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I. Case Study: Matrices and Sparse Matrices



Case Study: Matrix Structure

• Design Matrix Class, to help facilitate basic mathematical matrix 

operations

– Design Notes:

• Matrix contains real numbers in each entry

• Matrix Addition

• Matrix Transpose

• Matrix Multiplication 



Matrices

• A matrix is a table with rows and columns.
– EG: A 3 x 2 matrix: 3 rows and 2 columns 

• Matrix entries are generally indexed by a row, column tuple, : matrix(2,1) is 6. 

– using mathematical notation the indexing usually starts at 1

1 5
6 2
9 7

• Matrix implementation
– Design decision: Should the structure be represented as a 2-d array or 2-d 

chaining structure?



Matrix Implementation (UML)

• Intuitively, we can use a 2-d array to implement a matrix.
– Thus we can access ith row and jth col: m[i-1][j-1]. 

– We can design a Matrix class with 
• member variables

– double ** matrix // or use template 

– int numRows

– int numCols

• member methods

– Matrix add(Matrix op);

– Matrix transpose();

– Matrix multiply(Matrix op);



Why is our member a pointer to a pointer?

• Matrix member:   double ** matrix;
– Size of matrix is variable. Thus our we can implement a matrix as a pointer to an array of 

pointers.

– Many programming languages also allow you to simply allocate a multi-dimensional array 
with one instruction:  matrix[numRows][numCols]

• Question: Will this matrix need to be allocated on the heap?



Matrix Transpose

• Mathematically

∀𝑖,𝑗 𝑀𝑖,𝑗
𝑇 = 𝑀𝑗,𝑖

• Code Snippet

• Analysis (also practical)
– Time?

– Space?
• Note: thrashing may be unavoidable

– Comments? 

– Can we improve?
• With some pointer arithmetic, we could do an in-place swap as the correct number of locations are indeed 

allocated … but would we want to manipulate the calling object … ?



Implementation Notes: row major vs. col major

• Some matrix operations can be fairly inefficient when the matrices 

become very large

– Remember:

• Memory / Caching issues can compound this issue (severely!)

• Thrashing

• How might we mitigate these issues when implementing an add 

algorithm?

– Traverse the matrices smartly



Matrix Add

• Mathematically

𝐶 = 𝐴 + 𝐵 ≡ ∀𝑖,𝑗 𝑐𝑖,𝑗= 𝑎𝑖,𝑗 + 𝑏𝑖,𝑗

• Pseudocode

• Analysis
– Space (also practical): 

• Pass by reference or pass by copy? Heap or Stack Allocation?

• If allocation on the heap, there must be an infrastructure in place to deallocate this matrix when necessary.

• O(row x col)

– Time:
• O(row x col)



Matrix Multiply

• Try this exercise at home: implement matrix multiply



Summary: Analysis of Matrix Example

• Implementation Decisions and Repercussions 
– Implemented as 2-d array

• Provides for efficient storage and retrieval (assuming size won’t change)

– ADD Algorithm scans assuming row-major memory storage
• Knowledge of underlying memory details allows for efficient traversal (not improvement in complexity analysis, but 

improvement in practical application)

• Transpose?
– May require swap of values at different ends of matrix which can cause caching delays.

– If new matrices resulting from operations are allocated on the heap … 
• Presents deallocation issues and memory concerns. Probably best to use OOP practices.

• Trade off
– Reliability: keep the object itself “light weight” (use pointers for members as needed), and manage memory deallocation with 

the implicit call to the destructor (when the objects scope is destroyed)

– Cost: potential unnecessary copy (likely by copy constructor)

• Time and Space analyses
– Operations are efficient and on the order of the minimal number of operations necessary to complete the 

computations



Case Study: Sparse Matrix Structure

• Lengthy processing times for large matrices are sometimes 
unavoidable
– Each operation requires some minimum amount of computation

• In some scenarios, a matrix may have a “small” number of non-zero 
entries.
– Such matrices are called sparse matrices. 

• Adding and multiplying with zero is trivial. 

– If we can find an efficient representation of a sparse matrix which does not 
require the traversal of zero-valued entries, we can improve the computational 
complexity.



Sparse Matrices

• Sparse Matrix

– Using standard representation, we will need to use memory spaces on the 
order of numRows x numCols.

