COSC579: CNNs in
Computer Vision

Jeremy Bolton, PhD
Assistant Teaching Professor

FORGETOW:
gUNI VERSIT Tg\c

Outline

l. Neural Networks: a brief review
l. Back Propagation

. Neural Networks in Computer Vision
l. Convolutional Neural Networks and Structure

. Overfitting, overtraining, and regularization
l. Norm regularization and sparsity
Il. Data augmentation
1. Dropout

Ill. Thank you and Read

l. Anil Jain (Read standard tutorial)
Il. Mittal
lll. Goodfellow

FEORGETOW:
gUZVI VERSI ZTIL:Z\C

Readings

e NielsonCHs 1-6
— http://neuralnetworksanddeeplearning.com

 Goodfellow CHs 6 -9
— http://www.deeplearningbook.org/

FEORGETOW:
gUZVI VERSI ZTIL:Z\C

http://neuralnetworksanddeeplearning.com/
http://www.deeplearningbook.org/

Biologically Inspired Perceptron

FEORGETOW:
gUZVI VERSI 7*1'2(

Neural networks

* Neural nets composed of layers of artificial
neurons.

* Each layer computes some function of layer
beneath.

* Inputs mapped in feed-forward fashion to
output.

* Consider only feed-forward neural models at
the moment, i.e. no cycles

FEORGETOW:
gUZVI VERSI ZTIL:Z\C

An individual neuron (unit)
1

* Input: vector x (size nx1)

* Unit parameters: vector w (size nx1)
bias b (scalar)

A——1 y=f(a)

* Unit activation: a= Zn 1X_Wi +b
1=

n N
Loutput: y = f(a) = f@ X, +b
= /

f(.) is a non-linear function. E.g.:

e? —e™®

f(a) =tanh(a) = e

Can think of bias as weight w,, connected

to constant input 1: y =f ([w, w]T [1; x]). GEORGETOWN(,
UNIVERSITY

Single layer network

* Input: column vector x (size nx1)

Input Output
layer layer

* Output: column vector y (size mx1)

* Layer parameters:
weight matrix W (size nxm)
bias vector b (mx1)

* Units activation: a=Wx +b

ex. 4 inputs, 3 outputs

H-EEEENE-: BN

* Output: y=f(@)="f (VVX + b) g%%ﬂ?%

Non-linearities: sigmoid

1

_a . .
+€ * Interpretation as ring rate of neuron

f (a) =sigmoid(a) =]

A

' . * Bounded between [0,1]
y = sigmoid(x)
1 * Saturation for large +ve,-ve inputs

* Gradients go to zero

0.5 * Not used in practice

6 4 D > 4 6

FEORGETOW:
gUZVI VERSI ZTIL:Z\C

Non-linearities: tanh

e* —e™®
f(a) =tanh(a) =———;
e +¢€ * Bounded between [-1,+1]
J * Saturation for large +ve,-ve inputs
— tanh(z
1+ Y () * Gradients go to zero
* Qutputs centered at 0
. : > * Preferable to sigmoid
2 4 6

tanh(x) = 2 sigmoid(2x) -1

FEORGETOW:
gUZVI VERSI ZTIL:Z\C

Non-linearities:

f (a) =max(a,0)

rectified linear (ReLU)

* Unbounded output (on positive side)

* Efficient to implement:

X | df |0 a<0
6 '@ 1 axo
y = ReLU(z) a =
* Also seems to help convergence (see 6x speedup
4| vs tanh in Krizhevsky et al.)
* Drawback: if strongly in negative region, unit is
5 | dead forever (no gradient).
 Default choice: widely used in current models.
6 —4 -2 2 4 6

FEORGETOW:
gUZVI VERSI ZTIL:Z\C

Non-linearities: Leaky ReLU

max(O a) a>0 * where o is small (e.g. 0.02)
f(a) = |
() amin(O, a) a<0 e Efficient to implement:
. df —a a<0
A f (a) = — =
6+ da 1 a>0
y|= PRelLU(z) -
* Also known as probabilistic ReLU (PReLU)
41 * Has non-zero gradients everywhere (unlike ReLU)
* o, can also be learned (see Kaiming He et al.
2 2015).
- : : >
—6 —4 -2 2 4 6

FEORGETOW:
gUZVI VERSI ZTIL:Z\C

Multiple layers

* Neural networks are composed of multiple Input Hidden Output
layers of neurons. layer layer layer

* Feed Forward has acyclic structure. Basic model
assumes full connections between layers.

