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Readings

• Nielson CHs 1 – 6

– http://neuralnetworksanddeeplearning.com

• Goodfellow CHs 6 – 9

– http://www.deeplearningbook.org/

http://neuralnetworksanddeeplearning.com/
http://www.deeplearningbook.org/


Biologically Inspired Perceptron



Neural networks

• Neural nets composed of layers of artificial 
neurons.
• Each layer computes some function of layer 
beneath.
• Inputs mapped in feed-forward fashion to 
output.
• Consider only feed-forward neural models at 
the moment, i.e. no cycles



An individual neuron (unit)
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• Input: vector x (size n×1)

• Unit parameters: vector w (size n×1)
bias b (scalar)

• Unit activation:



a  x iwi  b
i1
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• Output:
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y  f (a)  f xiwi b
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 
f(.) is a non-linear function. E.g.:



f (a)  tanh(a) 
ea  ea

ea  ea

Can think of bias as weight w0, connected 
to constant input 1:  y = f ([w0, w]T [1; x ]).
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Single layer network
• Input: column vector x (size n×1)

• Layer parameters: 
weight matrix W (size n×m)
bias vector b (m×1)

• Units activation:



a Wx  b

• Output:



y  f (a)  f Wx b 

• Output: column vector y (size m×1)

w1,1w1,m

wn,m

ex. 4 inputs, 3 outputs

= +



Non-linearities: sigmoid



f (a)  sigmoid(a) 
1

1ea
• Interpretation as ring rate of neuron

• Bounded between [0,1]

• Saturation for large +ve,-ve inputs

• Gradients go to zero

• Not used in practice



Non-linearities: tanh

• Bounded between [-1,+1]

• Saturation for large +ve,-ve inputs

• Gradients go to zero

• Outputs centered at 0

• Preferable to sigmoid



f (a)  tanh(a) 
ea  ea

ea  ea

tanh(x) = 2 sigmoid(2x) −1



Non-linearities: rectified linear (ReLU)
• Unbounded output (on positive side)

• Efficient to implement:

• Also seems to help convergence (see 6x speedup 
vs tanh in Krizhevsky et al.)

• Drawback: if strongly in negative region, unit is 
dead forever (no gradient).

• Default choice: widely used in current models.



f (a) max(a,0)



f '(a) 
df

da


0 a  0

1 a 0







Non-linearities: Leaky ReLU
• where a is small (e.g. 0.02)

• Efficient to implement:

• Also known as probabilistic ReLU (PReLU)

• Has non-zero gradients everywhere (unlike ReLU)

• a can also be learned (see Kaiming He et al. 
2015).



f '(a) 
df

da


a a  0

1 a  0







f (a) 
max(0,a) a  0

amin(0,a) a  0







Multiple layers

• Neural networks are composed of multiple 
layers of neurons.

• Feed Forward has acyclic structure. Basic model 
assumes full connections between layers.

• Layers between input and output are called 
hidden.

• Various names used:
• Articial Neural Nets (ANN)
• Multi-layer Perceptron (MLP)
• Fully-connected network

• Neurons typically called units.



Example: 3 layer MLP

• By convention, number of layers is hidden + 
output (i.e. does not include input).

• So 3-layer model has 2 hidden layers.

• Parameters: 
weight matrices W1;W2;W3 bias 

vectors b1; b2; b3.



Architecture selection

• Active area of research

• For fully connected models 2 or 3 layers seems the most that can 

be “effectively” trained (more later).

• Regarding number of units/layer:

– Num parameters grows quickly eg ~ (units/layer)2 .

– With large units/layer, can easily overtrain.

How to pick number of layers and units/layer?



Architecture

• 1 layer

– Lacking in representational power

• Multiple layers

– Universal approximator

– Many parameters

– May lead to 

• Overfitting 

• “erratic” behavior 



XOR problem (1 layer)
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Inputs Output

0       0                          0

1       0                          1

0       1                          1

1       1                          0

PDP authors pointed to the backpropagation algorithm

as a breakthrough, allowing multi-layer neural networks to be

trained.  Among the functions that a multi-layer network can 

represent but a single-layer network cannot:  the XOR function.
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Representational power of two-layer network
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Representational power
• 1 layer? Linear decision surface.

