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Theory of edge detection 

BY D. MARR AND E. HILDRETH 

M.I.T. Psychology Department and Artificial Intelligence Laboratory, 
79 Amherst Street, Cambridge, Massachusetts 02139, U.S.A. 

(Communicated by S. Brenner, F.R.S. - Received 22 February 1979) 

A theory of edge detection is presented. The analysis proceeds in two 
parts. (1) Intensity changes, which occur in a natural image over a wide 
range of scales, are detected separately at different scales. An appropriate 
filter for this purpose at a given scale is found to be the second derivative 
of a Gaussian, and it is shown that, provided some simple conditions are 
satisfied, these primary filters need not be orientation-dependent. Thus, 
intensity changes at a given scale are best detected by finding the zero 
values of V2G(x, y)* I(x, y) for image I, where G(x, y) is a two-dimen- 
sional Gaussian distribution and V2 is the Laplacian. The intensity 
changes thus discovered in each of the channels are then represented by 
oriented primitives called zero-crossing segments, and evidence is given 
that this representation is complete. (2) Intensity changes in images arise 
from surface discontinuities or from reflectance or illumination bound- 
aries, and these all have the property that they are spatially localized. 
Because of this, the zero-crossing segments from the different channels 
are not independent, and rules are deduced for combining them into a 
description of the image. This description is called the raw primal sketch. 
The theory explains several basic psychophysical findings, and the opera- 
tion of forming oriented zero-crossing segments from the output of 
centre-surround V2G filters acting on the image forms the basis for a 
physiological model of simple cells (see Marr & Ullman I979). 

INTRODUCTION 

The experiments of Hubel & Wiesel (I962) and of Campbell & Robson (i968) 
introduced two rather distinct notions of the function of early information pro- 
cessing in higher visual systems. Hubel & Wiesel's description of simple cells as 
linear with bar- or edge-shaped receptive fields led to a view of the cortex as 

containing a population of feature detectors (Barlow 1969, p. 881) tuned to 

edges and bars of various widths and orientations. Campbell & Robson's ex- 

periments, showing that visual information is processed in parallel by a number 
of independent orientation and spatial-frequency-tuned channels, suggested a 
rather different view, which, in its extreme form, would describe the visual 
cortex as a kind of spatial Fourier analyser (Pollen et al. I97I; Maffei & Fiorentini 

1977). 
[ 187] 
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Protagonists of each of these views are able to make substantial criticisms of 
the other. The main points against a Fourier interpretation are: (1) The bandwidth 
of the channels is not narrow (1.6 octaves, Wilson & Bergen 1979). The corres- 

ponding receptive fields have a definite spatial localization. (2) As Campbell & 
Robson found, early visual information processing is not linear (e.g. probability 
summation (Graham I977; Wilson & Giese I977), and failure of superposition 
(Maffei & Fiorentini 1972 a)). (3) Only rudimentary phase information is apparently 
encoded (Atkinson & Campbell 1974). 

The main point against the linear feature-detector idea is that if a simple cell 

truly signals either the positive or the negative part of the linear convolution of 
its bar-shaped receptive field with the image intensity, it can hardly be thought 
of as making some symbolic assertion about the presence of a bar in the image 
(Marr I976a, p. 648). Such a cell would necessarily respond to many stimuli other 
than a bar, more vigorously, for example, to a bright edge than to a dim bar, and 
thus would not be specific enough in its response to warrant being called a feature 
detector. 

Perhaps the greatest difficulty faced by both camps is that neither approach 
can give direct information about the goals of the early analysis of an image. This 
motivated a new approach to vision, which enquired directly about the informa- 
tion processing problems inherent in the task of vision itself (Marr i976a, b; and 
see Marr I978 for the overall scheme). According to this scheme, the purpose of 

early visual processing is to construct a primitive but rich description of the image 
that is to be used to determine the reflectance and illumination of the visible 
surfaces, and their orientation and distance relative to the viewer. The first 

primitive description of the image was called the primal sketch (Marr I976b) and 
it is formed in two parts. First, a description is constructed of the intensity changes 
in an image, using a primitive language of edge-segments, bars, blobs and termina- 
tions. This description was called the raw primal sketch (Marr 1976b, p. 497). 
Secondly, geometrical relations are made explicit (using virtual lines), and larger, 
more abstract tokens are constructed by selecting, grouping and summarizing 
the raw primitives in various ways. The resulting hierarchy of descriptions covers 
a range of scales, and is called the full primal sketch of an image. 

Although the primal sketch was inspired by findings about mammalian visual 

systems, we were until recently unable to make it the basis of a detailed theory 
of human early vision. Three developments have made this possible now: (a) the 

emergence of quantitative information about the channels present in early human 
vision (Cowan I977; Graham I977; Wilson & Giese 1977; Wilson & Bergen 1979); 
(b) Marr & Poggio's (I979) theory of human vision (especially the framework 
within which it was written); and (c) the related observations of Marr et al. (I979) 
about the relevance of a result like Logan's (1977) theorem to early vision. 

These advances have made possible the formulation of a satisfactory computa- 
tional theory. This article deals with the first part, the derivation of the raw 

primal sketch. The theory itself is given in two sections, the first dealing with the 

188 
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analysis within each channel, and the second, with combining information from 
different channels. Each computational section discusses algorithms for imple- 
menting the theory, and gives examples. 

The second half of the article examines the implications for biology. The 
behaviour of the algorithms is shown to account for a range of basic psychophy- 
sical findings, and a specific neural implementation is presented. Our model is not 
intended as a complete proposal for a physiological mechanism, because it ignores 
the attribute of directional selectivity that so pervades cortical simple cells. The 
model does, however, make explicit certain nonlinear features that we regard as 
critical, and it forms the starting point for the more complete proposal of Marr & 
Ullman (i979), which incorporates directional selectivity. 

DETECTING AND REPRESENTING INTENSITY CHANGES IN AN IMAGE 

A major difficulty with natural images is that changes can and do occur over a 
wide range of scales (Marr I976a, b). No single filter can be optimal simulta- 

neously at all scales, so it follows that one should seek a way of dealing separately 
with the changes occurring at different scales. This requirement, together with 
the findings of Campbell & Robson (I968), leads to the basic idea, illustrated in 

figure 1, in which one first takes local averages of the image at various resolutions 
and then detects the changes in intensity that occur at each one. To realize this 

idea, we need to determine (a) the nature of the optimal smoothing filter, and (b) 
how to detect intensity changes at a given scale. 

