
Multiple-Instance Learning for Natural Scene Classi�cationOded MaronArti�cial Intelligence LabNE43-755, M.I.T.Cambridge, MA 02139oded@ai.mit.edu Aparna Lakshmi RatanArti�cial Intelligence LabNE43-739, M.I.T.Cambridge, MA 02139aparna@ai.mit.eduAbstractMultiple-Instance learning is a way of mod-eling ambiguity in supervised learning exam-ples. Each example is a bag of instances, butonly the bag is labeled - not the individualinstances. A bag is labeled negative if all theinstances are negative, and positive if at leastone of the instances in positive. We applythe Multiple-Instance learning framework tothe problem of learning how to classify nat-ural images. Images are inherently ambigu-ous since they can represent many di�erentthings. A user labels an image as positiveif the image somehow contains the concept.Each image is a bag, and the instances arevarious sub-regions in the image. From asmall collection of positive and negative ex-amples, we can learn the concept and thenuse it to retrieve images that contain the con-cept from a large database. We show thatthe Diverse Density algorithm performs wellin this task, that simple hypothesis classesare su�cient to classify natural images, andthat user interaction helps to improve perfor-mance.1 INTRODUCTIONScene classi�cation is an open problem in machine vi-sion and has applications in image and video databaseindexing. We investigate a method for learning visualconcepts that encode the properties of a scene classfrom a small set of positive and negative examples.Extracted concepts are simple templates that capturesome color and spatial properties of the class. Workby Lipson [Lipson et al., 1997] illustrates that sim-

ple, hand-crafted templates that describe the relativecolor and spatial properties in an image can be usedsuccessfully to classify natural scenes like �elds, snowymountains and waterfalls. In this paper we show thatthese templates can be learned. We describe a frame-work for learning scene-class concepts that can be usede�ectively for the task of content-based image retrievalfrom large databases. The learning framework we usein this paper is called Multiple-Instance learning [Di-etterich et al., 1997],[Maron and Lozano-P�erez, 1998].In this framework, examples are not labeled examples,but are labeled bags. Each bag is a collection of in-stances (Figure 1). A bag is labeled negative if all theinstances in it are negative, and positive if at least oneof the instances in it is positive. We use this frameworkto model the ambiguity in mapping an image to manypossible templates which describe the image. Speci�-cally, every image is a bag, and each possible templatefor describing the image is one instance in the bag.We discuss a method called Diverse Density [Maronand Lozano-P�erez, 1998] for learning concepts fromMultiple-Instance examples.We test our approach on images from the CORELphoto library. We show that the system is succesfuleven when the hypothesis class involves very simpletemplates, and even when the images are sampled verycoarsely. In addition, we show that user interaction(re�ning the hypothesis through the addition of moreexamples) is helpful in improving the performance ofthe learning system. In Section 2, we discuss previousand related work in image classi�cation. We then de-scribe the Multiple-Instance learning framework andthe Diverse Density algorithm. In section 4 we de-tail our experimental setup and show results on var-ious concept classes, hypothesis classes, and trainingregimes.The third contribution of this paper (in addition to



a novel application of Multiple-Instance learning andthe discovery that surprisingly simple concepts do wellon this task) is the development of a general architec-ture to combine ideas from the vision and machinelearning communities. A key part of our system is thebag generator: a mechanismwhich takes an image andgenerates a set of instances, where each instance is apossible description of what the image is about. If anidealized object recognizer existed, then the bag gen-erator would simply output a list of the objects in theimage. The learning algorithm would be straightfor-ward: �nd an intersection between the positive liststhat didn't include elements from the negative lists.On the other extreme, if we had a learning algorithmthat could handle billions of instances per bag, thenwe would not need an object recognizer. Instead, thebag generator would simply output every subcombi-nation of pixels in the image. In this paper, we usea slightly more sophisticated bag generator (one thatgenerates subregions), which limits the number of in-stances per bag and therefore allows us to use an algo-rithm such as Diverse Density. The key observation isthat a better bag generator (progress in the vision com-munity) leads to a simpler learning algorithm, whileat the same time a better Multiple-Instance learningalgorithm (progress in the machine learning commu-nity) allows us to use simpler segmentation algorithms.This is in contrast with the architecture of [Keeler etal., 1991], for example, where the learning mechanismis woven into the position-invariant representation ofsubimages.2 IMAGE CLASSIFICATIONSYSTEMSIn the past few years, the growing number of digitalimage and video libraries has led to the need for 
exi-ble, automated content-based image retrieval systemswhich can e�ciently retrieve images from a databasethat are similar to a user's query. Because what a userwants can vary greatly, we also want to provide a wayfor the user to explore and re�ne the query by lettingthe system bring up examples.One of the most popular global techniques for index-ing is color-histogramming which measures the overalldistribution of colors in the image. While histogramsare useful because they are relatively insensitive to po-sition and orientation changes, they do not capturethe spatial relationships of color regions and thus havelimited discriminating power. Many of the existingimage-querying systems work on entire images or in

