
COSC160: Data Structures
Review – Part 2

Jeremy Bolton, PhD

Assistant Teaching Professor

Outline

I. Computational Complexity
I. Time

I. Upperbounding Notation

II. Formalizing using Recurrences

II. Space
I. Recursion: Implications on Space Complexity

II. Implementation Details
I. Pointers

II. Memory Management

III. Good Programming Practices
I. Design

II. Debug

Review: Goals of Data Structures

• Computer science is the practice of problem solving.
– Data structures are tools used to help solve a problem or accomplish a task.

– Good Solutions (Algorithms):

• Good solutions are correct.

• Good solutions are practical.

• Good solutions are efficient.

– Efficient in time

– Efficient in space

• Low level representations
– Understanding lower level details related to memory management will make you

a better programmer (of efficient structures and algorithms)

Computational Complexity Theory

• Algorithms on Data Structures are analyzed and assessed using two main factors
– Time Complexity – number of “computational steps” required.

– Space Complexity – number of memory “spaces” required.

• Algorithms may depend on size and value of input.
– Value(s) of input

• Cases: Worst Case, Best Case, Average Case.

– Analysis in terms of size of input
• Computational steps and memory requirements are generally a function of size of input.

• Analysis
– “Absolute” count: Step count (time) or memory location (space) count

– Count Upper-bound and lower-bound notation:
• Big-O: upper bound

• Big-Omega: lower bound

• Big-Theta: both upper and lower bound

Best Case vs. Worst Case

• Cases are generally determined assuming the size of the input is fixed.
– Best Case: Input (of size n) whose corresponding step count (or memory count) is

minimum.

– Worst Case: Input (of size n) whose corresponding step count (or memory count) is
maximum.

– Average Case: Average step count (or memory count) over all possible inputs (of size n).

• Therefore cases are often determined by the value of the input (not the size.)

• Example: Assume you have a list (of size n), and you are tasked with
searching for an item in the list. What is the best case? Worst case?

Upper-bounding notation. (Formally)

• Big-O: f(x) is O(g(x)), when
∃𝑐∈ℛ+,𝑘∈ℛ+∀𝑥≥𝑘𝑓 𝑥 ≤ 𝑐𝑔 𝑥

• Big-Omega: f(x) is Ω(g(x)), when
∃𝑐∈ℛ+,𝑘∈ℛ+∀𝑥≥𝑘𝑓 𝑥 ≥ 𝑐𝑔 𝑥

• Big-Theta: f(x) is Θ(g(x)), when
∃𝑐1∈ℛ+,𝑘1∈ℛ+∀𝑥≥𝑘1𝑓 𝑥 ≥ 𝑐1𝑔 𝑥

and

∃𝑐2∈ℛ+,𝑘2∈ℛ+∀𝑥≥𝑘2𝑓 𝑥 ≤ 𝑐2𝑔 𝑥

Common Upper-bounding
functions

g(x)= 1
g(x) = log(x)

g(x) = x log(x)
g(x) = x2

g(x) = x3

g(x) = e𝑥

Formalizing Time Complexity of An Algorithm

• Specify the step-count function by Explicit Counting.
– If code is “simple”, count steps in the loop and determine how many times the

loop will execute (depending on case.)

– Use proof by induction (or direct arithmetic) to prove upperbound

• Recurrence.
– Define step count function recursively.

– Solve recurrence
• By Iteration; or

• By Substitution; or …

– Use proof by induction (or direct arithmetic) to prove upperbound

Example: Computational Step Count

• Pseudocode for a sequential search algorithm below.
– What is the number of computational steps in the worst case?

– Often assumes all basic operations are 1 step.

// Searches sequentially for x in array. Returns index of first x, else -1 Step Count

Algorithm SequentialSearch (array, x){

n := length(array); 1

index := -1; 1

for i := 1 to n do{ 3n + 2

if x == array[i]{ n

index := i; 1?

break; 1?

