Chapter 11

THE GEOMETRY OF
MULTIPLE VIEWS

Despite the wealth of information contained in a photograph, the depth of a scene
point along the corresponding projection ray is not directly accessible in a single
image. With at least two pictures, on the other hand, depth can be measured
through triangulation. This is of course one of the reasons why most animals have
at least two eyes and/or move their head when looking for friend or foe, as well
as the motivation for equipping autonomous robots with stereo or motion analysis
systems. Before building such a program, we must understand how several views of
the same scene constrain its three-dimensional structure as well as the corresponding
camera configurations. This is the goal of this chapter.

In particular, we will elucidate the geometric and algebraic constraints that hold
among two, three, or more views of the same scene. In the familiar setting of binoc-
ular stereo vision, we will show that the first image of any point must lie in the plane
formed by its second image and the optical centers of the two cameras. This epipo-
lar constraint can be represented algebraically by a 3 x 3 matrix called the essential
matriz when the intrinsic parameters of the cameras are known, and the funda-
mental matriz otherwise. Three pictures of the same line will introduce a different
constraint, namely that the intersection of the planes formed by their preimages
be degenerate. Algebraically, this geometric relationship can be represented by a
3 x 3 x 3 trifocal tensor. More images will introduce additional constraints, for
example four projections of the same point will satisfy certain quadrilinear rela-
tions whose coefficients are captured by the quadrifocal tensor, etc. Remarkably,
the equations satisfied by multiple pictures of the same scene feature can be set up
without any knowledge of the cameras and the scene they observe, and a number of
methods for estimating their parameters directly from image data will be presented
in this chapter.

Computer vision is not the only scientific field concerned with the geometry
of multiple views: the goal of photogrammetry, already mentioned in Chapter 5,
is precisely to recover quantitative geometric information from multiple pictures.
Applications of the epipolar and trifocal constraints to the classical photogrammetry
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problem of transfer (i.e., the prediction of the position of a point in an image given its
position in a number of reference pictures) will be briefly discussed in this chapter,
along with some examples. Many more applications in the domains of stereo and
motion analysis will be presented in latter chapters.

11.1 Two Views
11.1.1 Epipolar Geometry

Consider the images p and p’ of a point P observed by two cameras with optical
centers O and O'. These five points all belong to the epipolar plane defined by the
two intersecting rays OP and O'P (Figure 11.1). In particular, the point p’ lies
on the line I’ where this plane and the retina II’ of the second camera intersect.
The line I’ is the epipolar line associated with the point p, and it passes through
the point €’ where the baseline joining the optical centers O and O’ intersects II'.
Likewise, the point p lies on the epipolar line ! associated with the point p’, and
this line passes through the intersection e of the baseline with the plane II.

P

o o0
Figure 11.1. Epipolar geometry: the point P, the optical centers O and O’ of the two
cameras, and the two images p and p’ of P all lie in the same plane.

The points e and €’ are called the epipoles of the two cameras. The epipole €’ is
the (virtual) image of the optical center O of the first camera in the image observed
by the second camera, and vice versa. As noted before, if p and p’ are images of the
same point, then p’ must lie on the epipolar line associated with p. This epipolar
constraint plays a fundamental role in stereo vision and motion analysis.

Let us assume for example that we know the intrinsic and extrinsic parameters
of the two cameras of a stereo rig. We will see in Chapter 12 that the most difficult
part of stereo data analysis is establishing correspondences between the two images,
i.e., deciding which points in the right picture match the points in the left one.
The epipolar constraint greatly limits the search for these correspondences: indeed,
since we assume that the rig is calibrated, the coordinates of the point p completely
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determine the ray joining O and p, and thus the associated epipolar plane OO’p
and epipolar line. The search for matches can be restricted to this line instead of
the whole image (Figure 11.2). In two-frame motion analysis on the other hand,
each camera may be internally calibrated, but the rigid transformation separating
the two camera coordinate systems is unknown. In this case, the epipolar geometry
obviously constrains the set of possible motions. The next sections explore several
variants of this situation.

o 0

Figure 11.2. Epipolar constraint: given a calibrated stereo rig, the set of possible
matches for the point p is constrained to lie on the associated epipolar line I’.