user-speci�ed regions by using distribution of color,texture and structural properties. The QBIC system[Flickner et al., 1995] is an example of such a sys-tem. Some recent systems that try to incorporatesome spatial information into their color feature setsinclude [Smith and Chang, 1996, Huang et al., 1997,Belongie et al., 1998]. Promising work by Rubner[Rubner et al., 1998] on the earth mover's distanceprovides a metric that overcomes the binning problemsof existing de�nitions of distribution distances for in-dexing. Most of these techniques require the user tospecify the salient regions in the query image. One ofthe goals of our system is to learn the relevant colorand spatial properties that best describe a particularclass of natural scenes.More recently, work by Lipson and Sinha ([Lipson etal., 1997]) in scene classi�cation illustrates that pre-de�ned 
exible templates that describe the relativecolor and spatial properties in the image can be usede�ectively for this task. The 
exible templates con-structed by Lipson [Lipson et al., 1997] encode thescene classes as a set of image patches and qualita-tive relationships between those patches. Each im-age patch has properties in the color and luminancechannels. These templates describe the color relation-ship (relative changes in the R,G,B channels), lumi-nance relationship (relative changes in the luminancechannel) and spatial relationship between two imagepatches. Lipson hand-crafted these 
exible templatesfor a variety of scene classes and showed that theycould be used to classify natural scenes of �elds, wa-terfalls and snowy mountains e�ciently and reliably.For example, the following concept might be learnedfor the snowy-mountain class: \if the image contains ablue blob which is above a white blob which is above abrown blob, then it is a mountain". In this paper, wewould like to learn such concepts for natural imagesgiven a small set of positive and negative examples.All of the systems described above require users tospecify precisely what they want. Minka and Pi-card [Minka and Picard, 1996] introduced a learn-ing component in their system by using positive andnegative examples which let the system choose imagegroupings within and across images based on color andtexture cues; however, their system requires the userto label various parts of the scene, where as our systemonly gets a label for the entire image and automaticallyextracts the relevant parts of the scene. In this paper,we focus on learning natural scene concepts by extract-ing color and spatial relations between image patchesusing a small set of positive and negative examples.



Our system uses a small set of user-selected positiveand negative examples to learn a scene concept whichis used to retrieve similar images from the database.The system also lets the user add more positive andnegative examples after each iteration in order to re-�ne the concept.3 MULTIPLE-INSTANCELEARNINGIn traditional supervised learning, a learning algorithmreceives a training set which consists of individually la-beled examples. There are situations where this modelfails, speci�cally, when the teacher cannot label indi-vidual instances, but only a collection of instances. Forexample, given a picture containing a waterfall, whatis it about the image that causes it to be labeled asa waterfall? Is it the butter
y hovering in the corner,the blooming 
owers, or the white stream of water?It is impossible to tell by looking at only one image.The best we can say is that at least one of the ob-jects in the image is a waterfall. Given a number ofimages (each labeled as waterfall or non-waterfall), wecan attempt to �nd commonalities within the waterfallimages that do not appear in the non-waterfall images.Multiple-Instance learning is a way of formalizing thisproblem, and Diverse Density is a method for �ndingthe commonality.In Multiple-Instance learning, we receive a set of bags,each of which is labeled positive or negative. Eachbag contains many instances, where each instance is apoint in feature space. A bag is labeled negative if allthe instances in it are negative. On the other hand, abag is labeled positive if there is at least one instancein it which is positive. From a collection of labeledbags, the learner tries to induce a concept that willlabel unseen bags correctly. This problem is harderthan even noisy supervised learning because the ratioof negative to positive instances in a positively-labeledbag (the noise ratio) can be arbitrarily high.The multiple-instance learning model was only re-cently formalized by [Dietterich et al., 1997], wherethey develop algorithms for the drug activity predic-tion problem. This work was followed by [Long andTan, 1996, Auer et al., 1996, Blum and Kalai, 1998],who showed that it is di�cult to PAC-learn in theMultiple-Instance model unless very restrictive inde-pendence assumptions are made about the way inwhich examples are generated. [Auer, 1997] showsthat despite these assumptions, the MULTINST al-gorithm performs competitively on the drug activity