•
9 0 0
0 0 0
0 0 0

0 0 0
0 0 2
0 0 0

– Ignoring zero-valued entries we can significantly reduce the space 
requirements (and possibly time complexity for operations).

• How might we represent a sparse matrix compactly?



Sparse Matrices

• We can represent all non-zero values as a 3-tuple: (row, col, val)
– All other values are zero 

• Example

9 0 0
0 0 0
0 0 0

0 0 0
0 0 2
0 0 0

(0, 0, 9)
(1, 5, 2)

• Analysis
– Space

• There is a clear reduction in space, which now depends on the number of non-zero values rather 
than number of rows and columns

Row   Col    Val 



Sparse Matrices

• Consider, when designing a data structure, Form Follows Function

• Investigate the various operations (functions) needed.

• Based on your investigation you can identify which design decisions 
will lead to more efficient implementations
– Contiguous vs non-Contiguous allocation

• May affect space and/or time complexity (of operations)

– Assumptions or requirements concerning the VALID STATE(S) of the data 
structure

• Imposing certain requirements may improve time and/or space complexity



Sparse Matrix: Addition

• Example: Sparse Matrix Addition
– Assume both matrices are 3 x 5.

(0, 2, 9)
(2, 3, 2)
(2, 4, 1)

+  
(0, 1, 3)
(2, 4, 2)

=  ?

Lets investigate an add method. Given the format of our matrix,

1) what is the process to accomplish addition?

2) how can we make this efficient?

0 0 9
0 0 0
0 0 0

0 0 0
0 0 0
2 1 0

+ 
0 3 0
0 0 0
0 0 0

0 0 0
0 0 0
0 2 0

Actual Matrices

Sparse Matrix Representations 



Sparse Matrix Addition (version 1)

• Goal: c = a + b

• Pseudocode Idea:
– For each row in a, check all rows in b for a match.

• Case 1: if b has a term at same index, 
– then create a new term, add a and b val and append to c.

• Case 2: b does not have a matching term
– Append the a-term to c

– For each row in b, check all rows in a for match.
• Case 1: if a has a term at same index, 

– Do nothing! Term should already be added.

• Case 2: b does not have a matching term
– Append the b-term to c

• Time complexity analysis?
– Embedded looping structure.

– O(numTermsA x numTermsB)

– Can we do better?

(0, 2, 9)
(2, 3, 2)
(2, 4, 1)

+  
(0, 1, 3)
(2, 4, 2)

= 

(0, 2, 9)
(2, 3, 2)
(2
(0,

4,
1,

3)
3)

ALSO NOTE: If we choose array implementation, we will 
need to allocate c before we begin the appending. How 
can we get this accomplished?



Sparse Matrix Addition (version 2)

• Goal: c = a + b

• Improvement: If we require the tuples to be ordered, we can simplify the traversal scheme and reduce computation .

• Since the matrices are sorted by rows (and then cols), the result is a “row major” order, and thus we can sequentially scan 
each matrix simultaneously (illustrated with arrows). No embedded iteration! There will be 3 cases per iteration. 

– Case 1: The current term in a is earlier in the matrix than the current b term.
• Result: append the a-term to c

– Case 2: The current term in b is earlier in the matrix than the current a term.
• Result: append the b-term to c

– Case 3: The current terms for a and b have the same index.
• Result: Add the values of a and b and append the new term to c

• Time Complexity?
– Traverse each structure only once!

– O(numTermsA + numTermsB)

– How does this compare to non-sparse matrix implementation?

– When does it become “useful” to use sparse implementation 

as opposed to standard implementation?

Again note : If we choose array implementation, we will 
need to allocate c before we begin the appending. How 
can we get this accomplished?

(0, 2, 9)
(2, 3, 2)
(2, 4, 1)

+  
(0, 1, 3)
(2, 4, 2)

= 

(0, 1, 3)
(0, 2, 9)
(2
(2,

3,
4,

2)
3)



Sparse Matrix Data Structure

• Investigation of our matrix representation

• Maintaining a valid state of a data structure
– Many matrix operations depend on the scanning of rows and columns, 

maintaining our structure such that it is ordered by row scan (or col) will improve 
efficiency of operations. 

– This State will need to be maintained (and possibly checked) for all operations.

