
COSC160: Data Structures

Jeremy Bolton, PhD

Assistant Teaching Professor



Outline

I. Polynomial Discussion



Project: Polynomials

• Reminder: With the sparse matrix structure, we faced many structural design questions and 
subsequent algorithmic design questions, both of which affected efficiency. You will face 
similar design questions in your polynomial project.

• Design a Representation (Data Structure) for Polynomials 
– Goals:

• Polynomial evaluation

• Polynomial arithmetic 

• Class Project: Design Questions and Goals.
– Linked Chain vs Array Implementation? 

– Goal: An efficient Solution (time and space)
• Algorithmic improvements for basic operations

• How can we increase efficiency: reduce computational complexity?

• When you make a design decision, document the reason why and justify in the cover letter.

• Use average and worst cases to make design decisions (not best case)



Speed up Examples: Polynomial Evaluation

• Evaluating a polynomial of form

𝑃 𝑥 = 𝛼𝑛𝑥
𝑛 + 𝛼𝑛−1𝑥

𝑛−1 +⋯+ 𝛼0𝑥
0 = Σi=1

n 𝛼𝑖𝑥
𝑖

• A simple direct interpretation of this computation may result in the following. 
Is the result correct – YES. Is the computation efficient –NO. There are many 
unnecessary steps – the steps taken can be reorganized for efficiency.

val := coeff[0]

for i from 1 to n

val := val + coeff[i]*exp(x,i);

• What is the time complexity here?



Polynomial Evaluation (cont)

• Note computing exp(x,i) during each iteration is excessively repetitive: intermediate results 
for each iterations result are computed in the previous iteration. Thus we can simply build 
this term dynamically during each iteration rather than re-computing in full during each 
iteration.

𝑃 𝑥 = 𝛼𝑛𝑥
𝑛 + 𝛼𝑛−1𝑥

𝑛−1 +⋯+ 𝛼0𝑥
0 = Σi=1

n 𝛼𝑖𝑥
𝑖

val := coeff[0]

for i from 1 to n

val := val + coeff[i]*exp(x,i);

• Result: number of additions is n; number of multiplications 2n.

val := coeff[0]
y := 1
for i from 1 to n

y := y * x  // build exp(x,i) dynamically
val := val + coeff[i]*y;



Polynomial Evaluation (cont)

• Another “speed-up” scheme: Horner’s rule
– Capitalizes on the factoring of the common factor x in the repeated sums.

𝑃 𝑥 = 𝛼𝑛𝑥
𝑛 + 𝛼𝑛−1𝑥

𝑛−1 +⋯+ 𝛼0𝑥
0 =

𝛼𝑛𝑥
𝑛 + 𝛼𝑛−1𝑥

𝑛−1 +⋯+𝛼2𝑥
2 + 𝛼1𝑥

1 + 𝛼0 =
[𝛼𝑛𝑥

𝑛−1 + 𝛼𝑛−1𝑥
𝑛−1−1 +⋯+𝛼2𝑥

2−1 + 𝛼1]𝑥 + 𝛼0 =
[𝛼𝑛𝑥

𝑛−1 + 𝛼𝑛−1𝑥
𝑛−2 +⋯+𝛼2𝑥

1 + 𝛼1]𝑥 + 𝛼0 =
[[𝛼𝑛𝑥

𝑛−1−1 + 𝛼𝑛−1𝑥
𝑛−2−1 +⋯+𝛼2]𝑥 + 𝛼1]𝑥 + 𝛼0 =

[[𝛼𝑛𝑥
𝑛−2 + 𝛼𝑛−1𝑥

𝑛−3 +⋯+𝛼2]𝑥 + 𝛼1]𝑥 + 𝛼0 =
…

[[… [𝛼𝑛𝑥 + 𝛼𝑛−1]𝑥 + 𝛼𝑛−2]𝑥 + ⋯+𝛼2]𝑥 + 𝛼1]𝑥 + 𝛼0 =

val := coeff[n]
for i from 1 to n

val := val*x + coeff[n-i];



Another Example: Fast Exponentiation

• Makes use of binary encoding and mathematical properties of exponentiation to efficiently 
evaluate exponential terms
– You may also use mathematical properties to your advantage!

– Naïve approach: multiply base n times, for a total of n-1 multiplications

– Or use squaring approach also used in modular exponentiation

Example: Evaluate 𝑎16

– One solution: Multiply a times itself 15 times. 

– A faster solution: 𝑎16 = 𝑎2
4
= (𝑎2)8= ( 𝑎2 2)4 =(( 𝑎2 2)2)

2

• Only 4 multiplications !

• In general 

𝑥𝑛 =  
𝑥(𝑥2)

𝑛−1
2 , 𝑖𝑓 𝑛 𝑖𝑠 𝑜𝑑𝑑

(𝑥2)
𝑛
2 , 𝑖𝑓 𝑛 𝑖𝑠 𝑒𝑣𝑒𝑛