prediction problem. [Maron and Lozano-P�erez, 1998]develop an algorithm called Diverse Density, and showthat it performs well on a variety of problems such asdrug activity prediction, stock selection, and learninga description of a person from a series of images thatcontain that person.3.1 MULTIPLE-INSTANCE LEARNINGFOR SCENE CLASSIFICATIONIn this paper, each training image is a bag. The in-stances in a particular bag are various subimages. Ifthe bag is labeled as a waterfall (for example), we knowthat at least one of the subimages (instances) is a wa-terfall. If the bag is labeled as a non-waterfall, weknow that none of the subimages contains a waterfall.Each of the instances, or subimages, is described as apoint in some feature space. As discussed in section 4,we experimented with several ways of describing aninstance. We will discuss one of them (single blobwith neighbors) in detail: a subimage is a 2x2 setof pixels (referred to as a blob) and its four neighbor-ing blobs (up, down, left, and right). The subimage isdescribed as a vector [x1; x2; : : : ; x15], where x1; x2; x3are the mean RGB values of the central blob, x4; x5; x6are the di�erences in mean RGB values between thecentral blob and the blob above it, etc. One bag istherefore a collection of instances, each of which is apoint in a 15-dimensional feature space. We assumethat at least one of these instances is the templatethat contains the waterfall.We would now like to �nd a description which willcorrectly classify new images as waterfalls or non-waterfalls. This can be done by �nding what is incommon between the waterfall images given duringtraining and the di�erences between those and thenon-waterfall images. The main idea behind the Di-verse Density (DD) algorithm is to �nd areas in featurespace that are close to at least one instance from ev-ery positive bag and far from every negative instance.The algorithm searches the feature space for pointswith high Diverse Density. Once the point (or points)with maximumDD is found, a new image is classi�edpositive if one of its subimages is close to the maximumDD point. As seen in Section 4, the entire databasecan be sorted by the distance to the learned concept.Figure 1 is a schematic of how the system works.In the following subsection, we will describe a deriva-tion of Diverse Density and how we �nd the maximumin a large feature space. We will also show that theappropriate scaling of the feature space can be foundby maximizing DD not just with respect to location in
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Figure 1: System Diagramfeature space, but also with respect to a weighting ofeach of the features.3.2 DIVERSE DENSITYIn this section, we derive a probabilistic measure ofDiverse Density. More details are given in [Maron,1998]. We denote positive bags as B+i , and the jthinstance in that bag as B+ij . Likewise, B�ij repre-sents an instance from a negative bag. For simplic-ity, let us assume that the true concept is a singlepoint t in feature space. We can �nd t by maximizingPr(t j B+1 ; � � � ; B+n ; B�1 ; � � � ; B�m) over all points in fea-ture space. Using Bayes' rule and a uniform prior overthe concept location, we see that this is equivalent tomaximizing the likelihood:argmaxt Pr(B+1 ; � � � ; B+n ; B�1 ; � � � ; B�m j t): (1)By making the additional assumption that the bags areconditionally independent given the target concept t,this decomposes intoargmaxt Yi Pr(B+i j t)Yi Pr(B�i j t) (2)which is equivalent (by similar arguments as above) tomaximizingargmaxt Yi Pr(t j B+i )Yi Pr(t j B�i ) (3)This is a general de�nition of Diverse Density, but weneed to de�ne the terms in the products to instantiate

it. In this paper, we use the noisy-or model as follows:Pr(t j B+i ) = 1�Yj (1� Pr(t j B+ij)): (4)The noisy-or model makes two assumptions: one isthat for t to be the target concept it is caused by(hence close to) one of the instances in the bag. Italso assumes that the probability of instance j not be-ing the target is independent of any other instance notbeing the target.Finally, we estimate the distribution Pr(t j B+ij) witha Gaussian-like distribution of exp(� k B+ij � t k2).A negative bag's contribution is likewise computed asPr(t j B�i ) = Qj(1 � Pr(t j B�ij )). A supervised learn-ing algorithm such as nearest-neighbor or kernel re-gression would average the contribution of each bag,computing a density of instances. This algorithm com-putes a product of the contribution of each bag, hencethe name Diverse Density. Note that Diverse Densityat an intersection of n bags is exponentially higherthan it is at an intersection of n � 1 bags, yet all ittakes is one well placed negative instance to drive theDiverse Density down.The initial feature space is probably not the mostsuitable one for �nding commonalities among images.Some features might be irrelevant or redundant, whilesmall di�erences along other features might be crucialfor discriminating between positive and negative ex-amples. The Diverse Density framework allows us to�nd the best weighting on the initial feature set in thesame way that it allows us to �nd an appropriate lo-