}end if

} end for

return index; 1

}end SequentialSearch

Loop overhead:
i=1: 1 step (initial)

i <= n: 1 step (initial)

i++ (i=i+1): 2n steps (post-loop update)

i <= n: n steps (loop re-entry)

Total: 3n+2

Total: f(n) = 4n + (5 or so)
f(n) is O(n)
f(n) is Ω(n)
f(n) is Θ(n)

Bounding Proofs

• Explicit Counting Example: Prove f(n) = 4n+6 is O(n)
– Proof Idea: We must find a c and a k such that the following inequality holds for all x

greater than or equal to k

• ∃𝑐∈ℛ+,𝑘∈ℛ+∀𝑛≥𝑘𝑓 𝑛 ≤ 𝑐𝑔 𝑛

• Once a reasonable c and k are chosen, this statement can be shown using a
proof by induction.
– Proof Idea: Choose c = 10, k = 1. We show ∃𝑐∈ℛ+,𝑘∈ℛ+∀𝑛≥14𝑛 + 6 ≤ 10𝑛, by induction.

• Base Case: Show for n = k. 4𝑛 + 6 ≤ 10𝑛 ≡ 10 ≤ 10 □
• Induction: Assume 4𝑛 + 6 ≤ 10𝑛 and show 4(𝑛 + 1) + 6 ≤ 10(𝑛 + 1).

4𝑛 + 6 ≤ 10𝑛 (Fact: Assumption of inductive step)

4 ≤ 10 (Fact: This was chosen to help finish proof)

4𝑛 + 4 + 6 ≤ 10𝑛 + 10 (Addition of inequalities)

4 𝑛 + 1 + 6 ≤ 10 𝑛 + 1 □ (Factoring)

Example: Computational Step Count

• Pseudocode for a sequential search algorithm below.

– What is the number of computational steps in the (non-pathological)

best case?

// Searches sequentially for x in array. Returns index of first x, else -1 Step Count

Algorithm SequentialSearch (array, x){

n := length(array); 1

index := -1; 1

for i := 1 to n do{ 2

if x == array[i]{ 1

index := i; 1

break; 1

}end if

} end for

return index; 1

}end SequentialSearch

Total: f(n) = 8
f(n) is O(1)
f(n) is Ω(1)
f(n) is Θ(1)

// Searches sequentially for x in array. Returns index of first x, else -1

Algorithm SequentialSearch (array, x){

n := length(array);

index := -1;

for i := 1 to n do{

if x == array[i]{

index := i;

break;

}end if

} end for

return index;

}end SequentialSearch

Example: Computational Step Count

• Pseudocode for a sequential search algorithm below.
– What is the number of computational steps in the average case?

• Average case: take the average step count over all possible step count outcomes (cases)

•
4𝑛+5+ 𝑖=1

𝑛 4𝑖+4

𝑛
=
4𝑛+5+ 𝑖=1

𝑛 4𝑖+ 𝑖=1
𝑛 4

𝑛
=

4𝑛+5+4 𝑖=1
𝑛 𝑖+4𝑛

𝑛
=
8𝑛+5+4

𝑛 𝑛+1

2

𝑛
= 8 +

5

𝑛
+ 2 𝑛 + 1 , which is Θ(n)

Total: f(n) = 3
𝑛
+ 4 + 4 [𝑛 + 1 /2)]

f(n) is O(n)
f(n) is Ω(n)
f(n) is Θ(n)

Tip: organize different
step counts in table, then

take average.

Case Count

1 8

2 12

3 16

… … note: arithmetic sequence
𝛼𝑛

n 𝛼𝑛 = 4𝑛 + 4

n+1 (not in list) 4n+5

More Examples: Bounding Notation

• Assume you have analyzed an algorithm and determined that the step
count (in the worst case) is f(x) = 10x +7, for inputs of size x.
– Find Big Theta Notation (that is find g(x) such that f(x) is Θ(g(x)))

– Big-Theta: f(x) is Θ(g(x)), when

∃𝑐1∈ℛ+,𝑘1∈ℛ∀𝑥≥𝑘1𝑓 𝑥 ≥ 𝑐1𝑔 𝑥

and

∃𝑐2∈ℛ+,𝑘2∈ℛ∀𝑥≥𝑘2𝑓 𝑥 ≤ 𝑐2𝑔 𝑥

• Tip: The largest term in this function is linear, therefore we can bound
f(x) proportionally with a linear function: g(x) = x.

