
COSC160: Data Structures
Trees

Jeremy Bolton, PhD

Assistant Teaching Professor

Outline

I. Trees

I. Terminology

II. Traversals

I. DFS

I. InOrder

II. PreOrder

III. PostOrder

II. BFS

III. Pseudocode Examples

Trees

• A tree is a fundamental discrete structure used in computer

science.

– In computer science we are generally interested in rooted trees.

Henceforth when we will refer to all rooted trees simply as trees.

– Uses: compiler design, file hierarchy representation, data organization, …

Trees

• Definitions:
– A node is an entity, visually displayed as a circle, that may have a name and attributes.

– A directed edge is a 2-tuple, e.g. edge1 = (node1,node2), that is said to connect two
nodes. The edge is directed and so, node1 is connected to node2 but the reverse may
not be so.

– A path of length n between node i and node j is a sequence of edges where the first
element of edge 1 is node i, the second element of edge n is node j, all neighboring
edges in the sequence share the same connecting node.

• EG Path from node 1 to node 5 of length 3: (1,2) (2,4) (4,5)

– A (rooted) tree is a set of nodes and a set of directed edges with the following properties
• One node is designated as the root

• There is no path from any node (that is not the root) to the root node.

• There is a unique path between the root node and each node.

Trees: terminology

• A directed edge connects a parent node and a child node
– EG, assume edge = (node A , node B). A is the parent of B and

B is the child of A.

– Observations:
• The root node has no parent.

• Nodes that have no children are called leaves.

– Nodes that share a parent are called siblings

– If there is a path from node i to node j, then i is an ancestor of j
and j is a descendent of i.

• The depth of a node j is the length of the path from the
root to node j
– The root node is at depth 0.

– The depth of any node j is equal to the depth of the parent of
node j + 1

– The height of the tree is equal to the maximum depth over all
nodes in the tree.

Recursive Definition of Trees

• The following are trees (shown as a set of nodes and
set of edges)
– The empty tree. No nodes, no edges

• ({},{})

– A (root) node
• ({𝑛1},{})

– If 𝑇1 and 𝑇2are two trees, then 𝑇3, formed by connecting any
node from 𝑇1 to the root node of 𝑇2, is a tree.

• 𝑇1 = (𝑁1, 𝐸1)

• 𝑇2 = (𝑁2, 𝐸2)

• 𝑇3 = (𝑁3, 𝐸3),
– where 𝑁3 = 𝑁1 ∪ 𝑁2

– 𝐸3 = 𝐸1 ∪ 𝐸2 ∪ 𝑒 , where 𝑒 = 𝑛1, 𝑟2 where 𝑛1 ∈ 𝑁1 and r2 ∈ 𝑁2 and r2
is the root of T2

– Observe: root of tree 1 is the root of tree 3

Subtrees

• A subtree st of a tree t is a tree whose set of nodes and edges are
subsets of (n,e) = t.
– 𝑠𝑡 = 𝑁1, 𝐸1 , where 𝑡 = 𝑁, 𝐸 , where 𝑁1 ⊆ 𝑁 and 𝐸1 ⊆ 𝐸 AND st is a tree.

• Given the recursive definition of trees observe the following:
– All nodes in a tree are a root of a subtree

Tree Implementation (version 1)

• Designing a generic tree structure
– Design concern: the number of children for

any parent is unknown and may change
dynamically (depending on usage).

– Basic Design Option (list of children
implementation):

• Node class

– Attributes include: data, listOfChildren

• Tree class

– Attributes include: rootNode

– How can we design a list of children that is
variable in size (between nodes) and may
change in size?

• Implement listOfChildren as Linked List

Tree Implementation (version 2)

• Rather than implementing a linked list of children, we can make the “number” of
attributes for each node constant. “Alleviates” allocation concerns related to variable
number of children per node.
– left child / right sibling implementation

• Instead of listOfChildren as a linked list, create a node class that has the following attributes
– Node class

» Attributes include: data, leftMostChild, rightSibling

Tree Traversals

• Traversing structures
– Designing a traversal strategy is important for any data

structure.
• Visiting each element of a structure for processing, searching, …

• EG Lists: sequential, divide and conquer traversal, …

• Traversing Trees (common approaches)
– Breadth First Traversal (level-order traversal): traversing a tree

node-by-node in order of depth.
• Favors breadth

– Depth First Traversal: traversing a tree node-by-node, starting at
the root and proceeding as quickly as possibly to the leaves.

• Favors depth

– By standard, both traversal types traverse children in left to right
order

Depth First Search (traversal)

• Pseudo code

𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝐷𝐹𝑆 𝑟𝑜𝑜𝑡

stack. 𝑝𝑢𝑠ℎ(𝑟𝑜𝑜𝑡)
𝑤ℎ𝑖𝑙𝑒 𝑠𝑡𝑎𝑐𝑘 𝑖𝑠 𝑛𝑜𝑡 𝑒𝑚𝑝𝑡𝑦

𝑡ℎ𝑖𝑠𝑁𝑜𝑑𝑒 ≔ 𝑠𝑡𝑎𝑐𝑘. 𝑝𝑜𝑝
//𝑃𝑟𝑜𝑐𝑒𝑠𝑠 𝑡ℎ𝑖𝑠𝑁𝑜𝑑𝑒 ℎ𝑒𝑟𝑒 (preorder)

𝑓𝑜𝑟 𝑎𝑙𝑙 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 𝑐 𝑜𝑓 𝑡ℎ𝑖𝑠𝑁𝑜𝑑𝑒
if c 𝑖𝑠 𝑛𝑜𝑡 𝑛𝑢𝑙𝑙, 𝑠𝑡𝑎𝑐𝑘. 𝑝𝑢𝑠ℎ(𝑐)

• Try Example

DFS: recurrence perspective

• Given our recursive definition of
a tree, it should come as no
surprise that we can define
operations on a tree (such as a
traversal), recursively.

