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Abstract

Multiple-Instance learning is a way of mod-
eling ambiguity in supervised learning exam-
ples. Each example is a bag of instances, but
only the bag is labeled - not the individual
instances. A bag is labeled negative if all the
instances are negative, and positive if at least
one of the instances in positive. We apply
the Multiple-Instance learning framework to
the problem of learning how to classify nat-
ural images. Images are inherently ambigu-
ous since they can represent many different
things. A user labels an image as positive
if the image somehow contains the concept.
Each image is a bag, and the instances are
various sub-regions in the image. From a
small collection of positive and negative ex-
amples, we can learn the concept and then
use 1t to retrieve images that contain the con-
cept from a large database. We show that
the Diverse Density algorithm performs well
in this task, that simple hypothesis classes
are sufficient to classify natural images, and
that user interaction helps to improve perfor-
mance.

1 INTRODUCTION

Scene classification is an open problem in machine vi-
sion and has applications in image and video database
indexing. We investigate a method for learning visual
concepts that encode the properties of a scene class
from a small set of positive and negative examples.
Extracted concepts are simple templates that capture
some color and spatial properties of the class. Work
by Lipson [Lipson et al., 1997] illustrates that sim-
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ple, hand-crafted templates that describe the relative
color and spatial properties in an image can be used
successfully to classify natural scenes like fields, snowy
mountains and waterfalls. In this paper we show that
these templates can be learned. We describe a frame-
work for learning scene-class concepts that can be used
effectively for the task of content-based image retrieval
from large databases. The learning framework we use
in this paper is called Multiple-Instance learning [Di-
etterich et al., 1997],[Maron and Lozano-Pérez, 1998].
In this framework, examples are not labeled examples,
but are labeled bags. Each bag is a collection of in-
stances (Figure 1). A bag is labeled negative if all the
instances in it are negative, and positive if at least one
of the instances in it is positive. We use this framework
to model the ambiguity in mapping an image to many
possible templates which describe the image. Specifi-
cally, every image is a bag, and each possible template
for describing the image is one instance in the bag.
We discuss a method called Diverse Density [Maron
and Lozano-Pérez, 1998] for learning concepts from
Multiple-Instance examples.

We test our approach on images from the COREL
photo library. We show that the system is succesful
even when the hypothesis class involves very simple
templates, and even when the images are sampled very
coarsely. In addition, we show that user interaction
(refining the hypothesis through the addition of more
examples) is helpful in improving the performance of
the learning system. In Section 2, we discuss previous
and related work in image classification. We then de-
scribe the Multiple-Instance learning framework and
the Diverse Density algorithm. In section 4 we de-
tail our experimental setup and show results on var-
ious concept classes, hypothesis classes, and training
regimes.

The third contribution of this paper (in addition to



a novel application of Multiple-Instance learning and
the discovery that surprisingly simple concepts do well
on this task) is the development of a general architec-
ture to combine ideas from the vision and machine
learning communities. A key part of our system is the
bag generator: a mechanism which takes an image and
generates a set of instances, where each instance is a
possible description of what the image is about. If an
idealized object recognizer existed, then the bag gen-
erator would simply output a list of the objects in the
image. The learning algorithm would be straightfor-
ward: find an intersection between the positive lists
that didn’t include elements from the negative lists.
On the other extreme, if we had a learning algorithm
that could handle billions of instances per bag, then
we would not need an object recognizer. Instead, the
bag generator would simply output every subcombi-
nation of pixels in the image. In this paper, we use
a slightly more sophisticated bag generator (one that
generates subregions), which limits the number of in-
stances per bag and therefore allows us to use an algo-
rithm such as Diverse Density. The key observation is
that a better bag generator (progress in the vision com-
munity) leads to a simpler learning algorithm, while
at the same time a better Multiple-Instance learning
algorithm (progress in the machine learning commu-
nity) allows us to use simpler segmentation algorithms.
This is in contrast with the architecture of [Keeler et
al., 1991], for example, where the learning mechanism
1s woven into the position-invariant representation of
subimages.

