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considers cameras as radiometric devices for measuring light energy, brightness, and
color. Here, we focus instead on purely geometric camera characteristics. After
introducing several models of image formation in Section 1.1—including a brief
description of this process in the human eye in Section 1.1.4—we define the intrinsic
and extrinsic geometric parameters characterizing a camera in Section 1.2, and
finally show how to estimate these parameters from image data—a process known
as geometric camera calibration—in Section 1.3.

1.1 IMAGE FORMATION
1.1.1 Pinhole Perspective

Imagine taking a box, using a pin to prick a small hole in the center of one of its
sides, and then replacing the opposite side with a translucent plate. If you hold that
box in front of you in a dimly lit room, with the pinhole facing some light source,
say a candle, an inverted image of the candle will appear on the translucent plate
(Figure 1.2). This image is formed by light rays issued from the scene facing the
box. If the pinhole were really reduced to a point (which is physically impossible,
of course), exactly one light ray would pass through each point in the plane of the
plate (or #mage plane), the pinhole, and some scene point.

image
plane

In reality, the pinhole will have a finite (albeit small) size, and each point in the
image plane will collect light from a cone of rays subtending a finite solid angle, so
this idealized and extremely simple model of the imaging geometry will not strictly
apply. In addition, real cameras are normally equipped with lenses, which further
complicates things. Still, the pinhole perspective (also called central perspective)
projection model, first proposed by Brunelleschi at the beginning of the fifteenth
century, is mathematically convenient and, despite its simplicity, it often provides
an acceptable approximation of the imaging process. Perspective projection creates
inverted images, and it is sometimes convenient to consider instead a virtual image
associated with a plane lying in front of the pinhole, at the same distance from it
as the actual image plane (Figure 1.2). This virtual image is not inverted but is
otherwise strictly equivalent to the actual one. Depending on the context, it may
be more convenient to think about one or the other. Figure 1.3 (a) illustrates an
obvious effect of perspective projection: the apparent size of objects depends on
their distance. For example, the images b and ¢ of the posts B and C have the
same height, but A and C are really half the size of B. Figure 1.3 (b) illustrates
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FIGURE 1.2: The pinhole imaging model.
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another well-known effect: the projections of two parallel lines lying in some plane
® appear to converge on a horizon line h formed by the intersection of the image
plane IT with the plane parallel to ® and passing through the pinhole. Note that
the line L parallel to IT in ® has no image at all.
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FIGURE 1.3: Perspective effects: (a) far objects appear smaller than close ones: The
distance d from the pinhole O to the plane containing C' is half the distance from O to the
plane containing A and B; (b) the images of parallel lines intersect at the horizon (after
Hilbert and Cohn-Vossen, 1952, Figure 127). Note that the image plane II is behind the
pinhole in (a) (physical retina), and in front of it in (b) (virtual image plane). Most of
the diagrams in this chapter and in the rest of this book will feature the physical image
plane, but a virtual one will also be used when appropriate, as in (b).

These properties are easy to prove in a purely geometric fashion. As usual,
however, it is often convenient (if not quite as elegant) to reason in terms of reference
frames, coordinates, and equations. Consider, for example, a coordinate system
(0,1, 3, k) attached to a pinhole camera, whose origin O coincides with the pinhole,
and vectors ¢ and j form a basis for a vector plane parallel to the image plane II,
itself located at a positive distance d from the pinhole along the vector k (Figure
1.4). The line perpendicular to II and passing through the pinhole is called the
optical axis, and the point ¢ where it pierces II is called the image center. This
point can be used as the origin of an image plane coordinate frame, and it plays an
important role in camera calibration procedures.

