
COSC160: Data Structures
Linked Lists

Jeremy Bolton, PhD

Assistant Teaching Professor

Outline

I. Retrieval or Search in List Structures.

II. Imposing Order

I. Order by frequency of access

I. Using Expected Values for Average Case Analysis

II. Order Heuristic: Move-To-Front

II. Order by Value

I. Another sorting example

Searching

• When searching a list for an item, it may be necessary to traverse
the entire list. We will investigate two simple speed-up schemes:
– We can improve search time with improved organization of the data in our

structure
1. Order based on data value

2. Order based on frequency of access

list.search(item)

Search List: Worst and Average Case

• In general, sequential search, both Worst and Average Cases are

Θ(𝑛)

• Can we improve upon this? Yes – with some assumptions /

constraints.

– Keeping our data ordered (organized) can lead to speed-ups.

Frequency Based Analysis

• Order based on frequency of access.

• Scenario: Assume you are designing a data structure to store

records for an institution. Records are retrieved from time to time.

Some records may be retrieved more often than others. Some

records may be retrieved almost never.

• Lets re-inspect the average case…

Average Case as Frequency Based Analysis

• Average Case: Add up steps for all cases and divide by number of

a cases.

• Average number of comparisons
1+2+3+⋯+𝑛

𝑛
is Θ(𝑛)

Using Expected Values for Average Case

• Note an average is similar to taking the expected value (with the probability
of each case being equally likely:

1

𝑛
for the n cases here). That is assume the

step count is a random variable of each case and has some probability of
being observed.

• 𝐸 𝑐𝑜𝑢𝑛𝑡 = Σ𝑖=1
𝑛 𝑐𝑜𝑢𝑛𝑡𝑐𝑎𝑠𝑒𝑖 ∗ 𝑝𝑢𝑛𝑖𝑓𝑜𝑟𝑚(𝑐𝑎𝑠𝑒𝑖) =

1
1

𝑛
+ 2

1

𝑛
+ 3

1

𝑛
+…+ n

1

𝑛
=
1+2+3+⋯+𝑛

𝑛

where 𝑝𝑢𝑛𝑖𝑓𝑜𝑟𝑚 𝑐𝑎𝑠𝑒𝑖 = 1/𝑛 for all n cases is the probability of 𝑐𝑎𝑠𝑒𝑖. (A uniform distribution
each case is equally likely)

If each case is equally likely then this will give us a good estimate of the expected (average)
comparison count. However, if each case is not equally likely, we can better estimate the
expected count using the true probability of occurrence of each case.

Expected (Average Case) Comparison Count

• Standard Average (Uniform) Example:

Σ𝑖=1
𝑛 𝑐𝑜𝑢𝑛𝑡𝑐𝑎𝑠𝑒𝑖 ∗ 𝑝 𝑐𝑎𝑠𝑒𝑖 = Σ𝑖=1

𝑛 𝑖 ∗
1

𝑛
=
1

𝑛
Σ𝑖=1
𝑛 𝑖 =

𝑛 + 1

2
= Θ(𝑛)

Using Expected Value to Compute Average Case

• Extreme Example: Lets assume case 1, 2, and 3 are likely to be
searched with probabilities of 1/3 each. And all other records have a
probability of zero of being searched.

• What would happen if we placed items with higher probability of search
near the front of the list?

• Σ𝑖=1
𝑛 𝑐𝑜𝑢𝑛𝑡𝑐𝑎𝑠𝑒𝑖 ∗ 𝑝 𝑐𝑎𝑠𝑒𝑖 = 1

1

3
+ 2

1

3
+ 3

1

3
+ 4 0 +⋯+ 𝑛 0 = 2 = Θ(1)

Ordering a list based on frequency of access

• Intuitively, it would then be best to order the items based on their
probability of search.

• Good in theory! However, one generally does not know this
probability distribution for items searched.

• If we knew the probability of access of each item, how would we
order the items?
– Increasing order of probability

Order based on frequency of access

• Heuristic approach: every time a record is accessed (searched

and found), place that item at the beginning of the array. The

items that are searched most often, should have a high probability

of being near the beginning of this list (thus reducing search time)

– AKA: MOVE TO FRONT

• Implementation Details:

– Would you implement this structure as a linked list or an array? Why?

Using Expected Value to Compute Average Case

• Another Example: Lets assume the different cases
have a probability of being searched that resembles a
Poisson distribution. And lets assume that the items
just happen to be in decreasing order of probability of
being searched.

