
COSC160: Data Structures
Dynamic and Circular Arrays

Jeremy Bolton

Outline

I. Dynamic Arrays

II. Circular Arrays

Arrays

• Array limitations

– Arrays are stored contiguously in a computer, and thus the size must

remain fixed. However, one can implement a dynamic array which

provides for an extra level of abstraction (in this case extra memory

management behind the scenes)

• “Resize” it!

– If the array is full, copy items from full array to a new array of larger size

Simple ReSizing Scheme

• When initialized, allocate enough memory for a “reasonable” storage amount.

• If the array is full and an attempt is made to add an item to the array, simply
create a new, larger array and copy over the items from the previous array
and then the new item to add.

• Since allocating a new array and copying the current list is computationally
expensive, it is best to try to reduce the number of times the array reaches its
max capacity.
– One simple scheme is to assure the new array created (when max capacity is reached) is

“large” (double the original is common).

• Exercise: Assume the maximum number of entries to be placed into a list is n
and is unknown. If a dynamic array is used to implement this list, what is the
number of times we would need to re-allocated and copy in the worst case?

Allocation and Copying are slow

• Copying a Dynamic Array to increase capacity when full
– Minimize the number of copies

– Difficult to do without knowing the max capacity needed

• Exponential Growth Scheme
– Assume the max capacity is N (which is unknown apriori)

– Assume array is initialized to size i.

– How many copies are needed if we follow the following re-sizing rule?
When attempting to add element and capacity is full, allocate a new
array with double capacity and copy.

– Total number of allocation-copy events: 𝑖 𝑙𝑜𝑔2(𝑁 − 𝑖)

Dynamic Array Investigation: Add elements

• To the beginning, will result in Θ(𝑛) operations

• To the middle, will result in Θ(𝑛) operations (average case)

• To the end of the list will result in Θ(1) operations
– UNLESS the array is full, then the result would be Θ(𝑛) operations

• Good news: we were able to add items to a seemingly full array!

• Bad news: the time complexity is poor when the array is copied.

• Permits dynamic size change, but improvement can be made upon a
standard array.

Dynamic Array Investigation: Remove elements

• From the beginning of the list will result in Θ(𝑛) operations

• From the middle of the list will result in Θ(𝑛) operations (average

case)

• From the end of the list will result in Θ(1) operations

Can we improve upon this?

• The dynamic array appears to help with some memory issues

encountered by the standard array, but some operations are still

“slow”

– Add to back is fast. Why? Index is generally know.

– Add to front. Must copy and make room. Slow.

– Reason: beginning of array is assume index 0 (or 1), but what if this was

not required?

Dynamic Array: Access to Last Item

• As with standard arrays we will need
to keep track of the number of items
in the array – but more specifically
we need to have the index of the
current last item in the array

• Observation: Linked Lists permit
efficient additions to beginning and
end of lists by maintaining a pointer
to the head and tail.

• We can apply this same concept to
the first element of the array which
can improve flexibility and complexity

Design Improvement: Circular Arrays

• We might also allow access to the first item in the array.
– Design decision: if we require the “first” item in the array to be the item

located at index zero, we will incur a Θ(𝑛) copies.

– Keep the index to the first item in the array (the first item does not need to
be at location 0).

• Reduces insertions to front and removals from front to Θ 1 steps. (with some minimal
indexing overhead)

• Circular Arrays
– Allow for both front and last indexes to change

– Can use modular arithmetic to find relative indexes

Circular Array: Indexes to both first and last item

• Allows easy access to first and last item (with some simple

overhead)

• There are two keys “states” of the list that should be recognized

(for a traversal). ALLOWS “WRAP-AROUND”.

Efficient Arrays: Add To Front

AddToFront(item i, array)

// first check if we have enough space!

if (mod(first – 1,n)) == back

array = doubleArray(array)

// assumes firt == last when list is size 0 or 1

if last > first || last < first

first = mod(first-1 , n) //move over

array [first] = i

elseif numItems == 0

first = last = 1

array [first] = i

elseif numItems == 1

first = mod(first-1 , n) //move over

array [first] = i

else

error

numItems++

Dynamic Circular Arrays

• At home Exercise. Write Pseudocode for the following:

– addToBack(item i)

– removeFromFront()

– removeFromBack()

Circular Dynamic Arrays: Time Complexity

• With the addition of some simple
design elements, we can make
arrays efficient (in most cases).

• If the array is full, we will incur an
overhead of Θ(n) for the allocation
(if doubling size) and Θ(n) for the
copy.

• Space complexity:
– Chains use only the memory

necessary to store the current list

– Unless the size of the list is known
at array allocation time and remains
static, an array may use an
unnecessary amount of memory.

IMPLEMENTATION CHAINING*** ARRAYS*

INSERT FRONT Θ(1) Θ(1)**

INSERT MIDDLE Θ(𝑛) Θ(𝑛)

INSERT BACK Θ 1 Θ(1)**

RETRIEVE FRONT Θ(1) Θ(1)

RETRIEVE MIDDLE Θ(𝑛) Θ(1)

RETRIEVE BACK Θ 1 Θ(1)

REMOVE FRONT Θ(1) Θ(1)

REMOVE MIDDLE Θ(𝑛) Θ(𝑛)

REMOVE BACK Θ(1) Θ(1)

* Assumes first and
last index

** Assumes alloc *** Assumes
Tail

Lists with restricted access

• Note: we have identified that we can make efficient use of

dynamic arrays if access is restricted to first or last item.

• Are lists that restrict access to just the first or last item useful?

• Queues…