* Layers between input and output are called
hidden.

* Various names used:
* Articial Neural Nets (ANN)
* Multi-layer Perceptron (MLP)
* Fully-connected network

* Neurons typically called units.

FEORGETOW:
gUZVI VERSI ZTIL:Z\C

Example: 3 layer MLP

* By convention, number of layers is hidden + Input Hiddenl Hidden2 Output
output (|e does not include input). |ayer |ayer |ayer |ayer

* So 3-layer model has 2 hidden layers.

* Parameters:
weight matrices W ;W,;W; bias
vectors by; b,; bs.

FEORGETOW:
gUZVI VERSI 7*1'2(

Architecture selection

How to pick number of layers and units/layer?

 Active area of research

« For fully connected models 2 or 3 layers seems the most that can
be “effectively” trained (more later).

« Regarding number of units/layer:

— Num parameters grows quickly eg ~ (units/layer)? .
— With large units/layer, can easily overtrain.

FEORGETOW:
gUZVI VERSI ZTIL:Z\C

Architecture

« 1 layer
— Lacking in representational power

* Multiple layers
— Universal approximator
— Many parameters

— May lead to
» Overfitting
 “erratic” behavior

FEORGETOW:
gUZVI VERSI ZTIL:Z\C

XOR problem (1 layer)

Inputs Output

0 O 0

1 0 1

0 1 1 <

1 1 0 0 1

PDP authors pointed to the backpropagation algorithm
as a breakthrough, allowing multi-layer neural networks to be
trained. Among the functions that a multi-layer network can

represent but a single-layer network cannot: the XOR function.

19 FEORGETOW:
g(ﬂVIVERSI 7*1'2\('

Representational power of two-layer network

Figure 5.3 lllustration of the ca-
pability of a multilayer perceptron
to approximate four different func-
tions comprising (a) f(z) = =, (b)
f(z) = sin(z), (), f(z) = |z,
and (d) f(z) = H(z) where H(z)
is the Heaviside step function. In
each case, N = 50 data points,
shown as blue dots, have been sam-
pled uniformly in z over the interval
(—1,1) and the corresponding val-
ues of f(z) evaluated. These data
points are then used to train a two-
layer network having 3 hidden units
with ‘tanh’ activation functions and
linear output units. The resuiting
network functions are shown by the
red curves, and the outputs of the
three hidden units are shown by the

Neural Networks for \
Pattern Recognition

Christopher M. Bishop (d)

i—a bias

¥
5 = Z wis tanh(wi;21 + woi) ZET O,
i "ERST Tl'g('

Representational power
« 1 layer? Linear decision surface.

« 2+ layers? In theory, can represent any function.

Assuming non-trivial non-linearity.
— Bengio 2009,
http://www.iro.umontreal.ca/~bengioy/papers/ftml.pdf

— Bengio, Courville, Goodfellow book
http://www.deeplearningbook.org/contents/mip.html

— Simple proof by M. Neilsen

http://neuralnetworksanddeeplearning.com/chap4.html

— D. Mackay book
http://www.inference.phy.cam.ac.uk/mackay/itprnn/ps/482.491 .pdf

« Design Decision: very wide two layers vs narrow
deep model? In practice, more layers helps.

FEORGETOW:
gUZVI VERSI ZTIL:Z\C

http://www.iro.umontreal.ca/~bengioy/papers/ftml.pdf
http://www.deeplearningbook.org/contents/mlp.html
http://neuralnetworksanddeeplearning.com/chap4.html
http://www.inference.phy.cam.ac.uk/mackay/itprnn/ps/482.491.pdf

Neural Networks: Networks of Perceptrons

!
i Neural networks] B FE

J Feed fﬂ-r'-'-'a d netwaor ks‘ : | Recurren 'tl'*FEedI:-acl-t Etwclrlﬁ L\

| single-layer Multilayer || Radi IBa.s Competitive || Kohonen's Hopfield || o
: perceptron perceptron | Function nets networks I' S0M | netwaork ' madels
S T : — i

{“n 1 C:ou-H--

-—l--t}l.-

§§%—i%}

FEORGETOW:
glﬂVIVERSI 7*1'2(

Optimization: (Back Propagation)

* There Is no clear cost function nor objective for internal nodes and
corresponding parameters

* There Is a clear objective at the classification layer!

