COSC160: Data Structures
Dynamic and Circular Arrays

Jeremy Bolton

FORGETOW:
gUNI VERSIT Tg\c

Outline

|. Dynamic Arrays
Il. Circular Arrays

FEORGETOW:
gUZVI VERSI ZTIL:Z\C

Arrays

* Array limitations

— Arrays are stored contiguously in a computer, and thus the size must
remain fixed. However, one can implement a dynamic array which
provides for an extra level of abstraction (in this case extra memory
management behind the scenes)

* “Resize” it!
— If the array is full, copy items from full array to a new array of larger size

FEORGETOW:
gUZVI VERSI ZTIL:Z\C

Simple ReSizing Scheme

When initialized, allocate enough memory for a “reasonable” storage amount.

If the array is full and an attempt is made to add an item to the array, simply
create a new, larger array and copy over the items from the previous array
and then the new item to add.

Since allocating a new array and copying the current list is computationally

expensive, it is best to try to reduce the number of times the array reaches its

max capacity.

— One simple scheme is to assure the new array created (when max capacity is reached) is
“large” (double the original is common).

Exercise: Assume the maximum number of entries to be placed into a listis n

and is unknown. If a dynamic array is used to implement this list, what is the

number of times we would need to re-allocated and copy in the worst case?

FEORGETOW:
gUZVI VERSI ZTIL:Z\C

Allocation and Copying are slow

« Copying a Dynamic Array to increase capacity when full
— Minimize the number of copies
— Difficult to do without knowing the max capacity needed

« Exponential Growth Scheme
— Assume the max capacity is N (which is unknown apriori)
— Assume array Is initialized to size 1.

— How many copies are needed if we follow the following re-sizing rule?
When attempting to add element and capacity is full, allocate a new
array with double capacity and copy.

— Total number of allocation-copy events: i log,(N — i)

FEORGETOW:
gUZVI VERSI ZTIL:Z\C

Dynamic Array Investigation: Add elements

To the beginning, will result in ®(n) operations
To the middle, will result in ®(n) operations (average case)

To the end of the list will result in ®(1) operations

— UNLESS the array is full, then the result would be ®(n) operations
* Good news: we were able to add items to a seemingly full array!
« Bad news: the time complexity is poor when the array is copied.

Permits dynamic size change, but improvement can be made upon a
standard array.

FEORGETOW:
gUZVI VERSI ZTIL:Z\C

Dynamic Array Investigation: Remove elements

* From the beginning of the list will result in ®(n) operations

* From the middle of the list will result in ®(n) operations (average
case)

* From the end of the list will result in ®(1) operations

FEORGETOW:
gUZVI VERSI ZTIL:Z\C

Can we improve upon this?

« The dynamic array appears to help with some memory issues
encountered by the standard array, but some operations are still
“slow”

— Add to back is fast. Why? Index is generally know.
— Add to front. Must copy and make room. Slow.

— Reason: beginning of array is assume index O (or 1), but what if this was
not required?

FEORGETOW:
gUZVI VERSI ZTIL:Z\C

Dynamic Array: Access to Last Item

As with standard arrays we will need
to keep track of the number of items
In the array — but more specifically
we need to have the index of the
current last item in the array

Observation: Linked Lists permit
efficient additions to beginning and
end of lists by maintaining a pointer
to the head and tail.

We can apply this same concept to
the first element of the array which
can improve flexibility and complexity

)
|ast

FEORGETOW:
gUZVI VERSI 7*1'2(

Design Improvement: Circular Arrays

* We might also allow access to the first item in the array.

— Design decision: if we require the *first” item in the array to be the item
located at index zero, we will incur a ®(n) copies.

— Keep the index to the first item in the array (the first item does not need to
be at location 0).

« Reduces insertions to front and removals from front to (1) steps. (with some minimal
Indexing overhead)

— Allow for both front and last indexes to change

— Can use modular arithmetic to find relative indexes /{)\ @
Q\MX‘ fc@v

Circular Array: Indexes to both first and last item

» Allows easy access to first and last item (with some simple
overhead)

* There are two keys “states” of the list that should be recognized
(for a traversal). ALLOWS “WRAP-AROUND".

(N]

O esk ot ot C oo

Efficient Arrays: Add To Front

)
lgek ek

T

O esk et

FEORGETOW:
glﬂVIVERSI 7*1'2(

Dynamic Circular Arrays

« At home Exercise. Write Pseudocode for the following:

— addToBack(item i)
— removeFromFront()
— removeFromBack()

FEORGETOW:
gUZVI VERSI ZTIL:Z\C

Circular Dynamic Arrays: Time Complexity

« With the addition of some simple

design elements, we can make
arrays efficient (in most cases).

If the array is full, we will incur an
overhead of @(n) for the allocation
(if doubling size) and ©(n) for the

copy.

Space complexity:
— Chains use only the memory
necessary to store the current list

— Unless the size of the list is known
at array allocation time and remains
static, an array may use an
unnecessary amount of memory.

INSERT FRONT
INSERT MIDDLE
INSERT BACK
RETRIEVE FRONT
RETRIEVE MIDDLE
RETRIEVE BACK
REMOVE FRONT
REMOVE MIDDLE
REMOVE BACK

* Assumes first and
last index

** Assumes alloc

0(1)
e(n)
0(1)
0(1)
e(n)
0(1)
0(1)
O(n)
0(1)

IMPLEMENTATION CHAINING*** ARRAYS*

O(1)**
e(n)
O(1)**
0(1)
0(1)
0(1)
0(1)
0(n)
0(1)

**% Assumes

Tail

FEORGETOW:
glﬂVIVERSI 7*1'2(

Lists with restricted access

* Note: we have identified that we can make efficient use of
dynamic arrays if access is restricted to first or last item.

 Are lists that restrict access to just the first or last item useful?

 Queues...

FEORGETOW:
gUZVI VERSI ZTIL:Z\C