Notes about bounding notation

• Big-O notation: gives us the upper bound.
– Somewhat informative*

• Big-Omega: lower bound
– Somewhat informative*

• Big-Theta: identifies the order by which the algorithm will scale (as
n become large.)
– Most informative*

Quickly assess the time complexity

– Worst Case: cn + k + 3 , is Θ(n)

// Searches sequentially for x in array. Returns index of first x, else -1 Step Count

Algorithm SequentialSearch (array, x){

n := length(array); 1

index := -1; 1

for i := 1 to n do{ 3n + 2

if x == array[i]{ n

index := i; 1

break; 1

}end if

} end for

return index; 1

}end SequentialSearch

Assuming a constant number of
operations per iteration, then the

total number of steps is of the
form cn+k, where c and k are

constants and n is the number of
iterations

cn+k

Time Complexity using Recurrences

• Recursion

– Defining an entity in terms of itself

• Recurrence

– A relation that characterizes a function in terms of its value on a smaller input

• General Idea:

– Many computer science solutions can be defined recursively

– Similarly, many step count functions can be defined using a recurrence

Defining Sequential Search Recursively

• Problem: search a list X of length n for some value x

• Iterative Perspective

• Recursive Perspective

1 3 8 2 0…

1 3 8 2 0…SEARCH for x

then SEARCH for x1 3 8 2 0…Compare to x

=

Time Complexity using Recurrence
Example: Sequential Search

• Assess Complexity by Using Recurrence and Induction (using substitution)
1. Define algorithm and then step count recursively

• Search(list,x,n) := compare(list[1],x) + Search(remainingList,x,n-1)
– Where remainingList is list less the first item

• T(n) := 1 + T(n-1) , where initial condition T(1) = 1

2. “Guess” an upperbound
• E.G. I guess T(n) is O(n)

3. Prove it using induction
• Base Case

• Inductive Case

T: recursively defined step
count function. T(n) is the

total number of comparisons
count for searching a list of

length n

Time Complexity using Recurrence (substitution)
Example: Sequential Search

• Show 𝑇 𝑛 ≤ 𝑐𝑛, for some c.

• Proof:
– Inductive Case. Assume conjecture is true for n-1, show holds for n

• 𝑇 𝑛 − 1 ≤ 𝑐1(𝑛 − 1) Assumption 1

• 𝑇 𝑛 = 𝑇 𝑛 − 1 + 1 Assumed Recurrence

• 𝑇 𝑛 = 𝑇 𝑛 − 1 + 1 ≤ 𝑐1(𝑛 − 1) + 1 Using Assumption 1

• 𝑇 𝑛 ≤ 𝑐1(𝑛 − 1) + 1 ≤ 𝑐1𝑛 for some 𝑐1 > 1, when n > 0

• 𝑇 𝑛 ≤ 𝑐1𝑛 − 𝑐1 + 1 ≤ 𝑐1𝑛

• 𝑇 𝑛 ≤ 𝑐1𝑛 □

– Base Case (n=1)

• 𝑇 1 = 1 ≤ 𝑐11 for some 𝑐1 >1

Time Complexity using Recurrence
Example: Sequential Search

• Assess Complexity by Solving Recurrence (using iteration)
1. Define algorithm and then step count recursively

• T(n) := 1 + T(n-1) , where initial condition T(1) = 1

2. Enumerate terms in recurrence (forward or backward) until the boundary
condition

3. Identify sequence or series and use knowledge of series to compute
closed form of the total step count. (Solve the recurrence)