* Thus we can compute the gradient at the cost layer (and via
composition of functions) use the chain rule to compute gradient
at internal nodes.

FEORGETOW:
gUZVI VERSI ZTIL:Z\C

Computing gradients (output) | x,

Output layer n
We could write the cost function to get the gradients:

C(X,.Y:0)= C(Fn (Xn—l""’n)y)

_ Hidden layer i
with - g = [W1’W2""’Wn]

If we compute the gradient with respect to the parameters of
the last layer (output layer) w,, using the chain rule:

Hidden layer 1

L & & & Fo(%2W,)
AN, K, AN X, AN

n Input layer (input) Xo

(how much the cost changes when we change wn, is the product between how much the cost
changes when we change the output of the last layer, times how much the output changes
when we change the layer parameters.)

EORGETOW,
2 glﬂVIT/ERSITl'g\C

Backpropagation: summary ;

« Forward pass: for each
training example.
Compute the outputs for

all layers y _ g (x W)

« Backwards pass: compute
cost derivatives iteratively
from top to bottom:

X &L FX,W)
Ky &K Ky

« Compute gradients and
update weights.

(input) Xo

FORGETOW,
g\UZVIT/ERSITl'g\C’

ANNs 1in Computer Vision

* There Is a massive amount of literature
— ANNSs for OCR
— ANNSs for object detection
— ANN for feature generation

« Convolutional Neural Networks
— A common variant used in computer vision
— Uses scale space / convolution pyramids

FEORGETOW:
gUZVI VERSI ZTIL:Z\C

Perceptrons, 1958

* |n computer vision, intuitively, we
would like to use spatial
iInformation to identify patterns

 \We can use convolutions and
matched filters within the ANN
framework to achieve our goal

32 FEORGETOW:
gUZVI VERSI fZTI:’Z\C

Application to
Computer Vision

Use standard
filters to identify
and learn distinct
patterns in an
Image.

Some models
learn filters as well.

mage Gradient Imag

\ ; B
\: S ()\ferlupping Blocks

- :,.\,\1 : LKiN ormatiz: u n:,

= - ESNIAE= SN 07
BIIUHH'\\"
:

Textons

ASNINT Y

Qi AcEae=
L SOR T
EEAT=
N [P
EemhO@ Ul

Convolution at input and hidden layers

 Why?
— Local analysis is intuitive in CV

— Vectorizing an image will lead
to many unnecessary
parameters

— Instead: Parameter Sharing and
locality!

Example: 1000x1000 image
1M hidden units

= 10712 parameters!!!

- Spatial correlation is local
- Better to put resources elsewhere!

FEORGETOW:
glﬂVIVERSI 7*1'2(

Basis of CNN

LOCALLY CONNECTED NEURAL NET

Example: 1000x1000 image
1M hidden units
Filter size: 10x10
100M parameters

Filter/Kernel/Receptive field:
input patch which the hidden unit is
connected to.

EORGETOW:
gU}VIV.ERSI Tl.g\c

Use convolution!

input neurans inpuat nearons

11 goo00 o frs 13 er
e i
B e COPTe 0
r— gghuu ——

FEORGETOW:
glﬂVIVERSI 7*1'2(

CNN: Basic Structure and Idea

Convolutional Detector Normalization
Output:

Feature Map

Stage: Affine Stage: Pooling Stage Stage
Transform Nonlinearity (Optional)

« “Convolutional networks are simply neural networks that use
convolution in place of general matrix multiplication in at least one

' ” EORGETOW,
of their layers. GEORGETOWN

Linear jiltering pyramia

architecture
;1&

5 @
Do
i v GERRSELC

Convolutional neural network
architecture

39 FORGETOW,
gU.NI VERSIT Tl'g\c’

What kernels to use?