11.1.2 The Calibrated Case

Here we assume that the intrinsic parameters of each camera are known, so p = p.
Clearly, the epipolar constraint implies that the three vectors O_1>7, W , and O—>O’
are coplanar. Equivalently, one of them must lie in the plane spanned by the other
two, or
0p-[00' x O'p] = 0.
We can rewrite this coordinate-independent equation in the coordinate frame
associated to the first camera as

p- [t x (Rp)], (11.1.1)

where p = (u,v,1)T and p’ = (v/,v’,1)T denote the homogenous image coordinate
vectors of p and p’, t is the coordinate vector of the translation OO’ separating the
two coordinate systems, and R is the rotation matrix such that a free vector with
coordinates w’ in the second coordinate system has coordinates Rw’ in the first
one (in this case the two projection matrices are given in the coordinate system
attached to the first camera by (Id 0) and (RT, —RTt)).

Equation (11.1.1) can finally be rewritten as

p'Ep =0, (11.1.2)
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where € = [t«]R, and [ax] denotes the skew-symmetric matrix such that [ax]|z =
a x x is the cross-product of the vectors @ and . The matrix £ is called the essential
matriz, and it was first introduced by Longuet-Higgins [?]. Its nine coefficients are
only defined up to scale, and they can be parameterized by the three degrees of
freedom of the rotation matrix R and the two degrees of freedom defining the
direction of the translation vector t.

Note that £p’ can be interpreted as the coordinate vector representing the epipo-
lar line associated with the point p’ in the first image: indeed, an image line [ can
be defined by its equation au + bv + ¢ = 0, where (u, v) denote the coordinates of a
point on the line, (a, b) is the unit normal to the line, and —c is the (signed) distance
between the origin and [. Alternatively, we can define the line equation in terms
of the homogeneous coordinate vector p = (u,v,1)T of a point on the line and the
vector I = (a,b,c)T by I -p = 0, in which case the constraint a® + b> = 1 is relaxed
since the equation holds independently of any scale change applied to I. In this con-
text, (11.1.2) expresses the fact that the point p lies on the epipolar line associated
with the vector £p’. By symmetry, it is also clear that £7p is the coordinate vector
representing the epipolar line associated with p in the second image.

It is obvious that essential matrices are singular since t is parallel to the coordi-
nate vector e of the left epipole, so that £¥e = —RT[ty]e = 0. Likewise, it is easy
to show that €’ is a zero eigenvector of £. As shown by Huang and Faugeras [?],
essential matrices are in fact characterized by the fact that they are singular with
two equal non-zero singular values (see exercises).

11.1.3 Small Motions

Let us now turn our attention to infinitesimal displacements. We consider a moving
camera with translational velocity v and rotational velocity w and rewrite (11.1.2)
for two frames separated by a small time interval 6¢. Let us denote by p = (1, v,0)T
the velocity of the point p, or motion field. Using the exponential representation of
rotations,! we have (to first order):

t=dtv,
R =1d + 6t [wy],
p'=p+tp.

Substituting in (11.1.2) yields
" [0x](Id + 6t [w])(p + 0t p) = 0,
and neglecting all terms of order two or greater in dt yields:

p" ([vx]lwx])p — (P x P) - v =0. (11.1.3)

1 The matrix associated with the rotation whose axis is the unit vector a and whose angle is 6

f .
can be shown to be equal to ¢f[@x] def ;03 %(9[0«])1.
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Equation (11.1.3) is simply the instantaneous form of the Longuet-Higgins rela-
tion (11.1.2) which captures the epipolar geometry in the discrete case. Note that
in the case of pure translation we have w = 0, thus (p x p) - v = 0. In other words,
the three vectors p = op, p and v must be coplanar. If e denotes the infinitesimal
epipole, or focus of expansion, i.e., the point where the line passing through the op-
tical center and parallel to the velocity vector v pierces the image plane, we obtain
the well known result that the motion field points toward the focus of expansion
under pure translational motion (Figure 11.3).