2 IMAGE CLASSIFICATION
SYSTEMS

In the past few years, the growing number of digital
image and video libraries has led to the need for flexi-
ble, automated content-based image retrieval systems
which can efficiently retrieve images from a database
that are similar to a user’s query. Because what a user
wants can vary greatly, we also want to provide a way
for the user to explore and refine the query by letting
the system bring up examples.

One of the most popular global techniques for index-
ing is color-histogramming which measures the overall
distribution of colors in the image. While histograms
are useful because they are relatively insensitive to po-
sition and orientation changes, they do not capture
the spatial relationships of color regions and thus have
limited discriminating power. Many of the existing
image-querying systems work on entire images or in

user-specified regions by using distribution of color,
texture and structural properties. The QBIC system
[Flickner et al., 1995] is an example of such a sys-
tem. Some recent systems that try to incorporate
some spatial information into their color feature sets
include [Smith and Chang, 1996, Huang et al., 1997,
Belongie et al., 1998]. Promising work by Rubner
[Rubner et al., 1998] on the earth mover’s distance
provides a metric that overcomes the binning problems
of existing definitions of distribution distances for in-
dexing. Most of these techniques require the user to
specify the salient regions in the query image. One of
the goals of our system is to learn the relevant color
and spatial properties that best describe a particular
class of natural scenes.

More recently, work by Lipson and Sinha ([Lipson et
al., 1997]) in scene classification illustrates that pre-
defined flexible templates that describe the relative
color and spatial properties in the image can be used
effectively for this task. The flexible templates con-
structed by Lipson [Lipson et al., 1997] encode the
scene classes as a set of image patches and qualita-
tive relationships between those patches. FEach im-
age patch has properties in the color and luminance
channels. These templates describe the color relation-
ship (relative changes in the R,G,B channels), lumi-
nance relationship (relative changes in the luminance
channel) and spatial relationship between two image
patches. Lipson hand-crafted these flexible templates
for a variety of scene classes and showed that they
could be used to classify natural scenes of fields, wa-
terfalls and snowy mountains efficiently and reliably.
For example, the following concept might be learned
for the snowy-mountain class: “if the image contains a
blue blob which is above a white blob which is above a
brown blob, then it 1s a mountain”. In this paper, we
would like to learn such concepts for natural images
given a small set of positive and negative examples.

All of the systems described above require users to
specify precisely what they want. Minka and Pi-
card [Minka and Picard, 1996] introduced a learn-
ing component in their system by using positive and
negative examples which let the system choose image
groupings within and across images based on color and
texture cues; however, their system requires the user
to label various parts of the scene, where as our system
only gets a label for the entire image and automatically
extracts the relevant parts of the scene. In this paper,
we focus on learning natural scene concepts by extract-
ing color and spatial relations between image patches
using a small set of positive and negative examples.



Our system uses a small set of user-selected positive
and negative examples to learn a scene concept which
is used to retrieve similar images from the database.
The system also lets the user add more positive and
negative examples after each iteration in order to re-
fine the concept.

3 MULTIPLE-INSTANCE
LEARNING

In traditional supervised learning, a learning algorithm
receives a training set which consists of individually la-
beled examples. There are situations where this model
fails, specifically, when the teacher cannot label indi-
vidual instances, but only a collection of instances. For
example, given a picture containing a waterfall, what
i1s it about the image that causes it to be labeled as
a waterfall? Is it the butterfly hovering in the corner,
the blooming flowers, or the white stream of water?
It is impossible to tell by looking at only one image.
The best we can say is that at least one of the ob-
jects in the image is a waterfall. Given a number of
images (each labeled as waterfall or non-waterfall), we
can attempt to find commonalities within the waterfall
images that do not appear in the non-waterfall images.
Multiple-Instance learning is a way of formalizing this
problem, and Diverse Density is a method for finding
the commonality.

In Multiple-Instance learning, we receive a set of bags,
each of which is labeled positive or negative. Each
bag contains many instances, where each instance is a
point in feature space. A bag is labeled negative if all
the instances in it are negative. On the other hand, a
bag 1s labeled positive if there is at least one instance
in it which is positive. From a collection of labeled
bags, the learner tries to induce a concept that will
label unseen bags correctly. This problem is harder
than even noisy supervised learning because the ratio
of negative to positive instances in a positively-labeled
bag (the noise ratio) can be arbitrarily high.

