
COSC160: Data Structures

Jeremy Bolton, PhD

Assistant Teaching Professor

Outline

I. What is Data?

I. Data representations on a computer

II. Basic Structures

I. Goals of Structures

II. Applications

Review Topics (next lecture)

• Time Complexity

• Recursion and Recurrences

• Memory Allocation and Management
– Pointers and Chaining

– Stack vs Heap

– Garbage Collection

– Deep vs Shallow Copy

• Coding Practices:
– Design and Modeling

– Debugging

– OOP, Templates, …

What is Data?

• Data – information, facts, details, substance of conveyance.
– Generally stored or communicated via some media

– Information Theory: Information is the encoding of data.
• Digital or electric encoding

• A digital sequence

• A peak under the hood …
– A good understanding of how data is represented in a computer will make you a

better computer scientist
• Many algorithms (and data structures) depend on (and take advantage of) the

representation and structure of data
– Data Representation, EG: Fast Multiplication (by two)

– Data Organization, EG: Heap Sort

1D16

Binary Representations

• Data is encoded into computers as binary string of various lengths
– Each bit (latch in hardware) can store a 0 or 1

– A byte is an 8 bit sequence

– Each unique binary string can be used to represent a different integer.

– However, binary strings can be used to represent various data.

• EG: binary strings as integers (polynomial expansion)
0001 11012

27(0)+ 26(0)+ 25(0)+ 24(1) + 23(1)+ 22(1)+ 21(0)+ 20(1) = 29

• Hexi-decimal Representation
161(1)+ 161(13) = 29

1D16
0001 11012

Data Types

• Binary strings interpreted differently based on data type
– Data type can be seen as a set of all possible values of some category; or more

generally a data type is a mapping from set of all valid binary strings (of some
length) to a value.

• Example: chars
– Assumes 8-bit

EG:
0100 0100 → ′𝐷′
0000 1010 → ′\n′

8

Integer Representation

• unsigned ints

– Unsigned ints are generally represented using the standard polynomial expansion of binary

sequences.

• ints are generally stored in “2’s complement” which allows for the representation of negative

integers and allows for an efficient implementation of arithmetic.

– Example (assuming 4-byte representation)

– Conversion to two’s complement of negative int

1. List binary representation of positive value.

2. Invert binary digits

3. Add 1

Example: Twos Complement

• Steps
1. List binary representation of positive value.

2. Invert binary digits

3. Add 1

• What is two’s complement representation of -67?
0000 0000 0000 0000 0000 0000 0100 0011, 0𝑥0043

1111 1111 1111 1111 1111 1111 1011 1100, 0𝑥𝐹𝐹𝐵𝐶

1111 1111 1111 1111 1111 1111 1011 1101, 0𝑥𝐹𝐹𝐵𝐷

Memory requirements of common data types

Type Name Bytes Other Names Range of Values

int 4 signed –2,147,483,648 to
2,147,483,647

unsigned int 4 unsigned 0 to 4,294,967,295

short 2 short int, signed short int –32,768 to 32,767

unsigned short 2 unsigned short int 0 to 65,535

long 4 long int, signed long int –2,147,483,648 to
2,147,483,647

unsigned long 4 unsigned long int 0 to 4,294,967,295

long long 8 none (but equivalent to
__int64)

–
9,223,372,036,854,775,80
8 to
9,223,372,036,854,775,80
7

short 2 short int, signed short int –32,768 to 32,767

bool 1 none false or true

char 1 none –128 to 127 by default
0 to 255 when compiled by
using

• Each data type may

have different

encoding schemes,

as noted previously.

• Different data types

may also have

notably different

lengths, or memory

requirements.

Low-Level Operations on Data

• Binary Operations

– Bit-wise Logical OR: |

– Bit-wise Logical AND: &

– Bit-wise Logical NOT: ~

– Bit-wise Logical XOR: ^

– Bit-wise shift left: <<

– Bit-wise shift right: >>

0110 0001 1101 0100

| 1011 1000 1110 0100

1111 1001 1111 0100

0110 0001 1101 0100

& 1011 1000 1110 0100

0010 0000 1100 0100

0011 1000 1110 0100 << 2

1110 0011 1001 0000

There are also many low-level (binary level),
operators available.

Confirm the following:

5 | 3 = 7

4 & 3 = 0

3 << 1 = 6

Why is knowing data representation important?

• You’re a computer scientist!

• Many structures and algorithms are optimized based on the low
level representations of data
– Lower level CPU operations are fast!

• If you can encode data using minimal data encodings, you can
reduce memory requirements and make algorithms and structures
more efficient!

Example: Memory Requirements

• Assume you are tasked with documenting (on a computer) major milestones
in recent history (since 1 AD) by year. How would you store the ‘year’
information?

– How many bits are required?
• Minimally 11 bits are required.

• Computer architectures are generally organized by bytes (8-bits), therefore 2 bytes are required. (Its
not a bad idea to plan ahead for future entries as well, eg y2k)

– Int (4-bytes): not bad, less memory than double but 2-bytes are seemingly unused and
thus somewhat inefficient.

– Short (2-bytes): great solution. Uses seemingly minimal amount of bytes to store year
info.

Example: (“Faster”) Multiplication by 2

• Equivalent code snippets:

x = x * 2;

x = x << 1;

x = x * 8;

x = x << 3;

• In this example, the bitwise
alternatives may execute near 2 or 3
times faster.

• The speed of operators is determined
by the CPU and underlying
architecture.

• ALSO NOTE: compilers are “clever”
and may attempt to optimize your
code. Thus compiler may make this
edit (without explicit notice to you – the
programmer) when converting C++
code to machine code. As a result, it
may be the case that there is no
difference in execution time.

Summary of Data

• Data is encoded as binary sequences in computers

• Data types are mappings from a set of binary sequences to a set

of values

• Knowing more about data representations and operators available

will allow for more efficient structures and algorithms for data.

Data Structures

• Why Structures for Data?

– Simple: it is practical and efficient

• Keeps Data Organized

– Filing cabinet analogy

• Can provide for efficient storage, retrieval, and manipulation (or analysis) of data

– How do we measure “efficient”?

– Time complexity analysis – more to come!

• Aligns with OOP paradigm: promotes reusability

Applications of Basic Data Structures

• Clear Applications

– Data: storage and retrieval

• Many Other Applications

– Calculations.

• E.G. Polynomial evaluation

– Help to facilitate efficient algorithms

• Sorting

• Traversals

Goals of Data Structures

• Computer science is the practice of problem solving.
– Data structures are tools used to help solve a problem or accomplish a task.

– Good Solutions (Algorithms):

• Good solutions are correct.

• Good solutions are practical.

• Good solutions are efficient.

– Efficient in time

– Efficient in place

• Low level representations
– Understanding lower level details related to memory management will make you

a better programmer (of efficient structures and algorithms)

