COSC160: Data Structures

Jeremy Bolton, PhD
Assistant Teaching Professor

FORGETOW:
gUNI VERSIT Tg\c

Outline

. What s Data?
|. Data representations on a computer

|I. Basic Structures
|. Goals of Structures
II. Applications

FEORGETOW:
gUZVI VERSI ZTIL:Z\C

Review Topics (next lecture)

Time Complexity
Recursion and Recurrences

Memory Allocation and Management
— Pointers and Chaining

— Stack vs Heap

— Garbage Collection

— Deep vs Shallow Copy

Coding Practices:

— Design and Modeling

— Debugging

— OOP, Templates, ...

FEORGETOW:
gUZVI VERSI ZTIL:Z\C

What 1s Data?

* A peak under the hood ...

— A good understanding of how data is represented in a computer will make you a
better computer scientist
« Many algorithms (and data structures) depend on (and take advantage of) the
representation and structure of data
— Data Representation, EG: Fast Multiplication (by two)
— Data Organization, EG: Heap Sort

FEORGETOW:
gUZVI VERSI ZTIL:Z\C

Binary Representations

« Data is encoded into computers as binary string of various lengths
— Each bit (latch in hardware) can storea O or 1
— A byte is an 8 bit sequence
— Each unigue binary string can be used to represent a different integer.
— However, binary strings can be used to represent various data.

« EG: binary strings as integers (polynomial expansion)
0001 1101,
27(0)+ 25(0)+ 25(0)+ 24(1) + 23(1)+ 22(1)+ 2%(0)+ 2°(1) = 29

« Hexi-decimal Representation

161(1)+ 161(13) = 29
1D, 2001 11C
\

FEORGETOW:
glﬂVIVERSI 7*1'2(

Data Types

* Binary strings interpreted differently based on data type

— Data type can be seen as a set of all possible values of some category; or more
generally a data type is a mapping from set of all valid binary strings (of some
length) to a value.

« Example: chars
— Assumes 8-Dbit char data fype

(e

EG:

0100 0100 —» D’ 8 -bit encodings h;r;t;ﬁ
00001010 — "\n' l_//

ralues

FEORGETOW:
gUZVI VERSI ZTIL:Z\C

Integer Representation

e unsigned ints

— Unsigned ints are generally represented using the standard polynomial expansion of binary
seqguences.

 ints are generally stored in “2’'s complement” which allows for the representation of negative
iIntegers and allows for an efficient implementation of arithmetic.
— Example (assuming 4-byte representation)
— Conversion to two’s complement of negative int
1. List binary representation of positive value.

2. Invert binary digits
3. Addl

FEORGETOW:
gUZVI VERSI ZTIL:Z\C

Example: Twos Complement

¢ Steps
1. List binary representation of positive value.
2. Invert binary digits
3. Add1l

 What is two’'s complement representation of -677
0000 0000 0000 0000 0000 0000 0100 0011, 0x0043
111111111111 11111111 111110111100, OxFFBC
111111111111 11111111 111110111101, OxFFBD

FEORGETOW:
gUZVI VERSI ZTIL:Z\C

Memory requirements of common data types

Type Name Bytes Other Names Range of Values
int 4 signed —2,147,483,648 to
« Each data type may 2,147,483,647
. unsigned int 4 unsigned 0to 4,294,967,295
h ave d Iﬁe re nt short 2 short int, signed shortint —32,768 to 32,767
encodi ng scheme S, unsigned short 2 unsigned short int 0to 65,535
. long 4 long int, signed long int -2,147,483,648 to
as noted previously. 2,147,483,647
unsigned long 4 unsigned long int 0to 4,294,967,295
long long 8 none (but equivalent to -

° Diﬁ:erent d ata types __int64) Z,t2023,372,036,854,775,80

may also have 9,223,372,036,854775,80
notably different o : sor snedshorn |-52758 03757
lengths, or memory char : a0 27y
requirements.
GEORGETOWN_

UNIVERSITY

Low-Level Operations on Data

0110 0001 1101 0100

. Binary Operations | 10111000 1110 0100
o _ 1111 1001 1111 0100
— Bit-wise Logical OR: |
o - _ 0110 0001 1101 0100
— Bit-wise Logical AND: & % 1011 1000 1110 0100
— Bit-wise Logical NOT: ~ 001010000 11000100
— Bit-wise Logical XOR: A 0011 1000 1110 0100 << 2
o . 1110 0011 1001 0000
— Bit-wise shift left: << Confirm the following:
— Bit-wise shift right: >> 5(3=7
483=0
3<<1=6
GEORGETOWN(,

UNIVERSITY

Why 1s knowing data representation important?

* You're a computer scientist!

« Many structures and algorithms are optimized based on the low
level representations of data

— Lower level CPU operations are fast!

 |If you can encode data using minimal data encodings, you can

reduce memory requirements and make algorithms and structures
more efficient!

FEORGETOW:
gUZVI VERSI ZTIL:Z\C

Example: Memory Requirements

« Assume you are tasked with documenting (on a computer) major milestones
In recent history (since 1 AD) by year. How would you store the ‘year’
Information?

FEORGETOW:
gUZVI VERSI ZTIL:Z\C

Example: (“Faster”) Multiplication by 2

* In this example, the bitwise . : : :
alternatives may execute near 2 or 3 Equwalent code snippets:

times faster.

« The speed of operators is determined X=X*2:
by the CPU and underlying
architecture. X=X<<1,;

« ALSO NOTE: compilers are “clever”

and may attempt to optimize your X=X%*8;
code. Thus compiler may make this _ _
edit (without explicit notice to you — the X=X<<3;

programmer) when converting C++
code to machine code. As a result, it
may be the case that there is no
difference in execution time.

FEORGETOW:
gUZVI VERSI ZTIL:Z\C

Summary of Data

Data Is encoded as binary seguences in computers

Data types are mappings from a set of binary sequences to a set
of values

Knowing more about data representations and operators available

will allow for more efficient structures and algorithms for data.

FEORGETOW:
gUZVI VERSI ZTIL:Z\C

Data Structures

« Why Structures for Data?

— Simple: it is practical and efficient

« Keeps Data Organized
— Filing cabinet analogy

« Can provide for efficient storage, retrieval, and manipulation (or analysis) of data
— How do we measure “efficient”?

— Time complexity analysis — more to come!

 Aligns with OOP paradigm: promotes reusability

FEORGETOW:
gUZVI VERSI ZTIL:Z\C

Applications of Basic Data Structures

« Clear Applications
— Data: storage and retrieval

« Many Other Applications

— Calculations.
« E.G. Polynomial evaluation

— Help to facilitate efficient algorithms
« Sorting
» Traversals

FEORGETOW:
gUZVI VERSI ZTIL:Z\C

Goals of Data Structures

« Computer science is the practice of problem solving.
— Data structures are tools used to help solve a problem or accomplish a task.

— Good Solutions (Algorithms):
« Good solutions are correct.
« Good solutions are practical.

* Good solutions are efficient.
— Efficient in time
— Efficient in place

* Low level representations

— Understanding lower level details related to memory management will make you
a better programmer (of efficient structures and algorithms)

FEORGETOW:
gUZVI VERSI ZTIL:Z\C