The multiple-instance learning model was only re-
cently formalized by [Dietterich et al., 1997], where
they develop algorithms for the drug activity predic-
tion problem. This work was followed by [Long and
Tan, 1996, Auer et al., 1996, Blum and Kalai, 1998],
who showed that it is difficult to PAC-learn in the
Multiple-Instance model unless very restrictive inde-
pendence assumptions are made about the way in
which examples are generated. [Auer, 1997] shows
that despite these assumptions, the MULTINST al-
gorithm performs competitively on the drug activity

prediction problem. [Maron and Lozano-Pérez, 1998]
develop an algorithm called Diverse Density, and show
that it performs well on a variety of problems such as
drug activity prediction, stock selection, and learning
a description of a person from a series of images that
contain that person.

3.1 MULTIPLE-INSTANCE LEARNING
FOR SCENE CLASSIFICATION

In this paper, each training image is a bag. The in-
stances in a particular bag are various subimages. If
the bag is labeled as a waterfall (for example), we know
that at least one of the subimages (instances) is a wa-
terfall. If the bag is labeled as a non-waterfall, we
know that none of the subimages contains a waterfall.
Each of the instances, or subimages, is described as a
point in some feature space. As discussed in section 4,
we experimented with several ways of describing an
instance. We will discuss one of them (single blob
with neighbors) in detail: a subimage is a 2x2 set
of pixels (referred to as a blob) and its four neighbor-
ing blobs (up, down, left, and right). The subimage is
described as a vector [x1, 29, . .., 215], where @1, @2, ¢35
are the mean RGB values of the central blob, 24, 25, z¢
are the differences in mean RGB values between the
central blob and the blob above it, etc. One bag is
therefore a collection of instances, each of which is a
point in a 15-dimensional feature space. We assume
that at least one of these instances is the template
that contains the waterfall.

We would now like to find a description which will
correctly classify new images as waterfalls or non-
waterfalls. This can be done by finding what 1s in
common between the waterfall images given during
training and the differences between those and the
non-waterfall images. The main idea behind the Di-
verse Density (DD) algorithm is to find areas in feature
space that are close to at least one instance from ev-
ery positive bag and far from every negative instance.
The algorithm searches the feature space for points
with high Diverse Density. Once the point (or points)
with maximum DD is found, a new image is classified
positive if one of its subimages is close to the maximum
DD point. As seen in Section 4, the entire database
can be sorted by the distance to the learned concept.
Figure 1 is a schematic of how the system works.

In the following subsection, we will describe a deriva-
tion of Diverse Density and how we find the maximum
in a large feature space. We will also show that the
appropriate scaling of the feature space can be found
by maximizing DD not just with respect to location in
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feature space, but also with respect to a weighting of
each of the features.

3.2 DIVERSE DENSITY

In this section, we derive a probabilistic measure of
Diverse Density. More details are given in [Maron,
1998]. We denote positive bags as BZ»‘", and the ;7
instance in that bag as BZ"]' Likewise, B;; repre-
sents an instance from a negative bag. For simplic-
ity, let us assume that the true concept is a single
point ¢ in feature space. We can find ¢ by maximizing
Pr(t| Bf,---, Br By, By

) over all points in fea-

ture space. Using Bayes’ rule and a uniform prior over
the concept location, we see that this is equivalent to
maximizing the likelihood:

argmtaXPr(Bf',~~~,B;{',B;,~~~,B;¢|t). (1)

By making the additional assumption that the bags are
conditionally independent given the target concept ¢,
this decomposes into

arg mtaXH Pr(B; |t)HPr(B; | ) (2)

which is equivalent (by similar arguments as above) to
maximizing

arg mtaXH Pr(t | Bif) HPr(t | BY) (3)

This is a general definition of Diverse Density, but we
need to define the terms in the products to instantiate

it. In this paper, we use the noisy-or model as follows:

Pr(t | Bf)=1-T](1-Pr(t | Bf)). (4)
J

The noisy-or model makes two assumptions: one is
that for ¢ to be the target concept it is caused by
(hence close to) one of the instances in the bag. Tt
also assumes that the probability of instance j not be-
ing the target is independent of any other instance not
being the target.