« Some General Approaches
— Randomly select kernels and hope for the best!
— Hand-craft kernels based on apriori knowledge of data and experience

— Learn the “optimal” kernels
« This approach is used more and more today
 Increases the number of parameters dramatically
* Increases training time

FEORGETOW:
gUZVI VERSI ZTIL:Z\C

Convolutional Neural Network Details

Kernels are often parameters
— parameter sharing

Parameter sharing leads to reduced parameters
— (Believe it -- It could be worse)

Pooling

— Summarize, aggregate, reduce
result from previous layer

Simple layer terminology

Next laver

— EG. Max-Pooling
Zhou and Chellappa

Pooling layer

y

— Pooling helps to make the representation
invariant to small translations

Detector layer: Nonlinearity

e.g., rectified linear

A

POOLING STAGE

Convolution layer:

Affine transforin

w?

.
~
.

OJONO!

oo

0.3 0.1 1 0.2

T

Input to layers

O5O0N050
0, 0NOsO

0,08050
G -G
OO -0

FEORGETOW:
gUZVI VERSI ZTIL:Z\C

Gabor Features often used (and learned!)

Figure 9.18: Gabor functions with a variety of parameter settings.

White indicates

Figure 9.19: Many machine learning algorithms learn features that detect edges or specific
colors of edges when applied to natural images. These feature detectors are reminiscent of

the Gabor functions l\no“ 1n to be present in primary visual cortex. (L(ﬁ)\\ ‘eights learne d
SOV [P, [P

Eiersnne demcivevararsaansd Lo

TP VLU L ToEe

NP (SN (OSSO

B A P, D

IR, [

K W

EORGETOW:
gU}VIV.ERSI Tl.g\c

Regularization

Regularization in Computer Vision
— Add constraints to solve an ill-posed problem
— Impose a penalty for over-fitting

Overfitting: Output should change “continuously” as input changes
“continuously”

— Smoothness

We have seen examples of regularization already

— Smoothness terms in energy minimization
» Disparity Map (Stereo) ' |
« Label Maps (Image Segmentation) Min-Cut (Graphs)
» Active Contours (Variational Methods)

+ 007 x

T sign(VJ (0, 2, y)) esign(Vg J(6,x.y))

y ="panda” “nematode” “oibbon”
w/ 57.7% w/ 8.2% w/ 99.3%
confidence confidence confidence

Common Regularization Strategies

Deep ANNs have many parameters; subject to overfitting
— Simple Example k-means with many parameters

Reqgularization
— Pooling
« Max pooling
— Data Augmentation
« Add Noise
— Parameter Sharing
— Sparsity Promotion (wrt parameters)

L1 and L2 norms; adds term to update equation.
» Bayesian Solution: Sparsity promoting priors

— Dropout

FEORGETOW:
gUZVI VERSI ZTIL:Z\C

Norm-based Regularization

Increase generalization ability by reducing chance of overfitting.

Add a penalty for non-zero parameter
— Penalty often related to norm: L1 or L2

— Increased cost results in driving parameter values to zero thus reduces number
of parameters

Scheme often used for feature selection

Similarly, some Bayesian approaches utilize sparsity promoting priors
which have similar results.

FEORGETOW:
gUZVI VERSI ZTIL:Z\C

Data Augmentation

* The best way to train a classifier to generalize better is to have
more data!

« Data iIs often limited in practice

 Create “fake” data

— Alter existing training samples: rotation, translation, warping... etc
— Add noise

FEORGETOW:
gUZVI VERSI ZTIL:Z\C

Parameter Sharing

* Restrict the number of parameters explicitly using intuition
— Most patterns in CV are conceptually, translation invariant.
— Use similar filter during matched filter computations.

* Force sharing of parameters at multiple stages of computation for
multiple purposes
— Used often in CNNSs (kernels are shared parameters)

FEORGETOW:
gUZVI VERSI ZTIL:Z\C

Historic Note: NIPS 2000

* NIPS, Neural Information Processing
Systems, Is the premier conference on
machine learning. Evolved from an
interdisciplinary conference to a machine
learning conference.

 For the NIPS 2000 conference:

—title words predictive of paper acceptance:
“Belief Propagation” and “Gaussian”.

—title words predictive of paper rejection:
“Neural” and "Network”.

