
COSC579: CNNs in
Computer Vision

Jeremy Bolton, PhD

Assistant Teaching Professor

Outline

I. Neural Networks: a brief review
I. Back Propagation

II. Neural Networks in Computer Vision
I. Convolutional Neural Networks and Structure

II. Overfitting, overtraining, and regularization
I. Norm regularization and sparsity

II. Data augmentation

III. Dropout

III. Thank you and Read
I. Anil Jain (Read standard tutorial)

II. Mittal

III. Goodfellow

Readings

• Nielson CHs 1 – 6

– http://neuralnetworksanddeeplearning.com

• Goodfellow CHs 6 – 9

– http://www.deeplearningbook.org/

http://neuralnetworksanddeeplearning.com/
http://www.deeplearningbook.org/

Biologically Inspired Perceptron

Neural networks

• Neural nets composed of layers of artificial
neurons.
• Each layer computes some function of layer
beneath.
• Inputs mapped in feed-forward fashion to
output.
• Consider only feed-forward neural models at
the moment, i.e. no cycles

An individual neuron (unit)

+

w1

w2

w3

wn

a y=f(a)

• Input: vector x (size n×1)

• Unit parameters: vector w (size n×1)
bias b (scalar)

• Unit activation:



a  x iwi  b
i1

n



• Output:



y  f (a)  f xiwi b
i1

n

 
f(.) is a non-linear function. E.g.:



f (a)  tanh(a) 
ea  ea

ea  ea

Can think of bias as weight w0, connected
to constant input 1: y = f ([w0, w]T [1; x]).

…

b

x1

x2

x3

xn

1

Single layer network
• Input: column vector x (size n×1)

• Layer parameters:
weight matrix W (size n×m)
bias vector b (m×1)

• Units activation:



a Wx  b

• Output:



y  f (a)  f Wx b 

• Output: column vector y (size m×1)

w1,1w1,m

wn,m

ex. 4 inputs, 3 outputs

= +

Non-linearities: sigmoid



f (a)  sigmoid(a) 
1

1ea
• Interpretation as ring rate of neuron

• Bounded between [0,1]

• Saturation for large +ve,-ve inputs

• Gradients go to zero

• Not used in practice

Non-linearities: tanh

• Bounded between [-1,+1]

• Saturation for large +ve,-ve inputs

• Gradients go to zero

• Outputs centered at 0

• Preferable to sigmoid



f (a)  tanh(a) 
ea  ea

ea  ea

tanh(x) = 2 sigmoid(2x) −1

Non-linearities: rectified linear (ReLU)
• Unbounded output (on positive side)

• Efficient to implement:

• Also seems to help convergence (see 6x speedup
vs tanh in Krizhevsky et al.)

• Drawback: if strongly in negative region, unit is
dead forever (no gradient).

• Default choice: widely used in current models.



f (a) max(a,0)



f '(a) 
df

da


0 a  0

1 a 0





Non-linearities: Leaky ReLU
• where a is small (e.g. 0.02)

• Efficient to implement:

• Also known as probabilistic ReLU (PReLU)

• Has non-zero gradients everywhere (unlike ReLU)

• a can also be learned (see Kaiming He et al.
2015).



f '(a) 
df

da


a a  0

1 a  0







f (a) 
max(0,a) a  0

amin(0,a) a  0





Multiple layers

• Neural networks are composed of multiple
layers of neurons.

• Feed Forward has acyclic structure. Basic model
assumes full connections between layers.

• Layers between input and output are called
hidden.

• Various names used:
• Articial Neural Nets (ANN)
• Multi-layer Perceptron (MLP)
• Fully-connected network

• Neurons typically called units.

Example: 3 layer MLP

• By convention, number of layers is hidden +
output (i.e. does not include input).

• So 3-layer model has 2 hidden layers.

• Parameters:
weight matrices W1;W2;W3 bias

vectors b1; b2; b3.

Architecture selection

• Active area of research

• For fully connected models 2 or 3 layers seems the most that can

be “effectively” trained (more later).

• Regarding number of units/layer:

– Num parameters grows quickly eg ~ (units/layer)2 .

– With large units/layer, can easily overtrain.

How to pick number of layers and units/layer?