Let P denote a scene point with coordinates (X,Y, Z) and p denote its image
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FIGURE 1.4: The perspective projection equations are derived in this section from the
collinearity of the point P, its image p, and the pinhole O.

with coordinates (z,y, z). (Throughout this chapter, we will use uppercase letters
to denotes points in space, and lowercase letters to denote their image projections.)
Since p lies in the image plane, we have z = d. Since the three points P, O, and p
are collinear, we have Op = AOP for some number A, so

oar esanlotd
A
and therefore
. X
=d=,
v (1.1)
y=d=.

1.1.2 Weak Perspective

As noted in the previous section, pinhole perspective is only an approximation of the
geometry of the imaging process. This section discusses a coarser approximation,
called weak perspective, which is also useful on occasion.
Consider the fronto-parallel plane I1y defined by Z = Zy (Figure 1.5). For any
point P in Il we can rewrite Eq. (1.1) as
{ r=—-mX, d

- where m = 7 (1.2)

Physical constraints impose that Zy be negative (the plane must be in front
of the pinhole), so the magnification m associated with the plane Ily is positive.
This name is justified by the following remark: consider two points P and @ in
IIp and their images p and ¢ (Figure 1.5); obviously, the vectors ]@ and ﬁ are
parallel, and we have ||p§|| = m||PQ||. This is the dependence of image size on
object distance noted earlier.
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FIGURE 1.5: Weak-perspective projection. All line segments in the plane Il are projected
with the same magnification.

When a scene’s relief is small relative to its average distance from the camera,
the magnification can be taken to be constant. This projection model is called weak
perspective, or scaled orthography.

When it is a priori known that the camera will always remain at a roughly
constant distance from the scene, we can go further and normalize the image coor-
dinates so that m = —1. This is orthographic projection, defined by

{ ;:5 (1.3)

with all light rays parallel to the k axis and orthogonal to the image plane 7
(Figure 1.6). Although weak-perspective projection is an acceptable model for many
imaging conditions, assuming pure orthographic projection is usually unrealistic.

FIGURE 1.6: Orthographic projection. Unlike other geometric models of the image for-
mation process, orthographic projection does not involve a reversal of image features.
Accordingly, the magnification is taken to be negative, which is a bit unnatural but sim-
plifies the projection equations.
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1.1.3 Cameras with Lenses

Most real cameras are equipped with lenses. There are two main reasons for this:
The first one is to gather light, because a single ray of light would otherwise reach
each point in the image plane under ideal pinhole projection. Real pinholes have a
finite size, of course, so each point in the image plane is illuminated by a cone of
light rays subtending a finite solid angle. The larger the hole, the wider the cone
and the brighter the image, but a large pinhole gives blurry pictures. Shrinking
the pinhole produces sharper images but reduces the amount of light reaching the
image plane, and may introduce diffraction effects. Keeping the picture in sharp
focus while gathering light from a large area is the second main reason for using a
lens.

Ignoring diffraction, interferences, and other physical optics phenomena, the
behavior of lenses is dictated by the laws of geometric optics (Figure 1.7): (1) light
travels in straight lines (light rays) in homogeneous media; (2) when a ray is reflected
from a surface, this ray, its reflection, and the surface normal are coplanar, and the
angles between the normal and the two rays are complementary; and (3) when a
ray passes from one medium to another, it is refracted, i.e., its direction changes.
According to Snell’s law, if r; is the ray incident to the interface between two
transparent materials with indices of refraction n; and ns, and r9 is the refracted
ray, then r1, ro, and the normal to the interface are coplanar, and the angles oy
and as between the normal and the two rays are related by

n1 sin aqp = ng sin as. (1.4)
ooy /
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FIGURE 1.7: Reflection and refraction at the interface between two homogeneous media
with indices of refraction n1 and ns.

