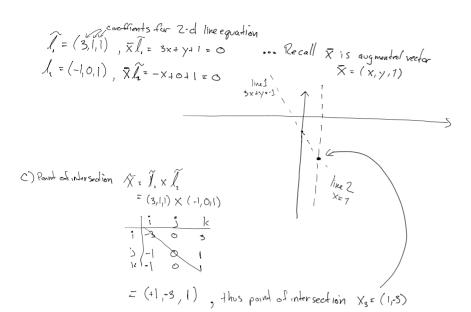
)
$$\tilde{X}_{1}=(2,4,2)=2(1,2,1)$$
. Inhomogeneous form is $X_{1}=\begin{bmatrix}1,2\end{bmatrix}^{T}\in\mathbb{R}^{2}$ $\tilde{X}_{2}=(2,4,1,3)=3(33,43,3,1)$. Inhomogeneous form $X_{2}=\begin{bmatrix}33,43,3\end{bmatrix}^{T}\in\mathbb{R}^{3}$ 2)



Observe for a line \hat{l} : (a,b,c), the vector (a,b) is normal to \hat{l} .

Normalize \hat{l} : $(\hat{n}_{\epsilon},\hat{n}_{\gamma},d)$, such that $\|\hat{n}\|_{=1}$, and d is the distance to the oxigin \hat{l} is convenient to represent \hat{n} using angle \varnothing

line 1 Slope = $\frac{3}{1}$, thus angle $\frac{3}{3}$, inv $\frac{1}{3}$, inv $\frac{1}{3}$ inv $\frac{1$

4) Assume 2 lines li and li , in 2D. Assume A:s 2×3 matrix.

Let li= (nx, ny, di) & li= (nx, ny, alz)

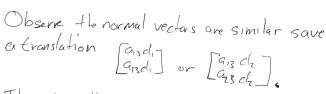
Let Ali= li & Ali= li. Show if li & li are potrallel, then

Li & li are potrallel.

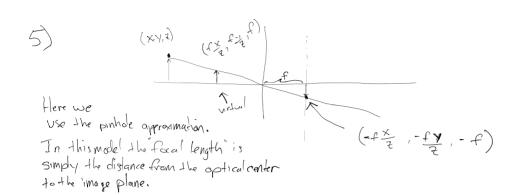
Thus /' C

$$\int_{1}^{2} \left[\frac{a_{11} a_{12} a_{13}}{a_{21} a_{22}} \right] \left[\frac{n_{x}}{n_{y}} \right] = \left[\frac{a_{11} n_{x} + a_{12} n_{y} + a_{23} d_{1}}{a_{21} n_{y} + a_{13} d_{1}} \right]$$

$$\int_{2}^{2} \left[\frac{a_{11} a_{12} a_{23}}{a_{21} a_{22} a_{23}} \right] \left[\frac{n_{x}}{n_{y}} \right] = \left[\frac{a_{11} n_{x} + a_{12} n_{y} + a_{13} d_{1}}{a_{21} n_{x} + a_{22} n_{y} + a_{33} d_{1}} \right]$$



Thus the resulting lines are parallel.



R: A 3d relation metrix with 9 entries. This can be parameterized with 3 angles of rotation across the 3 cardinal axes, or using 1 angle and 1 vector (to be rotated about).

t: 3x1 translation vector.

t: 3x1 Evanslation vector.

Using punhole approximention & using virtuel plane.

f: focal length or distance to image plane from optical center S: skew due to imperfections in comera.

Cx Cy: Eranslation to camera coords.