Architecture

• 1 layer

– Lacking in representational power

• Multiple layers

– Universal approximator

– Many parameters

– May lead to

• Overfitting

• “erratic” behavior

XOR problem (1 layer)

19

Inputs Output

0 0 0

1 0 1

0 1 1

1 1 0

PDP authors pointed to the backpropagation algorithm

as a breakthrough, allowing multi-layer neural networks to be

trained. Among the functions that a multi-layer network can

represent but a single-layer network cannot: the XOR function.

0 1

0

1

Representational power of two-layer network

20In Out
1

2

3

4

5 bias

Representational power
• 1 layer? Linear decision surface.

• 2+ layers? In theory, can represent any function.

Assuming non-trivial non-linearity.
– Bengio 2009,

http://www.iro.umontreal.ca/~bengioy/papers/ftml.pdf

– Bengio, Courville, Goodfellow book

http://www.deeplearningbook.org/contents/mlp.html

– Simple proof by M. Neilsen

http://neuralnetworksanddeeplearning.com/chap4.html

– D. Mackay book

http://www.inference.phy.cam.ac.uk/mackay/itprnn/ps/482.491.pdf

• Design Decision: very wide two layers vs narrow

deep model? In practice, more layers helps.

http://www.iro.umontreal.ca/~bengioy/papers/ftml.pdf
http://www.deeplearningbook.org/contents/mlp.html
http://neuralnetworksanddeeplearning.com/chap4.html
http://www.inference.phy.cam.ac.uk/mackay/itprnn/ps/482.491.pdf

Neural Networks: Networks of Perceptrons

Optimization: (Back Propagation)

• There is no clear cost function nor objective for internal nodes and

corresponding parameters

• There is a clear objective at the classification layer!

• Thus we can compute the gradient at the cost layer (and via

composition of functions) use the chain rule to compute gradient

at internal nodes.

Computing gradients

25



C xn,y; C Fn xn1,wn ,y 

We could write the cost function to get the gradients:

If we compute the gradient with respect to the parameters of
the last layer (output layer) wn, using the chain rule:

 nwww ,,, 21 with



C

wn


C

xn


xn

wn


C

xn


Fn xn1,wn 

wn

(how much the cost changes when we change wn, is the product between how much the cost
changes when we change the output of the last layer, times how much the output changes
when we change the layer parameters.)

Input layer

Hidden layer 1

Hidden layer i

Output layer n

F1(x0, W1)

Fi(xi-1, Wi)

Fn(xn-1, Wn)

x0

x1

xi-1

xi

xn-1

…
…

xn

…
…

(output)

(input)

F1(x0, W1)

F2(x1, W2)

Fi(xi-1, Wi)

Fn(xn-1, Wn)

x0

x1

x2

xi-1

xi

xn-1

…
…

xn(output)

(input)

E

C(Xn,Y)

y

Backpropagation: summary

• Forward pass: for each

training example.

Compute the outputs for

all layers

• Backwards pass: compute

cost derivatives iteratively

from top to bottom:

• Compute gradients and

update weights.



xi  Fi(xi1,wi)



C

x i1


C

x i


Fi(x i1,wi)

x i1



C

x i



C

xn



C

x2



C

x1



C

xi1

ANNs in Computer Vision

• There is a massive amount of literature

– ANNs for OCR

– ANNs for object detection

– ANN for feature generation

• Convolutional Neural Networks

– A common variant used in computer vision

– Uses scale space / convolution pyramids

Perceptrons, 1958

32

• In computer vision, intuitively, we

would like to use spatial

information to identify patterns

• We can use convolutions and

matched filters within the ANN

framework to achieve our goal

Application to
Computer Vision

• Use standard

filters to identify

and learn distinct

patterns in an

image.

• Some models

learn filters as well.

Convolution at input and hidden layers

• Why?

– Local analysis is intuitive in CV

– Vectorizing an image will lead

to many unnecessary

parameters

– Instead: Parameter Sharing and

locality!

Basis of CNN

Use convolution!

CNN: Basic Structure and Idea

• “Convolutional networks are simply neural networks that use
convolution in place of general matrix multiplication in at least one
of their layers.”

Linear filtering pyramid
architecture

38

+

+

+

w1

w2

w3

w4

w5

Convolutional neural network
architecture

39

+

+

+

w1

w2

w3

w4

w5

What kernels to use?

• Some General Approaches

– Randomly select kernels and hope for the best!

