
Stereo Imagery.

○ This computation may be relative or absolute based on the information given. 

- An object in the scene may have a corresponding projections (pixels) in each of the stereo 
images. The goal is to compute the depth of the object. 

- If pixel correspondences can be identified, then triangulation can be used to determine 
the depth of the image object associated with the pixel pair.

One goal in computer vision within the context of stereo imagery is the goal of depth 
computation. 

Thus the problem of computing the depth of objects is reduced to finding pixel correspondences 
in our stereo images. The search of pixel correspondences is reduced if we know corresponding 
epipolar lines or if the images have been rectified. 

Rectification.

Assume two corresponding stereo images I0 and I1 have been rectified such that corresponding
epipolar lines are horizontal and collinear (similar rows correspond.) Thus we need only 
compare scanlines between the stereo pair. Thus the problem of computing disparity is 
simplified.

Disparity.

The disparity of corresponding pixels is simply the horizontal offset between correspondences. 
Given this information, depth can be computed.

Finding pixel correspondences in corresponding Image rows (scanlines).

Ordering Constraint-

Uniqueness*: each pixel in Image 0 can only correspond to 1 pixel in Image 1 -

Constraints.

If pixel i in image 0 corresponds to pixel j in image 1, then pixel i+1 in image 0 can only match pixel 
k in image 1 where k > j

Ordering Constraint: monotonic ordering

Simple:  Based on intensities

Feature matching

Windowed (neighborhood) matching.

Pixel matching criterion○

Smoothness penalty for discontinuous (undefined) disparity

This penalty can be relaxed given the context of the image.

"smoothness" constraint -- order.○

Energy minimization approach (we investigate dynamic programming herein)-

How can we determine the "best" matching correspondence sequence?

E_data 

(cost for pixel match)

E_smooth = 

(discontinuity penalty)

Given our constraints, given a correspondence for pixel i in image 0, 
there are 3 cases for correspondences for pixel i+1.

Case 1: Correspondence is found!

If pixel i in image 0 corresponds to 
pixel j in image 1, then pixel i+1 in 
image 0 can only match pixel k in 
image 1 where k > j

Ordering Constraint: monotonic ordering

where y' = y (same row)
Two pixels are in correspondence when (x,y) in image 0 corresponds to (x',y') in image 1,

where x' = x + d, where d is the disparity
and

Observe: this is simply a sequence of correspondences. Without constraints the number of potential 
sequences is large; however, we can impose some intuitive constraints to as to reduce our search space. 

Or something similar

Dynamic Programming for Stereo Correspondence and 
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Given our constraints, given a correspondence for pixel i in image 0, 
there are 3 cases for correspondences for pixel i+1.

Case 1: Correspondence is found!

Correspondence is not found in image 0
Case 2: 

Correspondence is not found in image 1
Case 3: 

Case 4: Repeated cases 2 + 3

If pixel i in image 0 corresponds to 
pixel j in image 1, then pixel i+1 in 
image 0 can only match pixel k in 
image 1 where k > j

Ordering Constraint: monotonic ordering

Example (HW #2)

Given our ordering constraint, we can pose this problem as a recurrence and solve for the "best" 
sequence (the sequence with minimum accrued error) in terms of the best (sub)sequences previously 
determined (based on the ordering constraint). Thus, we need to keep a "backpointer" the best previous 
subsequence; this is analogous to identifying an inferior neighbor.

select 1 of the 3 cases for the current cost selection-

Assuming Uniqueness*

Assuming we want the best path, given our constrained problem, we have the following recurrence for 
cost of subsequence up to decision C(i,j)

Observe: Since our sequence is a monotonic listings of (i,j) pairs we can view all possible matches as a 
move on a grid or table. 

Case 1: "diagonal": … (i,j), (i+1, j+1) … 
Case 2: "down":   … (i,j), (i+1,j) … 
Case 3: "to the right": … (i,j), (i,j+1) … 
Case 4: Repeated case 2 or 3. … (i,j), (i,j+1), (i+1,j) …   OR  … (i,j), (i+1,j), (i,j+1) … OR … 

Ordering Constraint: The ordering constraint restricts which paths are permitted upon this table. All 
possible moves on the grid are 

Observe: Case 4 simply consists of sequentially 
application of Case 2 and 3.  Further note: all other 
"complicated but legal" correspondences are 
composed of sequences of cases 1, 2, and/or 3

Thus, we need not search ALL inferior neighbors (only 
three immediate inferior neighbors.)

Side Note: Horizontal and vertical moves are be 
interpreted as discontinuities when the uniqueness 
constraint is applied or monotonicity is strict, 
otherwise these moves may be interpreted as part of a 
multi-match that also incurs a discontinuity penalty. 

Observe: with our uniqueness constraint (strict monotonicity), we either have a match or discontinuity 
(not both), thus

We will never add the Match Cost (E_data) and Discontinuity Penalty (E_smooth) at the same (i,j). 

Further Observe: Given our previous definition of E_smooth, the resulting value was either 0 or 1. That 
is, it was 1 for horizontal or vertical moves and 0 otherwise. Thus, \lambda would be the penalty for 
discontinuity. We can simply view this as a discontinuity penalty: we either incur the penalty or not 
based on the case.

Some final notes: if we wish to incur a penalty for not mapping all pixels in both images, we should begin 
our reverse scan of backpointers from the lower right corner of the matrix. Otherwise, (if we expect the 
images are slightly offset) it may be a good idea to simply choose the min cost on the last row or last 
column. Note however, if the discontinuity penalty is high enough, we may be forced to pick the lower 
right corner (or near it) anyway. 

Lets try this example again with a lower smoothness penalty.

(Side note: In our previous example 
in class -- we solved the problem 
without the uniqueness constraint, 
thus allowing multi-matching. As a 
result the penalty and match cost 
were added for horizontal and 
vertical moves rather than only 
adding a penalty for such moves.)

To use a dynamic programming solution, we assume that we can compute the total energy (or 
approximate) using an overlapping recurrence.

   Computer Vision Page 2    



Try this one … 
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