The optimal smoothing filter 
There are two physical considerations that combine to determine the appro- 

priate smoothing filter. The first is that the motivation for filtering the image is 
to reduce the range of scales over which intensity changes take place. The filter's 
spectrum should therefore be smooth androughly band-limited in the frequency 
domain. We may express this condition by requiring that its variance there, Ao, 
should be small. 

The second consideration is best expressed as a constraint in the spatial domain, 
and we call it the constraint of spatial localization. The things in the world that 
give rise to intensity changes in the image are: (1) illumination changes, which 
include shadows, visible light sources and illumination gradients; (2) changes in 
the orientation or distance from the viewer of the visible surfaces; and (3) changes 
in surface reflectance. The critical observation here is that, at their own scale, 
these things can all be thought of as spatially localized. Apart from the occasional 
diffraction pattern, the visual world is not constructed of ripply, wave-like primi- 
tives that extend and add together over an area (c.f. Marr I970, p. 169), but of 
contours, creases, scratches, marks, shadows and shading. 

The consequence for us of this constraint is that the contributions to each 
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(a) 

(b) 

FIGURE 1. A local-average filtered image. In the original image (a), intensity changes can take 
place over a wide range of scales and no single operator will be very efficient at detecting 
all of them. The problem is much simplified in a Gaussian band-limited filtered image 
because there is effectively an upper limit to the rate at which changes can take place. 
The first part of our scheme can be thought of as decomposing the original image into 
a set of copies, each filtered like this, and detecting the intensity changes separately in 
each. In (b) the image is filtered with a Gaussian having r = 8 picture elements, and, 
in (c), cr = 4. The image is 320 x 320 picture elements. 
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point in the filtered image should arise from a smooth average of nearby points, 
rather than any kind of average of widely scattered points. Hence the filter that 
we seek should also be smooth and localized in the spatial domain, and in particular 
its spatial variance, Ax, should also be small. 

1Af'i 

FIGURE 2. The operators G" (equation 5) and V2 G: (a) shows G", the second derivative of the 
one-dimensional Gaussian distribution; (c) shows V2G, its rotationally symmetric two- 
dimensional counterpart; (b) and (d) exhibit their Fourier transforms. 

Unfortunately, these two localization requirements, the one in the spatial and 
the other in the frequency domain, are conflicting. They are, in fact, related by 
the uncertainty principle, which states that Ax Aeo > ni (see, for example, 
Bracewell I965, pp. 160-163). There is, moreover, only one distribution that 

optimizes this relation (Leipnik I960), namely the Gaussian 

G(x) = [1/cr(27c)i] exp (-x2/2r2), with Fourier transform 

(n) = exp (-( 1r2 02). 

In two dimensions, G(r) = ((ncr2) exp (-r2/2c2). 

(1) 

(2) 

(a) 

(b) 

(c) 

(d) 
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The filter G thus provides the optimal trade-off between our conflicting require- 
ments. 

Detecting intensity changes 
Wherever an intensity change occurs, there will be a corresponding peak in the 

first directional derivative, or equivalently, a zero-crossing in the second direc- 
tional derivative of intensity (Marr i976b; Marr & Poggio i979). In fact, we may 
define an intensity change in this way, so that the task of detecting these changes 

(a) (b) 

(d) 

FIGURE 3. Spatial and directional factors interact in the definition of a zero-crossing segment; 
(a) shows an intensity change, and (b), (c) and (d) show values of the second directional 
derivative near the origin at various orientations across the change. In (b), the derivative 
is taken parallel to the x-axis, and in (c) and (d), at 30? and 60? to it. There is a zero- 
crossing at every orientation except for a2I/ay2, which is identically zero. Since the zero- 
crossings line up along the y-axis, this is the direction that is chosen. In this example, it 
is also the direction that maximizes the slope of the second derivative. 

can be reduced to that of finding the zero-crossings of the second derivative D2 of 

intensity, in the appropriate direction. That is to say, we seek the zero-crossings 
in 

f(x, y) = D2[G(r)*I(x, y)], (3) 

where I(x, y) is the image, and * is the convolution operator. By the derivative 
rule for convolutions, 

f (x, y) = D2G * I(x, y). 

We can write the operator D2G as G", and in one dimension 

(4) 

G"(x) = [- 1/3(2,7)i] (1-x2/-r2) exp (-x2/2o2). 

192 
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f1"(x) looks like a Mexican hat operator (see figure 2), it closely resembles Wilson 
S& Giese's (I977) difference of two Gaussians (DOG), and it is, in fact, the limit of 
the DOG function as the sizes of the two Gaussians tend to one another (see figure 11 
and appendix B). It is an approximately bandpass operator, with a half-power 
bandwidth of about 1.2 octaves, and so it can be thought of as looking at the 
information contained in one particular part of the spectrum of the image. 

These arguments establish that intensity changes at one scale may, in principle, 
be detected by convolving the image with the operator D2G and looking for 
zero-crossings in its output. Only one issue is still unresolved, and it concerns the 
orientation associated with D2. It is not enough to choose zero-crossings of the 
second derivative in any direction. To understand this, imagine a uniform intensity 
change running down the y-axis, as shown in figure 3. At the origin, the second 
directional derivative is zero in every direction, but it is non-zero nearby in every 
direction except along the y-axis, 

In which direction should the derivative be taken ? 

To choose which directional derivative to use, we observe that the underlying 
motivation for detecting changes in intensity is that they will correspond to 
useful properties of the physical world, like changes in reflectance, illumination, 
surface orientation, or distance from the viewer. Such properties are spatially 
continuous and can almost everywhere be associated with a direction that projects 
to an orientation in the image. The orientation of the directional derivative that 
we choose to use is therefore that which coincides with the orientation formed 

locally by its zero-crossings. In figure 3, this orientation is the y-axis, and so the 
directional derivative we would choose there is a21/ax2. 

Under what conditions does this direction coincide with that in which the zero- 

crossing has maximum slope? The answer to this is given by theorem 1 (see 
appendix A), and we call it the condition of linear variation: 

the intensity variation near and parallel to the line of zero-crossings should 
locally be linear. 

This condition will be approximately true in smoothed images, and in the rest 
of this article we shall assume that the condition of linear variation holds. 