• Recurrence Idea
– To perform a DFS on a tree with

root r, perform a DFS on each
subtree rooted by each child c.

DFS (recursive)

• Pseudo code

• Note: stack is implicit

𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝐷𝐹𝑆 𝑟𝑜𝑜𝑡

//𝑃𝑟𝑜𝑐𝑒𝑠𝑠 𝑟𝑜𝑜𝑡 ℎ𝑒𝑟𝑒 (preorder)

𝑓𝑜𝑟 𝑎𝑙𝑙 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 𝑐 𝑜𝑓 𝑟𝑜𝑜𝑡
if c 𝑖𝑠 𝑛𝑜𝑡 𝑛𝑢𝑙𝑙, 𝑡ℎ𝑒𝑛 𝐷𝐹𝑆(𝑐)

• Try Example

Breadth First Search (traversal)

• Pseudo code

𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝐵𝐹𝑆 𝑟𝑜𝑜𝑡

queue. 𝑎𝑑𝑑(𝑟𝑜𝑜𝑡)
𝑤ℎ𝑖𝑙𝑒 𝑞𝑢𝑒𝑢𝑒 𝑖𝑠 𝑛𝑜𝑡 𝑒𝑚𝑝𝑡𝑦

𝑡ℎ𝑖𝑠𝑁𝑜𝑑𝑒 ∶= 𝑞𝑢𝑒𝑢𝑒. 𝑑𝑒𝑞𝑢𝑒𝑢𝑒
//𝑃𝑟𝑜𝑐𝑒𝑠𝑠 𝑡ℎ𝑖𝑠𝑁𝑜𝑑𝑒 ℎ𝑒𝑟𝑒

𝑓𝑜𝑟 𝑎𝑙𝑙 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 𝑐 𝑜𝑓 𝑡ℎ𝑖𝑠𝑁𝑜𝑑𝑒
𝑖𝑓 𝑐 𝑖𝑠 𝑛𝑜𝑡 𝑛𝑢𝑙𝑙, 𝑞𝑢𝑒𝑢𝑒. 𝑎𝑑𝑑(𝑐)

• Try Example

Observations concerning DFS and BFS

• Observation: DFS lends itself to a simple recursive

implementation. Why?

– DFS makes use of a stack.

– BFS makes use of a queue (FIFO).

– A recursive, function call chain implicitly makes use of a stack (the runtime

stack!)

• Thus a recursive implementation is befitting (has a simple implementation)

DFS forms

• Common types of traversals

– Prefix / Pre-order

• A node is processed before processing its children

• Example use: copy tree

– Infix / In-order

• A node is processed after j of its children are processed, where, in general, j is greater

than 1 and less than the total number of children.

• Example use: parser

– Postfix / Post-order

• A node is processed after all of its children are processed

• Example use: deallocate tree

Pre-order

• Recursive Pseudo code

𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝐷𝐹𝑆_𝑝𝑟𝑒𝑜𝑟𝑑𝑒𝑟 𝑟𝑜𝑜𝑡

//𝑃𝑟𝑜𝑐𝑒𝑠𝑠 𝑟𝑜𝑜𝑡 ℎ𝑒𝑟𝑒

𝑓𝑜𝑟 𝑎𝑙𝑙 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 𝑐 𝑜𝑓 𝑟𝑜𝑜𝑡
if c 𝑖𝑠 𝑛𝑜𝑡 𝑛𝑢𝑙𝑙, 𝑡ℎ𝑒𝑛 𝐷𝐹𝑆_𝑝𝑟𝑒𝑜𝑟𝑑𝑒𝑟(𝑐)

• Try Example:
A-B-E-F-C-G-H-I-D

In-order

• Pseudo code for inorder traversal. Process node after visiting left
child

• Try Example
E-B-F-A-H-G-I-C-D

Post-order

• Pseudo code for postorder traversal. Process node after visiting all children
nodes

• Try Example
E-F-B-H-I-G-C-D-A

Example Use

• Copy tree intuitively implements a preorder

traversal

𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑐𝑜𝑝𝑦𝑇𝑟𝑒𝑒 𝑟𝑜𝑜𝑡

//𝑃𝑟𝑜𝑐𝑒𝑠𝑠 𝑟𝑜𝑜𝑡 ℎ𝑒𝑟𝑒
𝑛𝑒𝑤𝑅𝑜𝑜𝑡 = 𝑛𝑒𝑤 𝑁𝑜𝑑𝑒(𝑟𝑜𝑜𝑡. 𝑑𝑎𝑡𝑎)

𝑓𝑜𝑟 𝑎𝑙𝑙 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 𝑐 𝑜𝑓 𝑟𝑜𝑜𝑡

𝑛𝑒𝑤𝑅𝑜𝑜𝑡. 𝑐ℎ𝑖𝑙𝑑𝐿𝑖𝑠𝑡. 𝑎𝑑𝑑 𝑐𝑜𝑝𝑦𝑇𝑟𝑒𝑒 𝑐

𝑟𝑒𝑡𝑢𝑟𝑛 𝑛𝑒𝑤𝑅𝑜𝑜𝑡

Example Use

• Deallocate tree intuitively implements a postorder

traversal

Other examples

• As a practice exercise implement methods for the following:

– Determine height of tree

– Count number of elements

– Make copy or delete

• Next Binary Trees

– Similar to generic tree with extra constraint that each node has a

maximum of two children, by standard, leftChild and rightChild.