• Σ𝑖=1
𝑛 𝑐𝑜𝑢𝑛𝑡𝑐𝑎𝑠𝑒𝑖 ∗ 𝑝𝑃𝑜𝑖𝑠𝑠𝑜𝑛 𝑐𝑎𝑠𝑒𝑖 ≅ 2 = Θ(1)

• Note this is a very “steep” distribution and the
effectiveness of this ordering method will drastically
depend upon the true search distribution of the data

Order based on data value

• If the data are ordered, we can reduce search time

– Numeric order, alphabetical order, binary order, …

– E.G. files in a filing cabinet

• Binary Search

– Divide and conquer scheme

– Example: Search for 55

1 3 4 7 14 55 57

Pseudocode for Binary Search (iterative)

• Worst Case Time

Complexity?

• // Searches using DaC for x in a where a is sorted. Step Count

• // Returns index of x, else -1

• Algorithm BinarySearch(a, n,x){

• index = -1; 1

• searchBegin = 1; 1

• searchEnd = n; 1

•

• while searchBegin <= searchEnd do{

• searchMid = floor((searchEnd + searchBegin)/2); ?

• if x > a[searchMid]{ ?

• searchBegin = searchMid+1; ?

• } else if x < a[searchMid]{ ?

• searchEnd = searchMid-1; ?

• } else if x == a[searchMid]{ ?

• index = searchMid; ?

• } end if

• }end while

• return index; 1

• }end

Binary Search: decision tree diagram

• The flow of execution is
represented as a single path
from root to leaf, where each
step from parent to child
represents 1 iteration in the
binary search method.

• Thus the number of iterations
can be bounded by the height
of this tree.
– Note that the number of nodes at

each level of our tree doubles at
each depth of the tree.

– Nodes at depth d = ?

– How many nodes are at the
lowest level of this tree?

Using Recurrences: Binary Search Time Complexity

• Note:
– The size of the list to be searched is halved during each recursive call.

– During each call we perform about 3 comparison checks. We will simply use c to indicate some constant

• Define recurrence T(n): Comparison count of binary search for an ordered list of size n

T(n) = 3 + T(n/2) , where T(1) = 1

Using backward iteration, we will show T(n) is logarithmic for 𝑛 = 2𝑗 .

T(n) = 3 + T(n/2)

= 3 + 3+ T(n/4)

= 3 + 3+ T(n/8)

…

= 3 + 3+ …. + T(1)

= 1 + 𝑖=1
log2𝑛 3 = 1 + 3log2n

Try at home: Use
substitution method,
(induction) prove
that T(n) is O(log n)

Observe Pattern / Series:
How many times can we divide n
by 2 before reaching our
boundary case?

𝑗 = log2(𝑛) , or similarly 2𝑗 = 𝑛

Binary Search vs Sequential Search

• With the added constraint of order we can reduce search time

from Θ(𝑛) to Θ(log2 𝑛)

• Implementation Details:

– Would you use a binary search scheme for an array? For a linked list?

Why or why not?

Sorting: Imposing Order

• Insertion Sort
– Intuitive and in-place

– But quadratic time complexity in the
worst case

• Merge Sort
– Uses a “Divide and Conquer” Scheme

(similar to binary search) to improve
efficiency

• We will investigate a few sorting
algorithms throughout the course.

Merge Sort

• Inputs (practical characterization of domains):
– A: an array of ints of length n

– p: index (begin)

– q: index (end)

• Assumptions:
– Precondition: p = 1 AND q = n

• Correctness
– Postcondition: elements in A are in increasing order

Merge Sort

• Intuition

– Repeatedly divide array in halves until
there are multiple arrays of length 1.

• this will take log time

– Repeatedly merge these arrays.
• The merge requires a sequential scan of

each subarray, which will be linear in total

Merge Sort

• The worst case time complexity of

Merge Sort is O(n log n)

• Proof:

– Define step count recurrence
– T(n) = T(n/2) + T(n/2) + c + M(n/2+n/2)

• c is the constant number of steps needed

to check for the base case, compute q, …

• M() is the number of steps needed to

merge two subarrays each of length n/2,

which can be done in linear time using a

sequential scan

• Thus …

𝑇 𝑛 = 2𝑇
𝑛

2
+ 𝑐 + 𝑛

= 2 2𝑇
𝑛

4
+ 𝑐 + 𝑛 + 𝑐 + 𝑛… = 4T

n

4
+ 3c + 3n

= 2[4T
n

8
+ 𝑐 + 𝑛] + 3c + 3n= 8T

n

8
+ 5c + 5n

…

= 2𝑖T
n

2i
+ 2i − 1 c + 2i − 1 n

…. Note: i = log2n at the boundary condition T(1)

= nT 1 + 2i − 1 c + 2log2n − 1 n

Which is O(n log n)

Observe the pattern. We will
reach the boundary

condition when i = log n