This direction can be found by means of the Laplacian 
There are three main steps in the detection of zero-crossings. They are: (1) a 

convolution with D2G, where D2 stands for a second directional derivative opera- 
tor; (2) the localization of zero-crossings; and (3) checking of the alignment and 
orientation of a local segment of zero-crossings. Although it is possible to imple- 
ment this scheme directly (Marr I976b, p. 494), one immediate question that can 
be asked is, are directional derivatives of critical importance here ? Convolutions 
are relatively expensive, and it would much lessen the computational burden if 

7y^~~~~~~~ VOI. 207Vol. 207. B 
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their number could be reduced, for example, by using just one orientation- 

independent operator. 
The only orientation-independent second-order differential operator is the 

Laplacian V2, and theorem 2 (see appendix A) makes explicit the conditions under 
which it can be used. They are weaker than the condition of linear variation, which 
we met in theorem 1, and they state that provided the intensity variation in 

(G * I) is linear along but not necessarily near to a line of zero-crossings, then the 

zero-crossings will be detected and accurately located by the zero values of the 

Laplacian. Again, because in our application the condition of linear variation 
is approximately satisfied, so will be this condition. It follows that the detection 
of intensity changes can be based on the filter V2G, illustrated in figure 2. It is, 
however, worth remembering that in principle, if intensity varies along a segment 
in a very non-linear way, the Laplacian, and hence the operator V2G will see the 

zero-crossing displaced to one side. 

Summary of the argument 
The main steps in the argument so far are, therefore, these. 

(1) To limit the rate at which intensities can change, we first convolve the 

image I with a two-dimensional Gaussian operator G. 

(2) Intensity changes in G * I are then characterized by the zero-crossings in 
the second directional derivative D2(G * I). This operator is roughly bandpass, 
and so it examines only a portion of the spectrum of the image. 

(3) The orientation of the directional derivative should be chosen to coincide 
with the local orientation of the underlying line of zero-crossings. 

(4) Provided that the condition of linear variation holds, this orientation is also 
the one at which the zero-crossing has maximum slope (measured perpendicular 
to the orientation of the zero-crossing). 

(5) By theorem 1 of appendix A, if the condition of linear variation holds, the 
lines of zero-crossings defined by (3) are precisely the zero-crossings of the orient- 

ation-independent differential operator, the Laplacian V2. 

(6) The loci of zero-crossings defined by (3) may therefore be detected eco- 

nomically in the image at each given scale by searching for the zero values of the 
convolution V2G * 1. In two dimensions, 

V2G(r) = - l/7o4[1 - r2/2C2] exp (-r2/2C2). 

We turn now to the question of how to represent the intensity changes thus 
detected. 

Representing the intensity changes 

In a band-limited image, changes take place smoothly, so it is always possible to 
divide a line of zero-crossings into small segments, each of which approximately obeys 
the condition of linear variation. This fact allows us to make the following definitions. 
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(1) A zero-crossing segment in a Gaussian filtered image consists of a linear 

segment I of zero-crossings in the second directional derivative operator whose 
direction lies perpendicular to 1. 

(2) We can also define an amplitude v associated with a zero-crossing segment, as 
the slope of the directional derivative taken perpendicular to the segment. To 
see why this is an appropriate measure, observe that a narrow bandpass channel 
near a zero-crossing at the origin can be described approximately by v sin o)x, 
which has slope vo at the origin. Hence, if s is the measured slope of the zero- 

crossing, v = s/w. The factor l/w is a space constant, and scales linearly with the 

sampling interval required. 
The set of zero-crossing segments together with their amplitudes, constitutes a 

primitive symbolic representation of the changes taking place within one region 
of the spectrum of an image. Full coverage of the spectrum can now be had simply 
by applying the analysis over a sufficient number of channels simultaneously. 

Finally, there are grounds for believing that this representation of the image is 

complete. Marr et al. (I979) noted that Logan's (I977) recent theorem, about the 

zero-crossings of one-octave bandpass signals, shows that the set of such zero- 
crossing segments is extremely rich in information. If the filters had bandwidth 
of an octave or less, they would in fact contain complete information about the 
filtered image. In practice, the V2G filter has a half-sensitivity bandwidth of 
about 1.75 octaves, which puts it outside the range in which Logan's theorem 

applies. On the other hand, if we add information about the slopes of the zero- 

crossings, the situation may be more congenial. In the standard sampling theorem, 
if the first derivative, as well as the value, is given, the sampling density can be 
halved (see, for example, Bracewell 1978, pp. 198-200). It seems likely than an 

analogous extension holds for Logan's (i977) theorem. If this were true, the zero- 

crossing segments, whose underlying motivation is physical, would in fact provide 
a sufficient basis for the recovery of arbitrary intensity profiles. 

In summary, then, we have shown how intensity changes at one scale may be 
detected by means of the V2G operator and that they may be represented, 
probably completely, by oriented zero-crossing segments and their amplitudes. 
To detect changes at all scales, it is necessary only to add other channels, like the 
one described above, and to carry out the same computation in each. These 

representations are precursors of the descriptive primitives in the raw primal 
sketch, and mark the transition from the 'analytic' to the 'symbolic' analysis of 
an image. The remaining step is to combine the zero-crossings from the different 
channels into primitive 'edge' elements, and this task is addressed later in the 
article. 

Examples and comments 

Figure 4 shows some examples of zero-crossings. The top row shows images and 
the second shows their convolutions with the operator V2G, exhibited in figure 2. 
Zero is represented here by an intermediate grey, so that very positive values 

7-2 
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FIGURE4. Examples of zero-crossing detection by means of .V2 G. Row (a) shows three images 

x~. ,. 
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FIGURE 4. Examples of zero-crossing detection by means of V2 G. Row (a) shows three images 
and row (b) shows their convolutions with the V2G filter of figure 2 (w = 2o = 8), zero 
being represented by an intermediate grey. In row (c), positive values are shown white, 
and negative, black; and in row (d) only the zero-crossings appear. 
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analysis of another image, except that here, V2G is compared with a square-wave 
approximation to the second derivative. The widths of the central excitatory regions of 
the filters are the same for each comparison pair, being 12 for (a) and (b), and 18 for (c) 
and (d). The square-wave filter sees relatively few zero-crossings. 
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appear white, and very negative ones, black. In the third row, all positive values 

appear completely white, and all negative ones are black, and the fourth row 
shows just the loci of zero values. It will be observed that these delineate well the 
visible edges in the images. (See the legend for more details.) It remains only to 
break the zero value loci into oriented line segments. 