4. Upperbound if desired.

Time Complexity using Recurrence
Example: Sequential Search

• Enumerate to boundary (here we use backward substitution)
𝑇 𝑛 = 𝑇 𝑛 − 1 + 1

= 𝑇 𝑛 − 2 + 1 + 1 T(n-1) = T(n-2) + 1

= 𝑇 𝑛 − 3 + 1 + 1 + 1 …

= ⋯ …

= 𝑇 1 + 1 + 1 +⋯+ 1 Sum of n terms

= 1 + 1 + 1 +⋯+ 1 Searching 1 item is 1 step

• Identify sequence.
– This is an arithmetic sequence (series)

• 𝑇n = Tn−1 + 1
• 𝑇𝑛 = 𝑖=1

𝑛 1 = n ≤ 𝑐𝑛 For some c

Example: Memory Requirements

• Space Complexity

// Searches sequentially for x in array. Returns index of first x, else -1 Memory Count

Algorithm SequentialSearch (array, x){ n+1

n := length(array); 1

index := -1; 1

for i := 1 to n do{ 3

if x == array[i]{ 1

index := i;

break;

}end if

} end for

return index;

}end SequentialSearch

Example: Selection Sort

• Selection Sort (conceptually)
1. Scan through oldList and find min item

2. Remove minItem from oldList and place it next spot at
the next index in orderedList

3. Repeat

• Example
1. Lets formalize this algorithm (using pseudocode)

2. Lets assess the computational complexity

Recall: Definition of an Algorithm

• PROPERTIES OF ALGORITHMS

– Input domain is defined

– Output domain is specified

– The output or result is correct

• Preconditions: logical statements assumed to be true prior to algorithm execution

• Postconditions: logical statements assumed to be true after algorithm execution

– The constituent steps are well-defined

– Each step is performable in finite time

Sorting Example: Selection Sort
Assess Time and Space Complexities

Class Exercise: Lets
informally discuss the

computational complexity
with the goal of improving

the efficiency

Sorting Example: Selection Sort
Assess Time and Space Complexities

Space Efficiency: We can perform this
operation “in-place”. No need to make

another copy of the array.

Observe: we can further
improve the efficiency given

the new design. We can
improve the time efficiency.

Sorting Example: Selection Sort
Assess Time and Space Complexities

Practical vs Theoretical Complexity Analysis

• Scenario: Assume two algorithms with 2 different step count
functions
– 𝑓1(n) = 4n+10

– 𝑓2(n) = 400n + 10

• The theoretical time complexity is similar Θ(𝑛)
– But for practical purposes, it is quite notable that algorithm 1 may be ~100

times faster!

• Keeping track of the lower level details is important in practice.

Other Practical Notes about Computational
Complexity

• The process of theoretically analyzing algorithms is (over)

simplified.

– Differences in data types may be ignored

• BUT some different data types have significantly different memory requirements and

computational requirements

– Differences in operations may be ignored

• BUT not all operations require the same amount of runtime

– Bit-wise operator vs. addition (of ints) vs multiplication (of floats)

– Details in implementation / application may be significant in practice!

The Devil is in the Details

• Time
– Not all basic operations have the same computation time!

• Memory
– Not all data types take up the same amount of memory!

– Increase in memory used will generally increase computation time!

– Details of implicit memory management details can have drastic effects on space (and time) complexity
• Pass by value vs pass-by-reference

• Deep vs shallow copy

– Memory Constraints
• Virtual memory – hard disk retrieval

• Memory capacity and paging

• These details will affect complexity counts (and possibly the order of complexity)
– Using operators and memory management schemes smartly can drastically improve efficiency

Outline

I. Computational Complexity
I. Time

I. Upperbounding Notation

II. Formalizing using Recurrences

II. Space
I. Recursion: Implications on Space Complexity

II. Memory Management and Implementation Details
I. Pointers

II. Allocation on Stack vs Heap

III. Good Programming Practices
I. Design

II. Debug

Memory Requirements

• Counting memory requirements of an algorithm
– Where is the data allocated … and who cares!