cation in feature space. If a feature is irrelevant, thenremoving it can only increase the DD since it will bringpositive instances closer together. On the other hand,if a relevant feature is removed then negative instanceswill come closer to the best DD location and lower it.Therefore, a feature's weight should be changed in or-der to increase DD. Formally, the distance betweentwo points in feature space (Bij and t) isk B+ij � t k2=Xk wk(Bijk � tk)2 (5)where Bijk is the value of the kth feature in the jthpoint in the ith bag, and wk is a non-negative scalingfactor. If wk is zero, then the kth feature is irrelevant.If wk is large, then the kth feature is very important.We would like to �nd both t and w such that DiverseDensity is maximized. We have doubled the numberof dimensions in our search space, but we now havea powerful method of changing our representation toaccomodate the task.We can use also use this technique to learn more com-plicated concepts than a single point. To learn a 2-disjunct concept t_s, we maximize Diverse Density asfollows:argmaxt;s Yi (1 �Yj (1� Pr(t _ s j B+ij)))Yi Yj Pr(t _ s j B�ij) (6)where Pr(t _ s j B+ij ) is estimated as maxfPr(t jB+ij);Pr(s j B+ij)g. Other approximations (such asnoisy-or) are also possible.Finding the maximum Diverse Density in a high-dimensional space is a di�cult problem. In general,we are searching an arbitrary landscape and the num-ber of local maxima and size of the search space couldprohibit any e�cient exploration. In this paper, weuse gradient ascent (since DD is a di�erentiable func-tion) with multiple starting points. This has workedsuccessfully because we know what starting points touse. The maximumDD point is made of contributionsfrom some set of positive points. If we start an ascentfrom every positive point, one of them is likely to beclosest to the maximum, contribute the most to it andhave a climb directly to it. Therefore, if we start anascent from every positive instance, we are very likelyto �nd the maximumDD point. When we need to �ndboth the location and the scaling of the concept, weperform gradient ascent for both sets of parameters atthe same time (starting with all scale weightings at

1). The number of dimensions in our search space hasdoubled, though. When we need to �nd a 2-disjunctconcept, we can again perform gradient ascent for allparameters at once. This carries a high computationalburden because the number of dimensions has doubled,and we perform a gradient ascent starting at every pairof positive instances.Our goal in the next section is to show that: (1)Multiple-Instance learning by maximizing diverse den-sity can be used in the domain of natural scene classi-�cation, (2) simple concepts in low resolution imagesare su�cient to learn some of these concepts (3) addingfalse positives and false negatives over mutiple itera-tions (user interaction) can be used to improve theclassi�er performance.4 EXPERIMENTSIn this section, we show four di�erent types of resultsfrom running the system: one is that Multiple-Instancelearning is applicable to this domain. A second resultis that one does not need very complicated hypoth-esis classes to learn concepts from the natural imagedomain. We also compare the performance of varioushypotheses, including the global histogram method.Finally, we show how user interaction would work toimprove the classi�er.4.1 EXPERIMENTAL SETUPWe tried to learn three di�erent concepts: waterfall,mountain, and �eld. For training and testing we usednatural images from the COREL library, and the la-bels given by COREL. These included 100 images fromeach of the following classes: waterfalls, �elds, moun-tains, sunsets and lakes. We also used a larger test setof 2600 natural images from various classes.We created a potential training set that consisted of 20randomly chosen images from each of the �ve classesmentioned above. This left us with a small test setconsisting of the remaining 80 images from each ofthe �ve classes. We seperated the potential trainingset from the testing set to insure that results of usingvarious training schemes and hypothesis classes can becompared fairly. Finally the large test set contained2600 natural images from a large variety of classes.For a given concept, we create an initial training setby picking �ve positive examples of the concept and�ve negative examples, all from the potential trainingset. After the concept is learned from these exam-ples (by �nding the point in and scaling of feature