It is interesting to compare the zero-crossings found by means of V2G with those 
found by means of similar operators that, according to our arguments, are not 
optimal. Our choice of the Gaussian filter was based on the requirements of simul- 
taneous localization in the frequency and spatial domains. We therefore show 

examples in which each of these requirements is severely violated. An ideal one- 
octave bandpass filter satisfies the localization requirement in the frequency 
domain, but violates it in the spatial domain. The reason is that strict band- 

limiting gives rise to sidelobes in the spatial filter, and the consequence of these 
is that, in the zero-crossing image, strong intensity changes give rise to echoes as 
well as to the directly corresponding zero-crossings (see figure 5). These echoes 
have no direct physical correlate, and are therefore undesirable for early visual 

processing. 
On the other hand, if one cuts off the filter in the spatial domain, one acquires 

sidelobes in the frequency domain. Figure 5 also shows a square-wave approxi- 
mation to the second derivative operator, together with an example of the zero- 

crossings to which it gives rise. This operator sees fewer zero-crossings, essentially 
because it is averaging out the changes that occur over a wider range of scales. 

Interestingly, Rosenfeld & Kak (1976, pp. 281-4) discuss the Laplacian in 
relation to 'edge' detection, but they do not report its having been used very 
effectively. One reason for this is that it is not very effective unless it is used in a 
band-limited situation and one uses its zero-crossings, and these ideas do not 
appear in the computer vision literature (see, for example, Rosenfeld & Kak 1976, 
fig. 10, for how the Laplacian has previously been used). In fact, the idea of using 
narrow bandpass differential operators did not appear until the human stereo 

theory of Marr & Poggio (i979), which was also the first theory to depend 
primarily on zero-crossings. 

Another, more practical, reason why 'edge-detecting' operators have previously 
been less than optimally successful in computer vision is that most current operators 
examine only a very small part of the image, their 'receptive fields' are of the 
order of 10 to 20 image points at most. This contrasts sharply with the smallest 
of Wilson's four psychophysical channels, the receptive field of which must cover 
over 500 foveal cones (see figure 4). 

Finally, notice that G", and hence V2G, is approximately a second derivative 
operator, because its Fourier transform is - 4T202 exp (- 02w2), which behaves 
like - 02 near the origin. 
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1-1z~~~! 1,1, (a) (b) 

(c) c X (d) 

FIGuRE 6. The image (a) has been convolved with V2 having w = 2c = 6, 12 and 24 pixels. 
These filters span approximately the range of filters that operate in the human fovea. In 
(b), (c) and (d) are shown the zero-crossings thus obtained. Notice the fine detail picked 
up by the smallest. This set of figures neatly poses our next problem: how does one 
combine all this information into a single description? 

COMBINING INFORMATION FROM DIFFERENT CHANNELS 

The signals transmitted through channels that do not overlap in the Fourier 
domain will be generally unrelated unless the underlying signal is constrained. 
The critical question for us here is, therefore (and we are indebted to T. Poggio 
for conversations on this point), what additional information needs to be taken 
into account when we consider how to combine information from the different 
channels to form a primitive description of the image? In other words, are there 
any general physical constraints on the structure of the visual world that allow 
us to place valid restrictions on the way in which information from the different 
channels may be combined ? Figure 6 illustrates the problem that we have to solve. 

The spatial coincidence assumption 
The additional information that we need here comes from the constraint of 

spatial localization, which we defined in the previous section. It states that the 

physical phenomena that give rise to intensity changes in the image are spatially 
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localized. Since it is these changes that. produce zero-crossings in the filtered 

images, it follows that if a discernible zero-crossing is present in a channel centred 
on wavelength A0, there should be a corresponding zero-crossing at the same 

spatial location in channels for wavelengths A > A0. If this ceases to be true at 
some wavelength A1 > A0, it will be for one of two reasons: either (a) two or more 
local intensity changes are being averaged together in the larger channel; or (b) 
two independent physical phenomena are operating to produce intensity changes 
in the same region of the image but at different scales. An example of situation (a) 
would be a thin bar, whose edges will be accurately located by small channels but 
not by large ones. Situations of this kind can be recognized by the presence of two 

nearby zero-crossings in the smaller channels. An example of situation (b) would 
be a shadow superimposed on a sharp reflectance change, and it can be recognized 
if the zero-crossings in the larger channels are displaced relative to those in the 
smaller. If the shadow has exactly the correct position and orientation, the loca- 
tions of the zero-crossings may not contain enough information to separate the 
two physical phenomena, but, in practice, this situation will be rare. 

We can therefore base the parsing of sets of zero-crossing segments from dif- 
ferent V2 channels on the following assumption, which we call the spatial 
coincidence assumption: 

If a zero-crossing segment is present in a set of independent V2G channels 
over a contiguous range of sizes and the segment has the same position and 
orientation in each channel, then the set of such zero-crossing segments may 
may be taken to indicate the presence of an intensity change in the image 
that is due to a single physical phenomenon (a change in reflectance, illumina- 
tion, depth or surface orientation). 

In other words, provided that the zero-crossings from independent channels of 

adjacent sizes coincide, they can be taken together. If they do not, they probably 
arise from distinct surfaces or physical phenomena. It follows that the minimum 
number of channels required is two, and that provided the two channels are 

reasonably separated in the frequency domain, and their zero-crossings agree, the 
combined zero-crossings can be taken to indicate the presence of an edge in the 

image. 

The parsing of sets of zero-crossing segments 

Figure 6 shows the zero-crossings obtained from two channels whose dimensions 
are approximately the same as the two sustained channels present at the fovea 
in the human visual system (Wilson & Bergen 1979). We now derive the parsing 
rules needed for combining zero-crossings from the different channels. 

Case (1): isolated edges 
For an isolated, linearly disposed intensity change, there is a single zero-crossing 

present at the same orientation in all channels above some size that depends upon 
the channel sensitivity and the spatial extent of the edge. This set of zero- 
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crossings may, therefore, be combined into a symbol that we shall call an edge- 
segment, with the attributes of edge-amplitude and width, which we may obtain 
as follows. 

Calculation of edge-amplitude. Because the assumptions that we have made mean 
that the type of intensity change involved is a simple one, we can, in fact, use 
what Marr (i976 figure 1) called the selection criterion, according to which one 

(a) 1 

1 2 3 4 

(b)i -r p 

FIGURE 7. Parsing of sets of zero-crossing segments. (a) If zero-crossing segments lie close and 
roughly parallel (as in profile (a) of column 3 above), larger masks cannot be used, only 
the smaller masks. There are four possible configurations, shown in (1)-(4), and the 
figure represents the way in which the contrast changes across the edge. Each of these 
cases needs to be detected separately. (b) If the bar- or edge-segments are terminated, 
special descriptors are required. Doubly terminated bars, with I < 3w, are called blobs 
and the other assertions are labelled terminations. These are illustrated here for one 
contrast sign. Termination assertions may mark only a discontinuity in edge orientation, 
but it is often useful later on to have such positions explicitly available. 

selects the smallest channel to which the intensity change is essentially indis- 

tinguishable from a step function, and uses that channel alone to estimate the 
contrast by means of the amplitude v derived above. If one has just two indepen- 
dent channels with amplitudes v, and v2, an approximation to the edge amplitude 
is /(v + lv). 