– Hand-craft kernels based on apriori knowledge of data and experience

– Learn the “optimal” kernels

• This approach is used more and more today

• Increases the number of parameters dramatically

• Increases training time

Convolutional Neural Network Details

• Kernels are often parameters
– parameter sharing

• Parameter sharing leads to reduced parameters
– (Believe it -- It could be worse)

• Pooling

– Summarize, aggregate, reduce
result from previous layer

– EG. Max-Pooling
Zhou and Chellappa

– Pooling helps to make the representation
invariant to small translations

Gabor Features often used (and learned!)

Regularization

• Regularization in Computer Vision
– Add constraints to solve an ill-posed problem

– Impose a penalty for over-fitting

• Overfitting: Output should change “continuously” as input changes
“continuously”
– Smoothness

• We have seen examples of regularization already
– Smoothness terms in energy minimization

• Disparity Map (Stereo)

• Label Maps (Image Segmentation) Min-Cut (Graphs)

• Active Contours (Variational Methods)

Common Regularization Strategies

• Deep ANNs have many parameters; subject to overfitting
– Simple Example k-means with many parameters

• Regularization
– Pooling

• Max pooling

– Data Augmentation
• Add Noise

– Parameter Sharing

– Sparsity Promotion (wrt parameters)
• L1 and L2 norms; adds term to update equation.

• Bayesian Solution: Sparsity promoting priors

– Dropout

Norm-based Regularization

• Increase generalization ability by reducing chance of overfitting.

• Add a penalty for non-zero parameter
– Penalty often related to norm: L1 or L2

– Increased cost results in driving parameter values to zero thus reduces number
of parameters

• Scheme often used for feature selection

• Similarly, some Bayesian approaches utilize sparsity promoting priors
which have similar results.

Data Augmentation

• The best way to train a classifier to generalize better is to have

more data!

• Data is often limited in practice

• Create “fake” data

– Alter existing training samples: rotation, translation, warping… etc

– Add noise

Parameter Sharing

• Restrict the number of parameters explicitly using intuition

– Most patterns in CV are conceptually, translation invariant.

– Use similar filter during matched filter computations.

• Force sharing of parameters at multiple stages of computation for

multiple purposes

– Used often in CNNs (kernels are shared parameters)

Historic Note: NIPS 2000

• NIPS, Neural Information Processing

Systems, is the premier conference on

machine learning. Evolved from an

interdisciplinary conference to a machine

learning conference.

• For the NIPS 2000 conference:

– title words predictive of paper acceptance:

“Belief Propagation” and “Gaussian”.

– title words predictive of paper rejection:

“Neural” and “Network”.

48

Perceptrons

Minsky and Papert

PDP book Krizhevsky,

Sutskever,

Hinton

AI winter

LeCun conv nets, 1998

49
http://yann.lecun.com/exdb/lenet/index.html

Demos:

http://yann.lecun.com/exdb/lenet/index.html

Scale Space

• Observe.

– Many CNN structures inherently perform

scale space analysis

• One layer: Linear filter applied to input image

• Next layer: subsampling

• Next layer: Linear filter …

LeCun Results

51

Structural Designs

• Shallow may require

more templates

• Deep more powerful

classifier but subject

to overtraining

Krizhevsky et al (NIPS 2012)

• Structure

– 5 convolutional layers

– 3 fully connected layers

– Activation: ReLU

– (See paper)

• Reduce Overtraining by
– Data Augmentation

1. Translate inputs and horizontally mirror
input

2. Randomly perturb RGB values

– Dropout
• Randomly zero-out neurons during

feedforward and backprop.
– (Noted significantly less overtraining with

Drop Out.)

Slide from Rob Fergus, NYU

Krizhevsky, Sutskever, and Hinton, NIPS 2012

59

60

Test Nearby images, according to NN features

Krizhevsky, Sutskever, and Hinton, NIPS 2012

In Summary

• ANNs have a rich history in machine learning

• CNNs are an intuitive variant for Computer Vision tasks

– Utilize convolutions of kernels

– Learning / Classification is robust given comprehensive kernels

– Understanding learned parameters: more “accessible” than generic ANNs

– Regularization and structure are key factors in deep networks

Projects

• Experimental Design with CNNs

– What features are used?

– What structure is used?

• Shallow (with more units per layer) or deep (with less units per layer)

– What regularization scheme is used?

COSC579: Appendix

Jeremy Bolton, PhD

Assistant Teaching Professor

