is + search( <T> item): Node®
. . . + insert( <T= item): void
variable in size (between nodes) and may + remove( <T> ftem): void
change in size?
* Implement listOfChildren as Linked List
GEORGETOWN_

UNIVERSITY



Tree Implementation (version 2)

Rather than implementing a linked list of children, we can make the “number” of
attributes for each node constant. “Alleviates” allocation concerns related to variable
number of children per node.

— left child / right sibling implementation
 Instead of listOfChildren as a linked list, create a node class that has the following attributes

— Node class

» Attributes include: data, leftMostChild, rightSibling

Actual Tree

Left Child / Right Sibling Representation

Node <T>

+ Node* leftChild
+ Node* rightSibling

+ <T>= Data

FEORGETOW:
gUZVI VERSI ZTIL:Z\C



Tree Traversals

« Traversing structures

— Designing a traversal strategy is important for any data
structure.
 Visiting each element of a structure for processing, searching, ...

« EG Lists: sequential, divide and conquer traversal, ...

« Traversing Trees (common approaches)

— Breadth First Traversal (level-order traversal): traversing a tree
node-by-node in order of depth.
« Favors breadth
— Depth First Traversal: traversing a tree node-by-node, starting at
the root and proceeding as quickly as possibly to the leaves.
» Favors depth
— By standard, both traversal types traverse children in left to right
order




Depth First Search (traversal)

e Pseudo code

Algorithm 1
Require: keyword ‘this’ is used to refer to ealling Tree object
function DFS(Tree this)
stack + initialize new Stack
stack.push(this — root)
while —stack.izEmpty() do
thisNode + stack.pop())
// Process thisNode Here
for Ve ¢ (thisNode — childList) do
stack.pushic)

« Try Example

FEORGETOW:
glﬂVIVERSI 7*1'2(



DES: recurrence perspective

« Given our recursive definition of
a tree, it should come as no
surprise that we can define
operations on a tree (such as a
traversal), recursively.

* Recurrence ldea

— To perform a DFS on a tree with
root r, perform a DFS on each
subtree rooted by each child c.

FEORGETOW:
gUZVI VERSI ZTIL:Z\C



DES (recursive)

e Pseudo code
* Note: stack is implicit

Algorithm 1
Require: recursive function initially called with root as parameter
function DFs{Node™ thisNode)

// Process thisNode here for preorder traversal
for Ve € (thisNode — childList) do

DFS(e)
// Process thisNode here for postorder traversal

* Try Example

FEORGETOW:
glﬂVIVERSI 7*1'2(



Breadth First Search (traversal)

e Pseudo code

Algorithm 1
Require: keyword this refers to calling Tree object
function DFs(Tree this)
g +— initialize new fifoQuene
g.enquene(this — root)
while —qg.isEmpty() do
thisN ode + q.dequeue())
[/ Process thisNode here
for Ve € (thisNode — childList) do
g.engueuelc)

« Try Example

FEORGETOW:
glﬂVIVERSI 7*1'2(



Observations concerning DFS and BFS

* Observation: DFS lends itself to a simple recursive
Implementation. Why?
— DFS makes use of a stack.
— BFS makes use of a queue (FIFO).

— Arecursive, function call chain implicitly makes use of a stack (the runtime
stack!)
« Thus a recursive implementation is befitting (has a simple implementation)

FEORGETOW:
gUZVI VERSI ZTIL:Z\C



DFS forms

« Common types of traversals

— Prefix / Pre-order
« Anode is processed before processing its children
« Example use: copy tree

— Infix / In-order

* Anode is processed after | of its children are processed, where, in general, | is greater
than 1 and less than the total number of children.

« Example use: parser

— Postfix / Post-order
* Anode is processed after all of its children are processed
« Example use: deallocate tree

FEORGETOW:
glﬂVIVERSI 7*1'2(



Pre-order

e Recursive Pseudo code

Algorithm 1
Require: recursive funetion initially ecalled with root as parameter

function DFs{Node® thisNode)

// Process thisNode here for preorder traversal
for Ve c (thisNode — childList) do

DFS(e)
// Process thisNode here for postorder traversal

« Try Example:
A-B-E-F-C-G-H-I-D

FEORGETOW:
glﬂVIVERSI 7*1'2(



In-order

* Pseudo code for inorder traversal. Process node after visiting left
child

Algorithm 1
Require: recursive function initially called with root as parameter
function DFs{Node™ thisNode)
// Process thisNode here for preorder traversal
for Ve c (thisNode — childList) do
DFS(e) ‘

[/ Process thisNode here for postorder traversal

* Try Example
E-B-F-A-H-G-I-C-D




Post-order

* Pseudo code for postorder traversal. Process node after visiting all children
nodes

Algorithm 1
Require: recursive function initially called with root as parameter
function DFs(Node® thisNode)
// Process thisNode here for preorder traversal
for Ve € (thisNode — childList) do
DFES(e)
[/ Process thisNode here for postorder traversal

« Try Example
E-F-B-H-1-G-C-D-A




Example Use

« Copy tree intuitively implements a preorder
traversal

Algorithm 1

Require: initially thisNode i1s assumed root of a tree
function copyTREE(Node* thisNode)
newN ode +— newNode(thisNode — data)
for Ve c (thisNode — childList) do
new N ode .addl oC kild List{ copyT ree(e))

return newN ode

FEORGETOW:
glﬂVIVERSI 7*1'2(



Example Use

« Deallocate tree intuitively implements a postorder
traversal

Algorithm 1
Require: initiallv thisNode i1s assumed root of a tree
function DELETETREE( Node® thisNode)
for Ve e (thisNode — childLisf) do
deleteTl ree(e))

delete thisN ode




Other examples

« As a practice exercise implement methods for the following:
— Determine height of tree
— Count number of elements
— Make copy or delete

* Next Binary Trees

— Similar to generic tree with extra constraint that each node has a
maximum of two children, by standard, leftChild and rightChild.

FEORGETOW:
gUZVI VERSI ZTIL:Z\C