Finally, we estimate the distribution Pr(¢ | BZ"]') with
a Gaussian-like distribution of exp(— || BZ»"]'» —t 7).
A negative bag’s contribution is likewise computed as
Pr(t | By ) =[[;(1 = Pr(t | Bj;)). A supervised learn-
ing algorithm such as nearest-neighbor or kernel re-
gression would average the contribution of each bag,
computing a density of instances. This algorithm com-
putes a product of the contribution of each bag, hence
the name Diverse Density. Note that Diverse Density
at an intersection of n bags is exponentially higher
than it is at an intersection of n — 1 bags, yet all it
takes 1s one well placed negative instance to drive the
Diverse Density down.

The initial feature space is probably not the most
suitable one for finding commonalities among images.
Some features might be irrelevant or redundant, while
small differences along other features might be crucial
for discriminating between positive and negative ex-
amples. The Diverse Density framework allows us to
find the best weighting on the initial feature set in the
same way that it allows us to find an appropriate lo-



cation in feature space. If a feature 1s irrelevant, then
removing it can only increase the DD since it will bring
positive instances closer together. On the other hand,
if a relevant feature is removed then negative instances
will come closer to the best DD location and lower it.
Therefore, a feature’s weight should be changed in or-
der to increase DD. Formally, the distance between
two points in feature space (B;; and t) is

| B =t 1°=> wi(Biji — tr)* (5)
D

where B;j; is the value of the kP feature in the j»
point in the i'* bag, and w; is a non-negative scaling
factor. If wy, is zero, then the k'® feature is irrelevant.
If wy, is large, then the k'? feature is very important.
We would like to find both ¢ and w such that Diverse
Density is maximized. We have doubled the number
of dimensions in our search space, but we now have
a powerful method of changing our representation to
accomodate the task.

We can use also use this technique to learn more com-
plicated concepts than a single point. To learn a 2-
disjunct concept ¢V s, we maximize Diverse Density as
follows:

arg max H(1 - H(1 —Pr(t Vs | Bf)))
HHPr(t\/5|Bi}) (6)

LI

where Pr(t Vs | BZ"]') is estimated as max{Pr(¢ |
B;}),Pr(s | B;']')} Other approximations (such as
noisy-or) are also possible.

Finding the maximum Diverse Density in a high-
dimensional space 1s a difficult problem. In general,
we are searching an arbitrary landscape and the num-
ber of local maxima and size of the search space could
prohibit any efficient exploration. In this paper, we
use gradient ascent (since DD is a differentiable func-
tion) with multiple starting points. This has worked
successfully because we know what starting points to
use. The maximum DD point is made of contributions
from some set of positive points. If we start an ascent
from every positive point, one of them 1s likely to be
closest to the maximum, contribute the most to it and
have a climb directly to it. Therefore, if we start an
ascent from every positive instance, we are very likely
to find the maximum DD point. When we need to find
both the location and the scaling of the concept, we
perform gradient ascent for both sets of parameters at
the same time (starting with all scale weightings at

1). The number of dimensions in our search space has
doubled, though. When we need to find a 2-disjunct
concept, we can again perform gradient ascent for all
parameters at once. This carries a high computational
burden because the number of dimensions has doubled,
and we perform a gradient ascent starting at every pair
of positive instances.

Our goal in the next section is to show that: (1)
Multiple-Instance learning by maximizing diverse den-
sity can be used in the domain of natural scene classi-
fication, (2) simple concepts in low resolution images
are sufficient to learn some of these concepts (3) adding
false positives and false negatives over mutiple itera-
tions (user interaction) can be used to improve the
classifier performance.

4 EXPERIMENTS

In this section, we show four different types of results
from running the system: one is that Multiple-Instance
learning is applicable to this domain. A second result
is that one does not need very complicated hypoth-
esis classes to learn concepts from the natural image
domain. We also compare the performance of various
hypotheses, including the global histogram method.
Finally, we show how user interaction would work to
improve the classifier.

4.1 EXPERIMENTAL SETUP

We tried to learn three different concepts: waterfall,
mountain, and field. For training and testing we used
natural images from the COREL library, and the la-
bels given by COREL. These included 100 images from
each of the following classes: waterfalls, fields, moun-
tains, sunsets and lakes. We also used a larger test set
of 2600 natural images from various classes.