Calculation of width. The width of the edge in this case can also be estimated 
from the channel selected according to the selection criterion. For a narrow channel 
with central wavelength A, the physical notion of width corresponds to the distance 
over which intensity increases. This distance is 2A, which is approximately w, the 
width of the central excitatory region of the receptive field associated with the 
most excited channel (in fact, A = nw). 

Case (2): bars 

If two parallel edges with opposite contrast lie only a small distance d apart in 
the image, zero-crossings from channels with associated wavelength that exceeds 
about 2d cannot be relied upon to provide accurate information about the positions 
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(c) (d) (e) 

FIGURE 8. Combination of information from two channels. In (a) and (b) are shown the zero- 
crossings obtained from one of the images of figure 4, by means of masks with w = 9 
and 18. Because there are no zero-crossings in the larger channel that do not correspond 
to zero-crossings in the smaller channel, the locations of the edges in the combined 

description also correspond to (a). In (c), (d) and (e) are shown symbolic representations 
of the descriptors attached to the locations marked in (a): (c) shows the blobs; (d), the 
local orientations assigned to the edge segments; and (e), the bars. These diagrams show 
only the spatial information contained in the descriptors. Typical examples of the full 

descriptors are as follows. 

(BLOB (POSITION 146 21) (EDGE (POSITION 104 23) (BAR (POSITION 118 134) 
(ORIENTATION 105) (ORIENTATION 120) (ORIENTATION 120) 
(CONTRAST 76) (CONTRAST -25) (CONTRAST -25) 
(LENGTH 16) (LENGTH 25) (LENGTH 25) 
(WIDTH 6)) (WIDTH 4)) (WIDTIE 4)) 

The descriptors to which these correspond are marked with arrows. The resolution of 
this analysis of the image of figure 4 roughly corresponds to what a human would see 
when viewing it from a distance of about 6 ft (1.83 m). 

or contrasts of the edges. In these circumstances, the larger channels must be 

ignored, and the description formed solely from small channels of which the zero- 

crossing segments do superimpose. An edge can have either positive or negative 
contrast, and so two together give us the four situations shown in figure 7 a. There 

is, of course, no reason why the two edges should have the same contrast, and the 
contrast of each edge must be obtained individually from the smallest channels 
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(w < d). Two other parameters are useful; one is the average orientation of the 
two zero-crossing segments, and the other is their average separation. 

Our case (2) applies only to situations in which neither zero-crossing segment 
terminates and they both remain approximately parallel (w or less apart). When 
the two edges are closer together than w for the smallest available channel, the 
zero-crossings associated with even the smallest channel will not accurately reflect 
the positions of the two edges, they will over estimate the distance between them. 
If the two edges have opposite contrasts that are not too different in absolute 
magnitude, the position of the centre of the 'line segment' so formed in the image 
will be the midpoint of the two corresponding zero-crossings. In these circum- 
stances, the parameters associated with the line segment will be more reliable 
than those associated with each individual edge. 

Case (3): blobs and terminations 

It frequently happens that the zero-crossing segments do not continue very far 
across the image. Two parallel segments can merge, or be joined by a third seg- 
ment, and in textured images they often form small closed curves (see figure 6), 
which are quite small compared to the underlying field size. Both situations can 
give rise to anomalous effects at larger channel sizes, and so are best made explicit 
early on. Following Marr (i976b), the closed contours we call BLOBS, and assign 
to them a length, width, orientation and (average) contrast; and the terminations 
are assigned a position and orientation (see figure 7c). 

Remarks 

Two interesting practical details have emerged from our implementation. First, 
the intensity changes at each edge of a bar are, in practice, rarely the same, so it is 
perhaps more proper to think of the BAR descriptor as a primitive grouping 
predicate that combines two edges the contrasts of which are specified precisely 
by the smallest channel. Brightness within the area of the bar will, of course, be 
constant. Secondly, it is often the case that the zero-crossings from the small and 
from the large masks roughly coincide, but those from the small mask weave 
around much more, partly because of the image structure and partly because of 
noise and the image tesselation. Local orientation has little meaning over dis- 
tances shorter than the width w of the central excitatory region of the V2G filter, 
so if the zero-crossings from the smaller filter are changing direction rapidly 
locally, the orientation derived from the larger mask can provide a more stable and 
more reliable measure. 

IMPLICATIONS FOR BIOLOGY 

We have presented specific algorithms for the construction of the raw primal 
sketch, and we now ask whether the human visual system implements these 
algorithms or something close to them. There are two empirically accessible 
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characteristics of our scheme. The first concerns the underlying convolutions and 

zero-crossing segments, and the second, whether zero-crossing segments from the 
different channels are combined in the way that we have described. 

Detection of zero-crossing segments 

According to our theory, the most economical way of detecting zero-crossing 
segments requires that the image first be filtered through at least two independent 
V2G channels, and that the zero-crossings then be found in the filtered outputs. 
These zero-crossings may be divided into short, oriented zero-crossing segments. 

The empirical data 

Recent psychophysical work by Wilson & Giese (1977), Wilson & Bergen (I979) 
(see also Macleod & Rosenfeld 1974), has led to a precise quantitative model of the 

orientation-dependent spatial-frequency-tuned channels discovered by Campbell 
& Robson (I968). At each point in the visual field, there are four such channels 

spanning about three octaves, and their peak sensitivity wavelength increases 

linearly with retinal eccentricity. The larger two channels at each point are 
transient and the smaller two are sustained. These channels can be realized by 
linear units with bar-shaped receptive fields made of the difference of two Gaussian 

distributions, with excitatory to inhibitory space constants in the ratio of 1:1.75 
for the sustained, and 1:3.0 for the transient, channels (Wilson & Bergen I979). 
The largest receptive field at each point is about four times the smallest. 

This state of affairs is consistent with the neurophysiology since Hubel & 
Wiesel (1962) originally defined simple cells by the linearity of their response, and 

they reported many bar-shaped receptive fields. In addition, simple cell receptive 
field sizes increase linearly with eccentricity (Hubel & Wiesel 1974, fig. 6a), and 
the scatter in size at each location seems to be about 4:1 (Hubel & Wiesel 1974, 
fig. 7). It is therefore tempting to identify at least some of the simple cells with the 

psychophysical channels. If so, the first obvious way of making the identification 
is to propose that the simple cells measure the second directional derivatives, thus 

perhaps providing the convolution values from which zero-crossing segments are 

subsequently detected. 
There are, however, various reasons why this proposal can probably be excluded. 

