
COSC160: Data Structures
Linked Lists

Jeremy Bolton, PhD

Assistant Teaching Professor

Outline

I. Data Structure (lower-level) Implementations
I. Chaining (Linked Lists)

I. Design Decisions and Implications on Complexity
I. Example: Tail Pointer

II. Arrays
I. Design Decisions and Implications on Complexity

II. Design Decisions
I. Arrays vs. Chaining

III. Interesting Applications
I. Polynomial Arithmetic and Evaluation

Linear Structures

• Linear structures are generally implemented using arrays or

chaining

– Contiguous vs. non-contiguous in memory

• Static size vs. dynamic size

– When designing a data structure, one must consider these low-level

designs

• One major decision: contiguous vs non-contiguous (ie array vs chain)

• This design decision will have implications with respect to usage and efficiency

– There are many design decisions that a programmer must consider

• Some are standard, others may be tailor-made for the problem/solution on-hand.

List Class Implemented by Chaining (Linked Lists)

• Design Decisions

– Single Link, next

– Head pointer maintained

• Standard Operations
• Insert(item, index)

• Remove(index)

• Retrieve(index)

Inserting into a Linked List

• Lets investigate three cases of the insertion operation

– Insert to front of list

– Insert to middle of list

– Insert to end of list

Inserting into front of a Linked List

• Insert to front of list

• Approximately how many
computational steps?

• Does the number of
computational steps depend on
the size of the list?

• Time complexity?

Inserting into middle of
Linked List

Approximately how many computational
steps?

Does the number of computational steps
depend on the size of the list?

Time complexity?

Inserting to end of
Linked List

• Approximately how many

computational steps?

• Does the number of

computational steps

depend on the size of the

list?

• Time complexity?

Design Decisions

• One major goal of a data structure is to provide an efficient way to

manage data.

• Can we improve the efficiency of any of these operations -- YES

• Example: Tail pointer

– Notably decrease order of computation for insert to end of list, at the cost

of maintaining an extra pointer per list

Insert to End (List with Tail Pointer)

• Significant time

reduction.

• What is the time

complexity now?

List Variations:
Singly Linked vs. Doubly Linked Lists

• Differences

– Doubly Linked List

• Can traverse a list in both directions at added cost of 1 pointer per node

• Slightly simplify iteration scheme for insertions and removals

Singly Linked vs. Doubly Linked Lists

• Singly Linked List

• Doubly Linked List

Why a double link?

• May be useful in specific situations.

– Remove last node

• A prev pointer, may reduce retrieval and insertion times at the cost

(space) of 1 extra pointer per node.

– Create an efficient algorithm: Node* get(int index)

List Class Implemented as Array

• Assume the following design decisions

– Array initialized to “large” capacity, chosen appropriately based on application

– No gaps in the list (items shift after a removal)

– Assumes index = 0 is beginning of list

– Should maintain index for end (size) of list or numItems

– Operations

• Insert(item, index)

• Remove(index)

• Retrieve(index)

– Concerns: What happens if insertion exceeds capacity?

Inserting into an Array

• Lets investigate three cases of the insertion operation

– Insert to front of array

– Insert to middle of array

– Insert to end of array

Insertion to Front of Array

• Approximately how
many computational
steps?

• Does the number of
computational steps
depend on the size of
the list?

• Time complexity?

Insert to Middle of Array

• Approximately how many

computational steps?

• Does the number of

computational steps

depend on the size of the

list?

• Time complexity?

Insert to End of Array

• Approximately how many

computational steps?

• Does the number of

computational steps

depend on the size of the

list? Note: Assumes there

is enough allocated

space.

• Time complexity?

“Worst” Case Time Complexity for a List Class

IMPLEMENTATION CHAINING ARRAYS

INSERT FRONT Θ(1) Θ(𝑛)

INSERT MIDDLE Θ(𝑛) Θ(𝑛)

INSERT BACK Θ 1 * Θ(1)**

RETRIEVE FRONT Θ(1) Θ(1)

RETRIEVE MIDDLE Θ(𝑛) Θ(1)

RETRIEVE BACK Θ 1 * Θ(1)

REMOVE FRONT Θ(1) Θ(𝑛)

REMOVE MIDDLE Θ(𝑛) Θ(𝑛)

REMOVE BACK Θ(1) Θ(1)

* Assumes tail ptr

** Assumes alloc

• Exercise: try to fill out

table for best case and

average case.

Basic Lists: Array vs Linked List Implementation

• Example: Design a list class for use to store information for 250 tenants in
apt. building.

• Design an aptList Class with the following operations
– Insert(item, location): bool

– Remove(item): bool

– Find(item): int

• How would you implement this structure as a class?
– Array or Chain? Why?

– What member variables would you include? Why?

• We could keep the data in the list in some order …