• Stack vs heap
– A peak into the stack

– Recursion and memory requirements

• Memory requirements of data structures
– Indigenous data vs exogenous data

– Deep copy vs shallow copy

• Memory Notes:
– Theoretical analysis: some include size of input, some do not

– Practical analysis: are parameters pass by value vs. pass by reference
• The parameters are stored somewhere in memory, but are they going to be copied onto the stack. If so,

then you should certainly include the space in your memory requirements

• When should you pass-by-copy?

Basic Designs for Structures

• Contiguous vs non-contiguous memory allocation

– Arrays
• Size does not change.

• Data stored contiguously (in memory) in computer.

• Data can be directly accessed.

– Chaining (eg linked lists)
• Size can change dynamically

• Data may not be stored contiguously in memory.

• Data is accessed only by traversing the list.

Review: Pointers

• Pointers are variables

that contain the address

of another variable

– Allows for efficient

processing of large

structures

– Example:

• Assumes 4 byte ints

Arrays in Memory

• An array is a list of data stored
contiguously in memory.
– Its contiguous nature is both an

advantage and a disadvantage.
• Pro: items in the list can be quickly

accessed given the base address and an
offset

• Con: memory must allocated (reserved)
when the array is created. As a result,
the size cannot change.

• In C++, array names are pointers
to the base address of the array
– Bracket Notation

• x[1] evaluates to 2

– Pointer Notation
• *(x+1) evaluates to 2

Multi-dimensional Arrays in Memory

• Multi-dimensional arrays are
stored in memory similarly as
one-dimensional arrays
– Memory can be seen as a linear

structure.

• Row-Major: rows are stored in
sequence

• Column-Major: columns are
stored in sequence

Lists using “Chaining”

• Some lists can change size once created. This is generally

accomplished by chaining.

– The data cannot necessarily be stored contiguously in memory in this

instance (as the memory is not allocated at one time.) Thus the data may

not be sequentially contiguous in memory.

• But then how can we can we access items in the list?

• This extra flexibility comes at the cost of storing 1 pointer per data item stored. This

pointer will point to the next item in the list, thus facilitating a “linked” list.

• A linked (or chained) structure in memory

Linked Lists in Memory

• A linked list example

– Each node is stored in

memory, but subsequent

nodes are not necessary

contiguous in memory. The

“next” field is used to point to

the next item in the list. The

next field is simply a pointer

stored in memory.

Memory Allocation (in practice)

• Memory: Stack vs. Heap
– Most local variables are allocated on the runtime stack.

• The stack is largely “self-managing”.

– If the size of a data structure is not known at compile time, it can be allocated on
the heap.

• Often the onus of memory management falls on the programmer

– Memory Management: Managing your data (and structure)
• The run-time stack largely manages itself

• The heap may require explicit deallocation (Garbage Collection).

– Memory Leaks.

– Dangling Pointers

…
…

Memory and the Runtime Stack (in practice)

• In most programming languages, when a new scope is opened,
(e.g. a function is called), a new frame of memory is reserved for
all variables local to that scope (as well as some memory other
data / variables such as input parameters, return values,
intermediate calculations, …).

• Each scope or frame of memory is reserved on a dynamically-
allocated, contiguous portion of memory referred to as the runtime
stack.
– Function call chains

– Recursion example

Scope Diagram: A common way to illustrate function
call chains (flow of execution and variable values)

int f(int i)
{
int j = 10;
return g(i + 10 * j);
}

int g(int k)
{return p(k + 5);}

int p(int z)
{cout << z;
return z - 1;
}

int main()
{ f(2); return 0; }

Function call chain and the runtime Stack

int f(int i)
{
int j = 10;
return g(i + 10 * j);
}

int g(int k)
{return p(k + 5);}

int p(int z)
{cout << z;
return z - 1;
}

int main()
{ f(2); return 0; }

Recursion

• Recursive methods can greatly impact memory allocation

• Recursive methods are methods that are defined in terms of

themselves.