They are: 

(1) If the simple cells are essentially performing a linear convolution that 

approximates the second directional derivative, why are they so orientation 
sensitive? Three measurements, in principle, suffice to characterize the second 
derivative completely and, in practice, the directional derivatives measured along 
four orientations are apparently enough for this stage (see Marr 1976b; Hildreth, 
in preparation), and yet simple cells divide the domain into about 12 orientations. 

(2) Schiller et al. (1976b, pp. 1324-5) found that the orientation sensitivity of 

simple cells is relatively independent of the strength of flanking inhibition, and 
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of the separation and lengths of the positive and negative subfields of the receptive 
field of the cell. In addition, tripartite receptive fields did not appear to be more 
orientation sensitive than bipartite ones. These points provide good evidence that 

simple cells are not linear devices. 

(3) If the simple cells perform the convolution, what elements find the zero- 

crossings and implement the spatial part of the computation, lining the zero- 

crossings up with the convolution orientations, for example? 

Wilson's channel data is consistent with V2G 

Wilson's DOG functions are very similar to V2G, and probably indistinguishable 
by means of his experimental technique, which yields about 10% accuracy 
(H. G. Wilson, personal communication). In appendix B, we show: (a) that V2G 
is the limit of the DOG function as cri/oe, the ratio of the inhibitory to excitatory 
space constants, tends to unity; and (b) that if an approximation to V2G is to 
be constructed out of the difference of two Gaussian distributions, one excitatory 
and the other inhibitory, the optimal choice on engineering grounds for o'i/o'e is 
about 1.6. 

A specific proposal: lateral geniculate X-cells carry V2G * I, and some simple cells 
detect and represent zero-crossing segments 

It is known that retinal ganglion X-cells have receptive fields that are accurately 
described by the difference of two Gaussian distributions (Rodieck & Stone 1965; 
Ratliff 1965; Enroth-Cugell & Robson I966). The positive and negative parts are 
not quite balanced (there is a response to diffuse illumination and it increases with 

intensity), and since the ganglion cells have a spontaneous resting discharge, they 
signal somewhat more than just the positive or just the negative part of such a 
convolution. Interestingly, there is little scatter in receptive field sizes of X-cells 
at a given location in the retina (Peichl & Wassle I979). 

There is some controversy about the way in which lateral geniculate receptive 
fields are constructed (cf. Maffei & Fiorentini I972b),but it seems most likely that 
the on-centre geniculate X-cell fields are formed by combining a small number of 
on-centre retinal ganglion X-cell fields of which the centres approximately coincide 

(Cleland et al. 197I). It seems likely that the scatter in receptive field size arises 
in this way, since the amount of scatter required to account for the psychophysical 
findings is only a factor of two in both the X and the Y channels. Finally, lateral 

geniculate cells give a smaller response to diffuse illumination than do retinal 

ganglion cells, sometimes giving no response at all (Hubel & Wiesel i96i). 
These facts lead us to a particularly attractive scheme, which, for simplicity, we 

present in idealized form. 

(1) Measurement of V2G. The sustained, or X-cell, geniculate fibres can be 
thought of as carrying either the positive or the negative part of V2G I, 
where the filter V2G of figure 2 is, in practice, approximated by a difference 
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of Gaussian convolution operator with centre-to-surround space constants 
in the ratio 1: 1.75. (One should probably think of this as being a convolution 
on linear intensity values, rather than on their logarithms. The reason for this 
is that although the nerve signal in the retina is an adaptation term multi- 

plied by I/(I + K), where I is the incident illumination and K = 800 quanta 
per receptor per second (Alpern et al. I970), in any given image the ratio of 
the darkest to the brightest portion rarely exceeds 25 (a local ratio of around 

/ 

/ 

(a) 

FIGURE 9. Proposed mechanism whereby some simple cells detect zero-crossing segments. In 
(a), if P represents an on-centre geniculate X-cell receptive field, and Q, an off-centre 
one, then if both are active, a zero-crossing Z in the Laplacian passes between them. If 
they are connected to a logical AND gate, as shown, then the gate will 'detect' the 
presence of the zero-crossing. If several are arranged in tandem, as in (b), and also 
connected by logical ANDS, the resulting operation detects an oriented zero-crossing 
segment within the orientation bounds given roughly by the dotted lines. This gives 
our most primitive model for simple cells. Ideally, one would like gates such that there is 
a response only if all (P, Q) inputs are active, and the magnitude of the response then 
varies with their sum. Marr & Ullman (I979) extend this model to include directional 
selectivity. 

30 is seen as a light source (Ullman 1976)), and over such ranges this function 
does not depart far from linearity.) At each point in the visual field, there are 
two sizes of filter (the minimum required for combining zero-crossings between 

channels), and these correspond to Wilson & Bergen's (I979) N and S chan- 
nels. The one-dimensional projection of the widths w of the central excitatory 
regions of these two channels scales linearly with eccentricity from 3.1' and 
6.2' at the central fovea. 

The basic idea behind our model for the detection of zero-crossings rests on the 

following observations: if an on-centre geniculate cell is active at location P and 
an off-centre cell is active at nearby location Q, then the value of V 2G * I passes 

through zero between P and Q (see figure 9a). Hence, by combining the signals 
from P and Q through a logical AND operation, one can construct an operator for 

detecting when a zero-crossing segment (at some unknown orientation) passes 
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between P and Q (figure 9a). By adding nonlinear AND operations in the longitu- 
dinal direction, one can, in a similar way, construct an operator that detects 
oriented zero-crossing segments. It is easy to see that the pure logical operator of 

figure 9b will respond only to zero-crossing segments whose orientations lie within 
its sensitivity range (shown roughly dotted). We therefore propose: 

(2) Detection and representation of zero-crossing segments. Part of the function 
of one subclass of simple cells is to detect zero-crossing segments. Their re- 

ceptive fields include the construction shown in figure 9b, with the proviso 
that the non-linearities may be weaker than the pure logical ANDS shown 
there. It is, however, a critical feature of this model that the (P AND Q) inter- 
action (figure 9a) across the zero-crossing segment should contain a strong 
nonlinear component and that the longitudinal interaction (e.g. between the 
ends in figure 9b) contains at least a weak nonlinear component. Marr & 
Ullman's (I979) full model for simple cells contains this organization, but 
includes additional machinery for detecting the direction of movement of the 

zero-crossing segment, and it is this that provides a role for the two larger 
transient channels. 