We created a potential training set that consisted of 20
randomly chosen images from each of the five classes
mentioned above. This left us with a small test set
consisting of the remaining 80 images from each of
the five classes. We seperated the potential training
set from the testing set to insure that results of using
various training schemes and hypothesis classes can be
compared fairly. Finally the large test set contained
2600 natural images from a large variety of classes.

For a given concept, we create an wnitial training set
by picking five positive examples of the concept and
five negative examples, all from the potential training
set. After the concept is learned from these exam-
ples (by finding the point in and scaling of feature



space with maximum DD), the unused 90 images in
the potential training set are sorted by distance from
the learned concept®. This sorted list can be used to
simulate what a user would select as further refining
examples. Specifically, the most egregious false posi-
tives (the non-concept images at the beginning of the
sorted list) and the most egregious false negatives (the
concept images at the end of the sorted list) would
likely be picked by the user as additional negative and
positive examples.

We attempted four different training schemes:
initial is simply using the initial five positives and
five negative examples. +5fp adds the five most egre-
gious false positives. +10fp repeats the +5fp scheme
twice. +3fp+2fn adds 3 false positives and 2 false neg-
atives.

All images were smoothed using a gaussian filter and
subsampled to 8 x 8. We used the RGB color space
in these experiments. For every class and for every
training scheme, we tried to learn the concept using
one of seven hypothesis classes (Figure 1 shows some
examples):

1. row: an instance is the row’s mean color and the
color difference in the rows above and below it.

2. single blob with neighbors: an instance is the
mean color of a 2 x 2 blob and the color difference with
its 4 neighboring blobs.

3. single blob with no neighbors: an instance is
the color of each of the pixels in a 2 x 2 blob.

4. disjunctive blob with neighbors: an instance
is the same as the single blob with neighbors but the
concept learned is a disjunction of two single blob con-
cepts.

5. disjunctive blob with no neighbors:
stance 1s the same as the single blob with no neighbors
but the concept learned is a disjunction of two single
blob concepts.

6. two blob with neighbors:
mean color of two descriptions of two single blob
with neighbors and their relative spatial relation-
ship (whether the second blob is above or below, and
whether it is to the left or right, of the first blob).

7. two blob with no neighbors: an instance is the
mean color of two descriptions of two single blob
with no neighbors and their relative spatial rela-
tionship.

an In-

an 1nstance 1s the

Learning a concept took anywhere from a few sec-

! An image/bag’s distance from the concept is the min-
imum distance of any of the image’s subregions/instances
from the concept.
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Figure 2: Comparison of learned concept (solid curves)
with hand-crafted templates (dashed curves) for the
mountain concept on 240 images from the small test
set. The top and bottom dashed precision-recall curves
indicate the best-case and worst-case curves for the
first 32 images retrieved by the hand-crafted template
which all have the same score.

onds for the simple hypotheses to a few days for the
2-blob and disjunctive hypotheses. The more compli-
cated hypotheses take longer to learn because of the
higher number of features and because the number of
instances per bag is large (and to find the maximum
DD point, we perform a gradient ascent from every
positive instance). Because this is a prototype, we
have not tried to optimize the running time; however,
a more intelligent method of generating instances (for
example, a rough segmentation using connected com-
ponents) will reduce both the number of instances and
the running time by orders of magnitude.

4.2 RESULTS

In this section we show results of testing the vari-
ous hypothesis classes, training schemes; and concept
classes against the small test set and the larger one.
The small test set does not intersect the potential
training set, and therefore more accurately represents
the generalization of the learned concepts. The large
test set i1s meant to show how the system scales to
larger image databases.



The graphs shown are precision-recall and recall
curves. Precision is the ratio of the number of correct
images to the number of images seen so far. Recall is
the ratio of the number of correct images to the total
number of correct images in the test set. For example,
in Figure 3, the waterfall precision-recall curve has re-
call 0.5 with precision of about 0.7, which means in
order to retrieve 40 of the 80 waterfalls, 30% of the
images retrieved are not waterfalls. We show both
curves for because (1) the beginning of the precision-
recall 1s of interest to applications where only the top
few objects are of importance, and (2) the middle of
the recall curve is of interest to applications where cor-
rect classification of a large percentage of the database
1s important.