space with maximum DD), the unused 90 images inthe potential training set are sorted by distance fromthe learned concept1. This sorted list can be used tosimulate what a user would select as further re�ningexamples. Speci�cally, the most egregious false posi-tives (the non-concept images at the beginning of thesorted list) and the most egregious false negatives (theconcept images at the end of the sorted list) wouldlikely be picked by the user as additional negative andpositive examples.We attempted four di�erent training schemes:initial is simply using the initial �ve positives and�ve negative examples. +5fp adds the �ve most egre-gious false positives. +10fp repeats the +5fp schemetwice. +3fp+2fn adds 3 false positives and 2 false neg-atives.All images were smoothed using a gaussian �lter andsubsampled to 8 � 8. We used the RGB color spacein these experiments. For every class and for everytraining scheme, we tried to learn the concept usingone of seven hypothesis classes (Figure 1 shows someexamples):1. row: an instance is the row's mean color and thecolor di�erence in the rows above and below it.2. single blob with neighbors: an instance is themean color of a 2�2 blob and the color di�erence withits 4 neighboring blobs.3. single blob with no neighbors: an instance isthe color of each of the pixels in a 2� 2 blob.4. disjunctive blob with neighbors: an instanceis the same as the single blob with neighbors but theconcept learned is a disjunction of two single blob con-cepts.5. disjunctive blob with no neighbors: an in-stance is the same as the single blob with no neighborsbut the concept learned is a disjunction of two singleblob concepts.6. two blob with neighbors: an instance is themean color of two descriptions of two single blobwith neighbors and their relative spatial relation-ship (whether the second blob is above or below, andwhether it is to the left or right, of the �rst blob).7. two blob with no neighbors: an instance is themean color of two descriptions of two single blobwith no neighbors and their relative spatial rela-tionship.Learning a concept took anywhere from a few sec-1An image/bag's distance from the concept is the min-imum distance of any of the image's subregions/instancesfrom the concept.
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The graphs shown are precision-recall and recallcurves. Precision is the ratio of the number of correctimages to the number of images seen so far. Recall isthe ratio of the number of correct images to the totalnumber of correct images in the test set. For example,in Figure 3, the waterfall precision-recall curve has re-call 0.5 with precision of about 0.7, which means inorder to retrieve 40 of the 80 waterfalls, 30% of theimages retrieved are not waterfalls. We show bothcurves for because (1) the beginning of the precision-recall is of interest to applications where only the topfew objects are of importance, and (2) the middle ofthe recall curve is of interest to applications where cor-rect classi�cation of a large percentage of the databaseis important.Figure 2 shows that the performance of the learnedmountain concept is competitive with a hand-craftedmountain template (from [Lipson et al., 1997]2). Thetest set consists of 80 mountains, 80 �elds, and 80waterfalls. It is disjoint from the training set. Thehand-crafted model's precision-recall curve is 
at at84% because the �rst 32 images all receive the samescore, and 27 of them are mountains. We also showthe curves if we were to retrieve the 27 mountains �rst(best-case) or after the �rst �ve false positives (worst-case).In Figure 3, we show the performance of the best hy-pothesis and training method on each concept class.The dashed lines show the poor performance of theglobal histogram method. The solid lines in theprecision-recall graph show the performance of singleblob with neighbors with +10fp for waterfalls, rowwith +10fp for �elds, and disjunctive blob withno neighbors with +10fp for mountains. The solidlines in the recall curve show the performance of thesingle blob with neighbors with +10fp for water-falls, single blob with neighbors with +3fp+2fnfor �elds, and row with +3fp+2fn for mountains. Thisbehavior continues for the larger test set.In Figure 4, we show the precision-recall curves foreach of the four training schemes. We average overall concepts and all hypothesis classes. We see thatperformance improves with user interaction. This be-havior continues for the larger test set as well.In Figure 5, we show the precision-recall and recallcurves for each of the seven hypotheses averaged overall concepts and all training schemes. Note that thesecurves are for the larger 2600 image database. We2Lipson's classi�er was modi�ed to give a ranking ofeach image, rather than its class.
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Figure 5: Di�erent hypothesis classes averaged over concept and training scheme, using a large test set with2600 images.
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Figure 6: Results for the waterfall concept using the single blob with neighbors concept with +10fp. Toprow: Initial training set{5 positive and 5 negative examples. Second Row: Additional false positives. Last threerows: Top 30 matches retrieved from the large test set. The red squares indicate where the closest instance tothe learned concept is located.