• Many processes and calculations that involve repetition can be

implemented recursively.

Recursion Example: Factorial

• Write a function to calculate n! where n is the input argument

n! = n*(n-1)*(n-2)*… *2*1

n! = n*(n-1)!

factorial(n) =n*factorial(n-1)

• Note that this calculation is inherently repetitive.
– There is repeated multiplication to be performed

– Further note that the number of multiplications is dependent on “n” that is the
input parameter will control the number of repetitive computations (multiplications
in this case)

Factorial Examples

int factorial(int n)

{

// Assumes n is non-negative

int val = 1;

if (n == 0 || n == 1) // Base case --
stop repetition

return 1;

else // recursive case -- continue
recursive call

return n * factorial(n - 1);

}

int factorial(int n)

{

//Assumes non-negative n

int val = 1;

for (int i = n; i > 1; i--;) //
repeatedly take product of values
between 1 and n

val = val * i;

return val;

}

Draw Scope (function chain) diagrams to trace the
execution of a recursive function.

int f(int n)
{
// Assumes n is non-negative
int val = 1;
if (n == 0 || n == 1) // Base case -- stop

repetition
return 1;

else // recursive case -- continue
recursive call

return n * f(n - 1);
}

void main()
{f(3);}

Recursion (and non-recursion) and the Stack

int factorial(int n)

{

//Assumes non-negative n

int val = 1;

for (int i = n; i > 1; i--;) //
repeatedly take product of values between 1
and n

val = val * i;

return val;

}

int factorial(int n)
{
// Assumes n is non-negative
int val = 1;
if (n == 0 || n == 1) // Base case --

stop repetition
return 1;

else // recursive case -- continue
recursive call

return n * factorial(n - 1);
}

In-Class (or at-home) Example

• Recursion
– int sum(i , n) : computes sum of ints from i to n

– int exp(x , n) : computes 𝑥𝑛

• Define the algorithm recursively

• Provide c-like code

• Analysis: Define a step (or space) count function as a recurrence. Then
determine the time (or space) complexity.

Heap Allocation, basic memory management, garbage
collection

• If the size (memory needed) of a variable (data) is known at compile
time, it can be allocated on the stack; otherwise, if the size of the
variable is not known at compile time, it can be allocated on the heap.

• Variables allocated on the heap are accessed using pointers. Allocation
is on the heap is sometimes explicitly declared syntactically. Example:
C++ and the keyword “new”.

• Data allocated on the heap may be explicitly deallocated (collect the
garbage). Example: C++ and the keyword “delete”.

Common Memory Management Issues

• Dangling Pointer
– A structure in memory has been deallocated, but

the pointer still points to this place in memory.
• Problem: pointer points to some place in memory, but

the data there may no longer be valid.

• Corrective Measure: Set pointer to null to clearly
indicate pointer points nowhere.

• Memory Leak
– When a pointer no longer points to some structure

in memory, and the structure has not been
deallocated.

• Problem: Data is stored in memory, however it can no
longer be accessed (or explicitly deleted!!!)

• Corrective Measure: Pray to the garbage-collection
gods.

Memory Usage (cont): Deep vs Shallow Copy

• Data is copied often in computer programs
– Assignment

– Parameter passing

– Return values

• Shallow copy – a simple bitwise copy.
– May (or may not) be good when dealing with pointers

– EG: pass by reference

• Deep copy – pointers are dereferenced and the data pointed to by the
pointer is copied.
– EG (C++): overloading the =operator or copy constructor

Copy Example

• Assume a and b are pointers.
Assign b to a.

a := b

Data Storage Hierarchy (in practice)

• Another practical issue related to algorithm analysis and implementation is
RAM limitations and retrieving data from secondary storage.
– Over-Simplified Summary: Retrieving data from secondary storage is very slow, and thus

data is loaded to cache and RAM memory for processing. RAM is very versatile but has
limitations. Some data structures may be large enough such that data will need to be
continuously retrieved and restored back to secondary storage (thrashing).