Figure 11.3. Focus of expansion: under pure translation, the motion field at every point
in the image points toward the focus of expansion.

11.1.4 The Uncalibrated Case

The Longuet-Higgins relation holds for internally calibrated cameras, whose intrin-
sic parameters are known so that image positions can be expressed in normalized
coordinates. When these parameters are unknown (uncalibrated cameras), we can
write p = Kp and p’ = K'p’, where K and K’ are 3 x 3 calibration matrices, and
P and p’ are normalized image coordinate vectors. The Longuet-Higgins relation
holds for these vectors, and we obtain

pl Fp' =0, (11.1.4)

where the matrix F = K~TEK'™!, called the fundamental matriz, is not, in general,
an essential matrix.? It has again rank two, and the eigenvector of F (resp. F71)
corresponding to its zero eigenvalue is as before the position e’ (resp. e) of the
epipole. Note that Fp' (resp. FIp) represents the epipolar line corresponding to
the point p’ (resp. p) in the first (resp. second) image.

2Small motions can also be handled in the uncalibrated setting. In particular, Viéville and
Faugeras [?] have derived an equation similar to (11.1.3) that characterizes the motion field of a
camera with varying intrinsic parameters.
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The rank-two constraint means that the fundamental matrix only admits seven
independent parameters. Several choices of parameterization are possible, but the
most natural one is in terms of the coordinate vectors e = (o, )T and €’ = (o/, 5')T
of the two epipoles, and of the so-called epipolar transformation that maps one set
of epipolar lines onto the other one. We will examine the properties of the epipolar
transformation in Chapter 14 in the context of structure from motion. For the time
being, let us just note (without proof) that this transformation is parameterized by
four numbers a, b, ¢, d, and that the fundamental matrix can be written as

b a —af — ba
F = —d —c el + do . (11.1.5)
dB —ba' ¢ —aa —cB6 —dBf'a+afa’ + bad’

11.1.5 Weak Calibration

As mentioned earlier, the essential matrix is defined up to scale by five indepen-
dent parameters. It is therefore possible (at least in principle), to calculate it by
writing (11.1.2) for five point correspondences. Likewise, the fundamental matrix
is defined by seven independent coefficients (the parameters a,b, ¢, d in (11.1.5) are
only defined up to scale) and can in principle be estimated from seven point corre-
spondences. Methods for estimating the essential and fundamental matrices from a
minimal number of parameters indeed exist (see [?] and Section 11.4), but they are
far too involved to be described here. This section addresses the simpler problem
of estimating the epipolar geometry from a redundant set of point correspondences
between two images taken by cameras with unknown intrinsic parameters, a process
known as weak calibration.

Note that the epipolar constraint (11.1.4) is a linear equation in the nine coeffi-
cients of the fundamental matrix F:

Fio
Fis3

Fin Fio Fis u’ For
(u,v,l)(Fm Fao F23> (v’):0<:>(uu',uv',u,vu',vv',v,u',v',1) Fas | =0.
F31 F32 F33 1 Fos
F3
F3a
F33
(11.1.6)

Since (11.1.6) is homogeneous in the coefficients of F, we can for example set
F33 =1 and use eight point correspondences p; <+ p} (i =1, ..,8) to set up an 8 x 8
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system of non-homogeneous linear equations:
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which is sufficient for estimating the fundamental matrix. This is the eight-point
algorithm proposed by Longuet-Higgins [?] in the case of calibrated cameras. It will
fail when the associated 8 x 8 matrix is singular. As shown in [?] and the exercises,
this will only happen, however, when the eight points and the two optical centers
lie on a quadric surface. Fortunately, this is quite unlikely since a quadric surface
is completely determined by nine points, which means that there is in general no
quadric that passes through ten arbitrary points.