Figure 2 shows that the performance of the learned
mountain concept is competitive with a hand-crafted
mountain template (from [Lipson et al., 1997]%). The
test set consists of 80 mountains, 80 fields, and 80
waterfalls. It is disjoint from the training set. The
hand-crafted model’s precision-recall curve is flat at
84% because the first 32 images all receive the same
score, and 27 of them are mountains. We also show
the curves if we were to retrieve the 27 mountains first
(best-case) or after the first five false positives (worst-
case).

In Figure 3, we show the performance of the best hy-
pothesis and training method on each concept class.
The dashed lines show the poor performance of the
global histogram method. The solid lines in the
precision-recall graph show the performance of single
blob with neighbors with +10fp for waterfalls, row
with +10fp for fields, and disjunctive blob with
no neighbors with +10fp for mountains. The solid
lines in the recall curve show the performance of the
single blob with neighbors with +10fp for water-
falls, single blob with neighbors with +3fp+2fn
for fields, and row with +3fp+2fn for mountains. This
behavior continues for the larger test set.

In Figure 4, we show the precision-recall curves for
each of the four training schemes. We average over
all concepts and all hypothesis classes. We see that
performance improves with user interaction. This be-
havior continues for the larger test set as well.

In Figure 5, we show the precision-recall and recall
curves for each of the seven hypotheses averaged over
all concepts and all training schemes. Note that these
curves are for the larger 2600 image database. We

2Lipson’s classifier was modified to give a ranking of
each image, rather than its class.
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Figure 3: The best curves for each concept using
a small test set. Dashed curves are the global his-
togram’s performance.

see that the single blob with neighbors hypothesis has
good precision. We also see that the more compli-
cated hypothesis classes (i.e. the disjunctive concepts
and the two-blob concepts) tend to have better recall
curves.

In Figure 6, we show a snapshot of the system in
action. The system is trained using training scheme
+10£fp for the waterfall concept. It has learned a water-
fall concept using the single blob with neighbors
hypothesis. The learned waterfall concept is that
somewhere in the image there is a blob whose left
neighbor is less blue, whose own blue value is 0.5
(where RGB values are in the [0, 1] cube), whose neigh-
bor below has the same blue value, whose neighbor
above has the same red value, whose green value is
0.55, whose neighbor above has the same blue value
and whose red value is 0.47. These properties are
weighted in the order given, and any other features
were found to be irrelevant. A new image has the rat-
ing of the minimum distance of one of its instances to
the learned concept, where the distance metric uses
the learned scaling to account for the importance of
the relevant features. As we can see in the figure, this
simple learned concept is able to retrieve a wide variety
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Figure 4: Different training schemes, averaged over
concept and hypothesis class, using a small test set.

of waterfall scenes.

The top 20 images in the figure are the training set.
The first 10 images are the initial positive and negative
examples used in training. The next 10 images are the
false positives added. The last 30 images are the top
30 returned from the large dataset.

5 CONCLUSIONS

In this paper, we have shown that Multiple-Instance
learning by maximizing diverse density can be used
to classify images of natural scenes. Our results are
competitive with hand-crafted models, and much bet-
ter than a global histogram approach. We have also
demonstrated that simple learned concepts that cap-
ture color relations in low resolution images can be
used effectively in the domain of natural scene classi-
fication. Qur experiments indicate that complicated
concepts (e.g. disjunctive concepts) tend to have bet-
ter recall curves and that user interaction (adding false
positives and false negatives) over multiple iterations
can improve the performance of the classifier. Our ar-
chitecture, by seperating the bag generator from the
learning mechanism, allows progress in the field of
computer vision to benefit the field of machine learning
and vice versa.
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Figure 5: Different hypothesis classes averaged over concept and training scheme, using a large test set with
2600 images.

Figure 6: Results for the waterfall concept using the single blob with neighbors concept with +10fp. Top
row: Initial training set—5 positive and 5 negative examples. Second Row: Additional false positives. Last three
rows: Top 30 matches retrieved from the large test set. The red squares indicate where the closest instance to
the learned concept is located.