– Understanding RAM and Caching limitations and schemes on a computer is important
when designing large data structures.

• Possible ways to mitigate these issues
– Localize processing to subsets of the data.

– Traverse and organize data smartly
• Row-major vs column major

Code Example: Row Major vs Col. Major

// Efficient Traversal for Row -Major

for (int i = 0;i< numRows; i++)
for (int j = 0; j < numCols; j++)

c[i][j] = i + j;

// Efficient Traversal for Col-Major

for (int j = 0;j< numCols; j++)
for (int i = 0; i < numRows; i++)

c[i][j] = i + j;

Outline

I. Computational Complexity
I. Time

I. Upperbounding Notation

II. Formalizing using Recurrences

II. Space
I. Recursion: Implications on Space Complexity

II. Memory Management and Implementation Details
I. Pointers

II. Allocation on Stack vs Heap

III. Good Programming Practices
I. Design

II. Debug

Good Structure Design Schemes

• Project design details are largely up to you, but I encourage you to abide by
good coding practices.
– This will benefit you and anyone who might use or read your code.

• Design for usability, reusability, efficiency, ….
– Object Oriented Programming Design

• Inheritance (writeability, reusability)

• Encapsulation (reliability)

• (Poly) Dynamic dispatch (writeability, flexibility, reusability)

– Templates
• Explicit “polymorphism” (reusability, writeability)

• Some simple computational complexity tips

OOP Design

• Classes / Structs provide for a fitting programming construct to

represent data structures.

• Appropriately designing classes and class hierarchies will improve

the effectiveness of your code

– Reusability

– Readability

– Writeablility

Templates in C++

• Templates / Generics allow for explicit “polymorphism” which

promotes

– Flexibility

– Reusability

– Readability

– Writeablility

Debugging and Testing

• Time distribution:
– Planning Designing: 1/3

– Actual Coding: 1/3

– Testing / Debugging: 1/3

• Design a good testing scheme for your software.
– Repeatedly code, then test, code, then test, …

– In theory, you want to assure that your program produces the correct output for
all possible inputs

– In practice, select a subset of inputs that “efficiently” test your program.

• EG: Include test input values such that each branch in execution flow is tested.

Programming Process (details)

1. Design
1. Structural and procedural schematics

1. UML class diagrams for all structures.

2. Flow diagrams for all methods / procedures

2. Confirm the correctness of your design with some examples.

2. Iteratively Code and Test
1. Start with an empty code file

2. Add one line of code (or a few lines of code): compile and if possible run on some
sample input.

1. If you have a compilation error or a runtime error, you have added a line of code that
introduces an error (either syntax error or semantic error).

2. The good news – you have found the error: it is on the line you have just added (almost
always)! Finding the error is generally the hardest part of debugging – this is indeed good
news!

3. Fix the error and repeat.

3. Final Testing
1. Once your code seeming runs correctly on the sample input, try on a larger set of

sample inputs. In theory, you want to assure that your program produces the correct
output for all possible inputs – this is generally not practical, therefore you must
create or select a set of inputs that test all or most potential flows of execution of
your code.

Design

• Structural: entities or classes of your
program
– UML class diagram

– ERD

– Lists and may describe the attributes of the
major components of your program (classes
if using OOP)

• Procedural: the methods of your program
– Flow diagram

– Identifies the sequence of steps necessary to
successfully complete a procedure or
function.

Some Final Computational Complexity Tips

• Time
– If possible, remove statements from loops.

– If possible, use operators that are fast.

– Avoid excessive recursion.

– Use mathematical properties to your advantage

– Use practical understanding of computers to your advantage.

• Memory
– Large structures:

• Pass by reference / global*

• Manage large structures “intelligently” to account for memory / hardware delays

– Use “minimally sufficient” data types
• EG: Don’t use a double if an int will suffice.

– Avoid (excessive) recursion (unnecessary memory usage).

– Use practical understanding of computers to your advantage.