– State of Data Structure (design decision):

• A list of 3-tuples, 

• As we have seen, it is beneficial to keep the terms in order (order by row-scan)

• Design decision: array or chain … lets investigate.

– Form Follows Function



Sparse Matrices

• Sparse Matrix Transpose Example
– Solution simple right? 

• Swap the rows and columns in each triple -- NO

– Concern
• We must maintain a valid state of our structure (the order by row major scan)

(1, 1, 9)

(2, 2, 2)
(2, 5, 1)
(3, 2, 3)
(4, 6, 5)
(4, 1, 8)

(1, 1, 9)

(2, 2, 2)
(5, 2, 1)
(2, 3, 3)
(6, 4, 5)
(1, 4, 8)

Row   Col    Val Row   Col   Val 

transpose

Observe: Requiring 
order of tuples 
complicates the 

transpose operation. If 
total row scan order is 

maintained, then 
transpose can still be 
performed in linear 
time, with a minor 

increase of 
computational steps to 

maintain order. 



Sparse Matrix Transpose (version 1)

• Goal b = aT

• Pseudocode idea:
– For each column c in a

• For each term in a

– Identify each term in column c, swap row and col values, and add term to b.

– Note: order should be maintained using standard sequential scan.

• Time Complexity
– O(numTerms * numColumns)

– Can we do better?

(1, 1, 9)
(2, 2, 2)
(2, 5, 1)
(3, 2, 3)
(4, 6, 5)
(4, 1, 8)

(1, 1, 9)
(1, 4, 8)
(2, 2, 2)
(2, 3, 3)
(5, 2, 1)
(6, 4, 5)

a b



Sparse Matrix Transpose (version 2)

• Goal b = aT

• Pseudocode idea (build jump table):
– For each term in a

• Count number of terms in each col. 

– For each col c in a
• Construct jump table: Determine the start index for each row given count

– For each term in a
• Swap row and col values and add term to be using correct order determined by jump table

• Jump Table requires direct access
– Array implementation

• Time Complexity
– O(numTerms + numColumns)

– FAST!

(1, 1, 9)
(2, 2, 2)
(2, 5, 1)
(3, 2, 3)
(4, 6, 5)
(4, 1, 8)

(1, 1, 9)
(1, 4, 8)
(2, 2, 2)
(2, 3, 3)
(5, 2, 1)
(6, 4, 5)

a b



Observations

• Design Observations and Decisions.
– Ordering tuples

• Ordering tuples will reduce addition time complexity from quadratic to linear.

• This is worth the increase in time complexity for the transpose operation.

• Multiply?

• Decision: Yes to order!

– Chaining vs array
• Addition. Size of resulting sparse matrix is unknown until addition is performed. Thus 

array maybe twice as slow.

• Decision: Yes to chain!

• For the sake of example, lets fully investigate chain vs array. 



Sparse Matrices: Array Implementation



Array Implementation: Transpose

• Sparse Matrix 

Transpose (version 1)



Array Implementation: 
Transpose

• Sparse Matrix 

Transpose (version 2)

Build (initialize) jump table 
RowStart, based on counts of 

elements per column.

Use jump table. Determine 
each entries index into the 

transposed matrix using jump 
table



Array Implementation: 
Addition (version 1)

(0, 2, 9)
(2, 3, 2)
(2, 4, 1)

+  
(0, 1, 3)
(2, 4, 2)

= 

(0, 2, 9)
(2, 3, 2)
(2
(0,

4,
1,

1)
3)



Array Implementation: Addition (version 2)



Sparse Matrix: Array Implementation

• Try Multiplication as an exercise at home

• Notes:

– The result of the multiplication of two sparse matrices may not be sparse!

• Observe sparse matrix representations are not necessarily efficient when matrices 

are not sparse.

• The goal of sparse matrix representation is to improve efficiency. When does the 

sparse matrix representation lose its benefits?



Sparse Matrices: Linked List Implementation

• The use of sparse matrix (array) improved efficiency (as compared to standard matrix) when the 
number of non-zero terms was small.

– Transpose:  Θ(numTerms + numCols) vs. Θ(numCols * numRows)

– Addition:  Θ(numTerms) vs. Θ(numCols * numRows)

• The array implementation is intuitive, but some memory allocation constraints (knowing the size of a 
resulting sparse matrix) seemingly required unnecessary computational steps

– Addition: Size of resulting sum is unknown! Iterate over each sparse matrix simply to determine the size of resulting 
sum for allocation.