Percepisons PDPsbook
f«\m [\ 48 GEORGETOWN_
Minsky apert Alwinter UNIVERSITY

LeCun conv nets, 1998

PROC. OF THE IEEE, NOVEMBER 1998 7

C3: f. maps 16@10x10

C1: feature maps S4:f. maps 16@5x5

INPUT
30y32 6@28x28

C5:layer rg.|aver OUTPUT
120 a1 7 Ho

|
Full conﬂection Gaussian connections

Convolutions Subsampling Convolutions Subsampling Full connection

Fig. 2. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units
whose weights are constrained to be identical.

Demos:
http://yann.lecun.com/exdb/lenet/index.html

49 EORGETOW:
gU}VIV.ERSI Tl.g\c

http://yann.lecun.com/exdb/lenet/index.html

Scale Space

« Observe.

— Many CNN structures inherently perform
scale space analysis
* One layer: Linear filter applied to input image
* Next layer: subsampling
* Next layer: Linear filter ...

TR #16 |

)
312 256 128

)

3

3

FEORGETOW:
glﬂVIT/.ERSI Tl'g('

LeCun Results

PROC. OF THE IEEE, NOVEMBER 1998

mmu.mwmu.ruu

FEORGETOW:
glﬂVIT/.ERSI Tl'g('

51

wtput label represents

N\._%d

ng\

01-5, The grey-level of the «

correctly recognized by LeN

Fig. 13, Examples of unusual, distorted, and noisy characters

the penalty (lighter for higher penalties).

Structural Designs

« Shallow may require
more templates

Given a dictionary of simple non-linear functions: £,,---, &,

* Proposal 1: linear combination f(x)%zfg;

« Deep more powerful 1
classifier but subject N B =T
to overtraining * Proposal 2: composition f(x)~g,(g,(...

B

FEORGETOW:
gUZVI VERSI ZTIL:Z\C

Krizhevsky et al (NIPS 2012)

* Reduce Overtraining by

— Data Augmentation
1. Translate inputs and horizontally mirror
* Structure input

_ 2. Randomly perturb RGB values
— 5 convolutional layers

— 3 fully connected layers — Dropout

« Randomly zero-out neurons during

— Activation: RelLU feedforward and backprop.
] — (Noted significantly less overtraining with
_ (See paper) Drop Out.)
. ==l ['K
2\ 3“'\-'.'"":-':-. o 3
5 AN
2w | T a 192 128 2048 \/ z0as \dense
o< 57 128 S e -]
N1
224 5 o -
- dense’| |dense
... -'.'.‘.'.'_:_.-',55 1000
11 192 192 128 Max L |
224\l rige Max 128 Max pooling 294 2048 gEORGETOWN
of 4 pocling poaling UNIVERSITY

ImageNet Classification 2012

* Krizhevsky et al. -- 16.4% error (top-5)

* Next best (non-convnet) — 26.2% error

35

Krizhevsky, Sutskever, and Hinton, NIPS 2012

container s

motor scooter

container ship motor scooter -

black widow lifeboat go-kart jaguar
cockroach amphibian moped cheetah

tick fireboat bumper car snow leopard

starfish drilling platform golfcart Egyptian cat
' - -

Y ' .
. “.

rile musnroom cnerry adagascar cat
convertible agaric dalmatian anai)-el monkey

] grille mushroom grape spider monkey
=] pickup jelly fungus elderberry titi
beach wagon gill fungus |ffordshire buliterrier indri
fire engine | dead-man’'s-fingers currant howler monkey

59

FEORGETOW:
glﬂVIT/.ERSI Tl'g('

Test Nearby images, according to NN features

Krizhevsky, Sutskever, and Hinton, NIPS 2012 % GEQRGEIOWIN

In Summary

* ANNSs have a rich history in machine learning

 CNNs are an intuitive variant for Computer Vision tasks
— Utilize convolutions of kernels
— Learning / Classification is robust given comprehensive kernels
— Understanding learned parameters: more “accessible” than generic ANNs
— Regularization and structure are key factors in deep networks

FEORGETOW:
gUZVI VERSI ZTIL:Z\C

Projects

« Experimental Design with CNNs
— What features are used?

— What structure is used?
« Shallow (with more units per layer) or deep (with less units per layer)

— What regularization scheme is used?

FEORGETOW:
gUZVI VERSI ZTIL:Z\C

COSC579: Appendix

Jeremy Bolton, PhD
Assistant Teaching Professor

FORGETOW:
gUNI VERSIT Tg\c