(3) Signalling amplitude. Ideally, the output of the cell should be gated by 
the logical AND function of (2), but its value should be the average local 

amplitude v associated with the zero-crossings along the segment. As we 
saw earlier, this may be found by measuring the average local value of the 

slope of the zero-crossings, which (in suitable units) is equal to the sum of the 

inputs to the cell. 

(4) Sampling density. Finally, for this scheme to be successful, the sampling 
density of the function V2G I must be great enough to ensure that the zero- 

crossings may subsequently be localized accurately enough to account for the 

findings about hyperacuity (see, for example, Westheimer & McKee I977), 
which means roughly to within 5'. This implies an extremely high precision 
of representation, but in layer IV of the monkey's striate cortex, there 
apparently exists a myriad of small, centre-surround, non-oriented cells 
(Hubel & Wiesel 1968). Barlow (I979) and Crick et al. (i980) have suggested 
that these cells may be involved in the reconstruction of the V2G function to 
an adequate precision for hyperacuity. 

The empirical consequences of this overall scheme are set out by Marr & Ullman 

(I979). 
Combination of zero-crossings 

Empirical predictions for psychophysics 
There are several aspects of our algorithm, for combining zero-crossings from 

different channels, that are accessible to psychophysical experiment. They are: 
(a) the phase relations; (b) combination of zero-crossings from different channels, 
and (c) the special cases that arise when zero-crossings lie close to one another. 

(1) Phase relations. Our theory predicts that descriptors need exist only for sets 
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of zero-crossings, from different channels, that coincide spatially (i.e. have a 
phase relation of 0 or or). Interestingly, Atkinson & Campbell (1974) superimposed 
1 and 3 cycles/deg sinusoidal gratings of the same orientation, and found that 
the number of perceptual fluctuations per minute (which they called rate of 
monocular rivalry) was low near the in-phase, 0, and out-of-phase, n, positions, but 
reached a high plateau for intermediate phase positions. They concluded (p.161) 
that the visual system contains a device that 'seems to be designed to respond 
only to 0 and n phase relation. When . . . [it] ... is active, it gives rise to a stable 

percept that is the sum of the two spatial frequency selective channels' (cf. also 
Maffei & Fiorentini i972 a). Our theory would predict these results, if the additional 

assumption were made that units exist that represent explicitly the edge segment 
descriptor formed by combining appropriately arranged zero-crossing segments. 

(2) The parsing process. The main point here is that the description of. an edge 
(its width, amplitude and orientation) can be obtained from the (smallest) channel 
whose zero-crossing there has maximum slope. As Marr (I976b, pp. 496-497) 
observed, this is consistent with Harmon & Julesz's (i973) finding that noise 
bands spectrally adjacent to the spectrum of a picture are most effective at 

suppressing recognition, since these have their greatest effect on mask response 
amplitudes near the important mask sizes. It also explains why removal of the 
middle spatial frequencies from such an image leaves a recognizable image of 
Lincoln behind a visible graticule (see Harmon & Julesz r973). The reason is that 
the zero-crossings from different mask sizes fail to coincide, and the gap in the 

spectrum means that the small bar descriptors fail to account for this discrepancy. 
Hence, the assumption of spatial coincidence cannot be used, and the outputs from 
the different mask sizes are assumed to be due to different physical phenomena. 
Accordingly, they give rise to independent descriptions. 

There is another possible but weaker consequence. If one makes the extra 

assumption, that the selection criterion is implemented by inhibitory connections 
between zero-crossing segment detectors that are spatially coincident and lying 
adjacent in the frequency domain, then one would expect to find an inhibitory 
interaction between channels at the cortical, orientation-dependent level. There is, 
in fact, evidence that this occurs (see, for example, Tolhurst I972; de Valois 

I977a). 
(3) Bar-detectors. Case (2) of our parsing algorithm requires the specific detec- 

tion of close, parallel, zero-crossing segments. This requires the existence of units 

sensitive, at each orientation, to one of the four cases (black bar, white bar, two 
dark edges, two light edges) and sensitive to their width (i.e. the distance separat- 
ing the edges) rather than to spatial frequency characteristics of the whole pattern. 
Adaptation studies that lead to these conclusions for white bars and for black bars 
have recently been published (Burton et al. I977; de Valois I977b). If our algo- 
rithm is implemented by the human visual system, the analogous result should 
hold for the remaining two cases (see figure 7a). 

(4) Blob-detectors and terminations. Case (3) of our parsing algorithm requires 
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the explicit representation of (oriented) blobs and terminations. Units that re- 

present them should be susceptible to psychophysical adaptation, and, in fact, 
Nakayama & Roberts (I972) and Burton & Ruddock (1978) have found evidence 
for units that are sensitive to bars whose length does not exceed three times the 
width. 

Consequences for neurophysiology 
There are several ways of implementing the parsing process that we have 

described, but it is probably not worth setting them out in detail until we have 

good evidence from psychophysics about the parsing algorithm that is actually 
used and we know whether simple cells, in fact, implement the detection of 

zero-crossing segments. Without these pieces of information firm predictions 
cannot be made, but we offer the following suggestions as a possible framework 
for the neural implementation. (1) The four types of 'bar' detectors could be 

implemented at the very first, simple cell level (along the lines of figure 9, but 

being fed by three rows of centre-surround cells instead of two). (2) For relatively 
isolated edges, there should exist oriented edge-segment-detecting neurons that 
combine zero-crossing segment detectors (simple cells) from different channels 
when, and only when, the segments are spatially coincident. (3) Detectors for 
terminations and blobs (doubly-terminated oriented bars) seem to have been found 

already (Hubel & Wiesel I962, I968). Interestingly, Schiller et al. (1976a) found 
that even some simple cells are stopped. Our scheme is consistent with this since 
it requires such detectors at a very early stage. 

DISCUSSION 

The concept of an 'edge' has a partly visual and partly physical meaning. One 
of our main purposes in this article is to make explicit this dual dependence: our 
definition of an edge rests lightly on the early assumptions of theorem I about 
directional derivatives and heavily on the constraint of spatial localization. 

Our theory is based on two main ideas. First, one simplifies the detection of 

intensity changes by dealing with the image separately at different resolutions. 
The detection process can then be based on finding zero-crossings in a second 
derivative operator, which, in practice, can be the (non-oriented) Laplacian. The 

representation at this point consists of zero-crossing segments and their slopes. 
This representation is probably complete and is, therefore, in principle, invertible. 
This had previously been given only an empirical demonstration by Marr and by 
R. Woodham (see Marr I978, fig. 7). 