– Transpose: The size of the resulting transposed matrix is known. However, when copying terms to the transposed 
sparse matrix, the index where to insert each term is not known without some extra computational overhead. That is, to 
maintain an ordered structure, extra computation steps were needed to organize the insertion into the new array. 

• We have investigated the implementation of a sparse matrix using parallel arrays (or similarly one 
could use an array of tuples)

– There are many variations to the use of arrays, parallel arrays, arrays of tuples, etc. And there are many variations on 
the standard matrix operations (as we have seen thus far).

– Another design approach: Is there a benefit to using a chaining strategy as opposed to arrays? 



Chaining Design for Sparse Matrix

• Option: Design each node to contain 3-tuple and a pointer to the 

next non-zero term in the matrix (in a row major scan).

– Efficiency note: We will not need to determine the size of the resulting sum 

before we can start adding terms. (Linked lists can grow dynamically!)



Sparse Matrix: Chaining

• Example pseudocode for 

addition

– Time: Similar to array 

implementation but with 

one less pass over each a 

and b (for allocation size). 

Thus saving about ½ the 

computational steps.

– Memory: one extra pointer 

must be stored per term



Sparse Matrix: Chaining

• Example pseudocode for a transpose method

– Time and Space analysis?

– Can we do better?



Sparse Matrix: Chain

• Transpose (version 2)
– Note: 

• We used a jump table to construct a FAST (linear time) transpose for the array 
implementation

• BUT … Linked Lists (Chains) do not permit random (direct) access.

• One solution for Chain implementation which maintains similar linear time:

1. Construct Array Representation of Sparse Matrix // O(numTerms)

2. Perform Matrix version of transpose  // O(numTerms + numCols)

3. Construct Chain Sparse Matrix // O(numTerms)

TOTAL:  O(numTerms + numCols)

– Side Note: Here we solve a new problem by mapping the problem to a different domain for 
which a solution already exists. As long as the mapping (and inverse) has a time 
complexity less than the computed solution, this may be a reasonable approach. 



Matrix Representation Comparison

Operation Matrix Sparse Matrix (array) Sparse Matrix (chain)

Addition 
(time)

Θ(𝑛𝑢𝑚𝐶𝑜𝑙 ∗ 𝑛𝑢𝑚𝑅𝑜𝑤) Θ(𝑛𝑢𝑚𝑇𝑒𝑟𝑚𝑠𝐴 + 𝑛𝑢𝑚𝑇𝑒𝑟𝑚𝑠𝐵) Θ(𝑛𝑢𝑚𝑇𝑒𝑟𝑚𝑠𝐴 + 𝑛𝑢𝑚𝑇𝑒𝑟𝑚𝑠𝐵)

Transpose
(time)

Θ(𝑛𝑢𝑚𝐶𝑜𝑙 ∗ 𝑛𝑢𝑚𝑅𝑜𝑤) Θ(𝑛𝑢𝑚𝑇𝑒𝑟𝑚𝑠+𝑛𝑢𝑚𝐶𝑜𝑙𝑠) Θ 𝑛𝑢𝑚𝑇𝑒𝑟𝑚𝑠 + 𝑛𝑢𝑚𝐶𝑜𝑙𝑠
// assuming copy to array

• Other:
– Addition: array implementation required twice as many computational steps to 

allocate memory efficiently

– Transpose: Sparse Matrix may also alleviate some cache delays as compared to 
Matrix 



Project: Polynomials

• Reminder: With the sparse matrix structure, we faced many structural design questions and 
subsequent algorithmic design questions, both of which affected efficiency. You will face 
similar design questions in your polynomial project.

• Design a Representation (Data Structure) for Polynomials 
– Goals:

• Polynomial evaluation

• Polynomial arithmetic 

• Class Project: Design Questions and Goals.
– Linked Chain vs Array Implementation? 

– Goal: An efficient Solution (time and space)
• Algorithmic improvements for basic operations

• How can we increase efficiency: reduce computational complexity?

• When you make a design decision, document the reason why and justify in the cover letter.

• Use average and worst cases to make design decisions (not best case)