When n > 8 correspondences are available, F can be estimated using linear least

squares by minimizing
n

> (! Fp))? (11.1.7)
i=1
with respect to the coefficients of F under the constraint that the vector formed by
these coefficients has unit norm.

Note that both the eight-point algorithm and its least-squares version ignore the
rank-two property of fundamental matrices.®> To enforce this constraint, Luong et
al. [?7; 7] have proposed to use the matrix F output by the eight-point algorithm as
the basis for a two-step estimation process: first, use linear least squares to com-
pute the position of the epipoles e and e’ that minimize |F7e|? and |Fe'|?; second,
substitute the coordinates of these points in (11.1.5): this yields a linear parameter-
ization of the fundamental matrix by the coefficients of the epipolar transformation,
which can now be estimated by minimizing (11.1.7) via linear least squares.

The least-squares version of the eight-point algorithm minimizes the mean-
squared algebraic distance associated with the epipolar constraint, i.e., the mean-
squared value of e(p,p’) = p? Fp' calculated over all point correspondences. This
error function admits a geometric interpretation: in particular, we have

e(p,p') = M(p, Fp') = Xd(p', F'p),

where d(p,1) denotes the (signed) Euclidean distance between the point p and the
line I, and Fp and FTp' are the epipolar lines associated with p and p’. The
scale factors A and )\ are simply the norms of the vectors formed by the first two

3The original algorithm proposed by Longuet-Higgins ignores the fact that essential matrices
have rank two and two equal singular values as well.
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components of Fp' and F'p, and their dependence on the pair of data points
observed may bias the estimation process.

It is of course possible to get rid of the scale factors and directly minimize the
mean-squared distance between the image points and the corresponding epipolar
lines, i.e.,

n
> [ (p;, Fpi) + (0}, F'p,)).

i=1

This is a non-linear problem, regardless of the parameterization chosen for the
fundamental matrix, but the minimization can be initialized with the result of the
eight-point algorithm. This method was first proposed by Luong et al. [?], and
it has been shown to provide results vastly superior to those obtained using the
eight-point method.

Recently, Hartley [?] has proposed a normalized eight-point algorithm and has
also reported excellent results. His approach is based on the observation that the
poor performance of the plain eight-point method is due, for the most part, to poor
numerical conditioning. Thus Hartley has proposed to translate and scale the data
so it is centered at the origin and the average distance to the origin is v/2 pixel.
This dramatically improves the conditioning of the linear least-squares estimation
process. Accordingly, his method is divided into four steps: first, transform the
image coordinates using appropriate translation and scaling operators 7 : p; — p;
and 7’ : p; — p}. Second, use linear least squares to compute the matrix F
minimizing

n
> (B Fp))*.

i=1

Third, enforce the rank-two constraint; this can be done using the two-step method
of Luong et al. described earlier, but Hartley uses instead a technique, suggested
by Tsai and Huang [?] in the calibrated case, which constructs the singular value
decomposition F = USVT of F. Here, S = diag(r, s,t) is a diagonal 3 x 3 matrix
with entries r > s > ¢, and U,V are orthogonal 3 x 3 matrices.* The rank-two
matrix F minimizing the Frobenius norm of F—Fis simply F = Udiag(r, s,0)VT
[?]. Fourth, set F = TTFT’. This is the final estimate of the fundamental matrix.

Figure 11.4 shows weak calibration experiments using as input data a set of 37
point correspondences between two images of a toy house. The data points are
shown in the figure as small discs, and the recovered epipolar lines are shown as
short line segments. The top of the figure shows the output of the least-squares
version of the plain eight-point algorithm, and the bottom part of the figure shows
the results obtained using Hartley’s variant of this method. As expected, the results
are much better in the second case, and in fact extremely close to those obtained
using the distance minimization criterion of Luong et al. [?; ?].

4Singular value decomposition will be discussed in detail in Chapter 13.