The subsequent step, of combining information from different channels into 
a single description, rests on the second main idea of the theory, which we formu- 
lated as the spatial coincidence assumption. Physical edges will produce roughly 
coincident zero-crossings in channels of nearby sizes. The spatial coincidence 

assumption asserts that the converse of this is true, that is the coincidence of zero- 
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crossings is sufficient evidence for the existence of a real physical edge. If the 
zero-crossings in one channel are not consistent with those in the others, they are 
probably caused by different physical phenomena, so descriptions need to be 
formed from both sources and kept somewhat separate. 

Finally, the basic idea, that some simple cells detect and represent zero-crossing 
segments and that this is carried out simultaneously at different scales, has some 
implications for Marr & Poggio's (I979) stereo theory. According to various neuro- 

physiological studies (Barlow et al. 1967; Poggio & Fischer 1978; von der Heydt 
et al. 1978), there exist disparity sensitive simple cells. The existence of such cells 
is consistent with our suggestion that they detect zero-crossing segments, but not 
with the idea that they perform a linear convolution equivalent to a directional 
derivative, since it is the primitive symbolic descriptions provided by zero- 
crossing segments that need to be matched between images, not the raw convolu- 
tion values. 
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APPENDIX A 

THEOREM 1 

Let I be an open line segment of the y-axis, containing the origin 0. Suppose 
that f(x, y) is twice continuously differentiable and that N(l) is an open two- 
dimensional neighbourhood of 1. Assume that a2f/ax2 = 0 on 1. Then, if af/ay is 
constant in N(l), the slope of the second directional derivative taken perpendicular 
to I (i.e., the slope of a2f/lx2) is greater than the slope of the zero-crossing along 
any other line through 0. 

Proof 
Consider the line segment Q = (r cos 0, r sin 0) for fixed 0 and values of r 

sufficiently small that Q lies entirely within N(l) (see figure 10). Now writing 
fxx for a2f/ax2 etc., we have 

(a2f/Q2)r,o = (fxx cOS2 0+fxy 2 sin 0 cos 0 +fyy sin2 )r, 0 

= (fxx cS2 0)r,0, 

since the condition of the theorem that fy be constant implies that fxy and fyy are 
both zero. As required, therefore, the above quantity is zero at r = 0 and has 
maximum slope when 0 = 0. 
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FIGURE 10. Diagram for theorems 1 and 2: 1 is a segment of the y-axis, containing the origin; 
N(1) is a neighbourhood of it. Provided that af/ry is constant in N(1), theorem 1 states 
that the orientation of the line of zero-crossings is perpendicular to the orientation at 
which the zero-crossings have maximum slope. 

THEOREM 2 

Let f(x, y) be a real-valued, twice continuously differentiable function on the 

plane. Let I be an open line segment along the axis x = 0. Then the two conditions 

(i) V2f= Oon 

and (ii) 82f/8x2 = 0 on I 

are equivalent if and only if f(, y) is constant or linear on 1. 

Proof 
If f(, y) is linear on 1, /2f/ay2= 0 on 1. Hence, V2f = 0 there implies that 

32f/ax2 = 0 on 1 too. 

Conversely, if 82f/8x2 = V2f = 0 on I, then 22f/ay2 = 0 on 1, and so f(O, y) 
varies at most linearly on 1. 

APPENDIX B 

DOGS and V2G 
V2G is the limit of a DOG 

Wilson's DOG function may be written 

DOG (ce, cr1) = [1/(2ct)WI e] exp (- 2/2rl) - [1/(27t) ci] exp (- x2/2cf), (3) 
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where cer and -i are the excitatory and inhibitory space constants. Writing 
e-r = r, and ori = or + 6cr, the right hand side varies with 

(l/o) exp (- x2/20-2) - [l/(c + 6c)] exp [-x2/2(o + 68r)2] 
= 6ar(a/ ( ) (l/c exp [-x2/2-2]). (4) 

This derivative is equal to - (1/o-2-x2/o4) exp (-x2/2o-2), which equals G" up 
to a constant (text equation 5).) 

Approximation of V2G by a DOG 

The function 

DOG (a-e, j) = [1/(27t)iae] exp (-x2/2o)- [1/(2in)oj] exp (-x2/2r2) (5) 

has Fourier transform 

DOG (o)) = exp (- 2)-e (-- 02/2) (6) 

Notice that Doa ((o) behaves like 02 for values of o that are small compared with 
o-e and Coi, so that these filters, in common with V2G, approximate a second 
derivative operator. 

The problem with using a DOG to approximate V2G is to find a space constant 
that keeps the bandwidth of the filter small and yet allows the filter adequate 
sensitivity: for, clearly, as the space constants approach one another, the contri- 
butions of the excitatory and inhibitory components become identical and the 

sensitivity of the filter is reduced. 
The bandwidths at half sensitivity and at half power and the peak sensitivity 

all depend together on the value of o-i/oe in a way that is shown in figure 11. 
From this we see that: (i) the bandwidth at half sensitivity increases very slowly 
up to about oi/-e = 1.6, increases faster from there to cr/ie, = 3.0, and is 
thereafter approximately constant; (ii) the peak sensitivity of the filter is desultory 
for small o'i/o-e, reaching about 33 % at -ci/cre = 1.6. Since our aim is to create a 
narrow bandpass differential operator, we should choose o-i/o-e to minimize the 
bandwidth. Since the bandwidth is approximately constant for oji/oe < 1.6, and 
since sensitivity is low there, the minimal value one would in practice choose for 

ori/re is around 1.6, giving a half-sensitivity bandwidth of 1.8 octaves and a 
half power bandwidth of 1.3 octaves. 
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FIGURE 11. The values of certain parameters associated with difference-of-Gaussian (DOG) 
masks, with excitatory and inhibitory space constants 0e and a,. (a) For various values 
of ore/ai, we show the half-sensitivity bandwidth ( + ) and the half-power bandwidth (0) of 
the filter. In (b) is shown its peak sensitivity in the Fourier plane. (The peak sensitivity 
of the excitatory component alone equals 100 % on this scale.) (c) The arguments in the 
appendix show that the best engineering approximation to V2 G using a DOG occurs with 
oi/?e around 1.6. In figure (c), this particular DOG is shown dotted against the operator 
V2G with the appropriate o. The two profiles are very similar. 
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