In this chapter, we will only consider the effects of refraction and ignore those
of reflection. In other words, we will concentrate on lenses as opposed to catadioptric
optical systems (e.g., telescopes) that may include both reflective (mirrors) and
refractive elements. Tracing light rays as they travel through a lens is simpler
when the angles between these rays and the refracting surfaces of the lens are
assumed to be small, which is the domain of parazial (or first-order) geometric
optics, and Snell’s law becomes nija; ~ noao. Let us also assume that the lens
is rotationally symmetric about a straight line, called its optical axis, and that all
refractive surfaces are spherical. The symmetry of this setup allows us to determine
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FIGURE 1.8: A thin lens. Rays passing through O are not refracted. Rays parallel to the
optical axis are focused on the focal point F’.

the projection geometry by considering lenses with circular boundaries lying in a
plane that contains the optical axis. In particular, consider a lens with two spherical
surfaces of radius R and index of refraction n. We will assume that this lens is
surrounded by vacuum (or, to an excellent approximation, by air), with an index
of refraction equal to 1, and that it is thin, i.e., that a ray entering the lens and
refracted at its right boundary is immediately refracted again at the left boundary.

Consider a point P located at (negative) depth Z off the optical axis, and
denote by (PO) the ray passing through this point and the center O of the lens
(Figure 1.8). It easily follows from the paraxial form of Snell’s law that (PO) is
not refracted, and that all the other rays passing through P are focused by the thin
lens on the point p with depth z along (PO) such that

1 1 1 15
-7 (15)
where f = Q(n—R_l) is the focal length of the lens.

Note that the equations relating the positions of P and p are exactly the same
as under pinhole perspective projection if we take d = z since P and p lie on a ray
passing through the center of the lens, but that points located at a distance —Z
from O will be in sharp focus only when the image plane is located at a distance z
from O on the other side of the lens that satisfies Eq. (1.5), the thin lens equation.
Letting Z — —oo shows that f is the distance between the center of the lens and the
plane where objects such as stars (that are effectively located at Z = —o0) focus.
The two points F' and F’ located at distance f from the lens center on the optical
axis are called the focal points of the lens. In practice, objects within some range
of distances (called depth of field or depth of focus) will be in acceptable focus. As
shown in the problems at the end of this chapter, the depth of field increases with
the f~number of the lens, i.e., the ratio between the focal length of the lens and its
diameter.

Note that the field of view of a camera, i.e., the portion of scene space that
actually projects onto the retina of the camera, is not defined by the focal length
alone but also depends on the effective area of the retina (e.g., the area of film that
can be exposed in a photographic camera, or the area of the sensor in a digital
camera; see Figure 1.9).
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FIGURE 1.9: The field of view of a camera. It can be defined as 2¢, where ¢ 4l arctan %,
a is the diameter of the sensor (film, CCD, or CMOS chip), and f is the focal length of
the camera.
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A more realistic model of simple optical systems is the thick lens. The equa-
tions describing its behavior are easily derived from the paraxial refraction equation,
and they are the same as the pinhole perspective and thin lens projection equations,
except for an offset (Figure 1.10). If H and H' denote the principal points of the
lens, then Eq. (1.5) holds when —Z (resp. z) is the distance between P (resp. p)
and the plane perpendicular to the optical axis and passing through H (resp. H').
In this case, the only undeflected ray is along the optical axis.
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FIGURE 1.10: A simple thick lens with two spherical surfaces.

Simple lenses suffer from a number of aberrations. To understand why, let us
remember that the paraxial refraction model is only an approximation, valid when
the angle o between each ray along the optical path and the optical axis of the
length is small and sin & &~ . This corresponds to a first-order Taylor expansion of
the sine function. For larger angles, additional terms yield a better approximation,
and it is easy to show that rays striking the interface farther from the optical axis
are focused closer to the interface. The same phenomenon occurs for a lens, and
it is the source of two types of spherical aberrations (Figure 1.11 [a]): Consider a
point P on the optical axis and its paraxial image p. The distance between p and
the intersection of the optical axis with a ray issued from P and refracted by the
lens is called the longitudinal spherical aberration of that ray. Note that if an image
plane IT were erected in P, the ray would intersect this plane at some distance from