• 2+ layers? In theory, can represent any function. 

Assuming non-trivial non-linearity.
– Bengio 2009,

http://www.iro.umontreal.ca/~bengioy/papers/ftml.pdf

– Bengio, Courville, Goodfellow book

http://www.deeplearningbook.org/contents/mlp.html

– Simple proof by M. Neilsen

http://neuralnetworksanddeeplearning.com/chap4.html

– D. Mackay book 

http://www.inference.phy.cam.ac.uk/mackay/itprnn/ps/482.491.pdf

• Design Decision: very wide two layers vs narrow 

deep model? In practice, more layers helps.

http://www.iro.umontreal.ca/~bengioy/papers/ftml.pdf
http://www.deeplearningbook.org/contents/mlp.html
http://neuralnetworksanddeeplearning.com/chap4.html
http://www.inference.phy.cam.ac.uk/mackay/itprnn/ps/482.491.pdf


Neural Networks: Networks of Perceptrons



Optimization: (Back Propagation)

• There is no clear cost function nor objective for internal nodes and 

corresponding parameters

• There is a clear objective at the classification layer!

• Thus we can compute the gradient at the cost layer (and via 

composition of functions) use the chain rule to compute gradient 

at internal nodes. 



Computing gradients
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

C xn,y; C Fn xn1,wn ,y 

We could write the cost function to get the gradients:

If we compute the gradient with respect to the parameters of 
the last layer (output layer) wn, using the chain rule:

 nwww ,,, 21 with



C

wn


C

xn


xn

wn


C

xn


Fn xn1,wn 

wn

(how much the cost changes when we change wn, is the product between how much the cost 
changes when we change the output of the last layer, times how much the output changes 
when we change the layer parameters.)
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F1(x0, W1) 

F2(x1, W2) 
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Backpropagation: summary

• Forward pass: for each 

training example. 

Compute the outputs for 

all layers

• Backwards pass: compute 

cost derivatives iteratively 

from top to bottom:

• Compute gradients and 

update weights. 



xi  Fi(xi1,wi)


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ANNs in Computer Vision

• There is a massive amount of literature

– ANNs for OCR

– ANNs for object detection

– ANN for feature generation 

• Convolutional Neural Networks

– A common variant used in computer vision

– Uses scale space / convolution pyramids



Perceptrons, 1958
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• In computer vision, intuitively, we 

would like to use spatial 

information to identify patterns

• We can use convolutions and 

matched filters within the ANN 

framework to achieve our goal



Application to 
Computer Vision

• Use standard 

filters to identify 

and learn distinct 

patterns in an 

image.

• Some models 

learn filters as well.



Convolution at input and hidden layers

• Why?

– Local analysis is intuitive in CV

– Vectorizing an image will lead 

to many unnecessary 

parameters

– Instead: Parameter Sharing and 

locality!



Basis of CNN 



Use convolution!



CNN: Basic Structure and Idea

• “Convolutional networks are simply neural networks that use 
convolution in place of general matrix multiplication in at least one 
of their layers.”



Linear filtering pyramid 
architecture
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Convolutional neural network 
architecture
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What kernels to use?

• Some General Approaches

– Randomly select kernels and hope for the best!

– Hand-craft kernels based on apriori knowledge of data and experience

– Learn the “optimal” kernels

• This approach is used more and more today

• Increases the number of parameters dramatically

• Increases training time



Convolutional Neural Network Details

• Kernels are often parameters
– parameter sharing

• Parameter sharing leads to reduced parameters
– (Believe it -- It could be worse)

• Pooling

– Summarize, aggregate, reduce 
result from previous layer

– EG. Max-Pooling 
Zhou and Chellappa

– Pooling helps to make the representation
invariant to small translations



Gabor Features often used (and learned!)



Regularization

• Regularization in Computer Vision
– Add constraints to solve an ill-posed problem

– Impose a penalty for over-fitting

• Overfitting: Output should change “continuously” as input changes 
“continuously”
– Smoothness 

• We have seen examples of regularization already
– Smoothness terms in energy minimization

• Disparity Map (Stereo)

• Label Maps (Image Segmentation) Min-Cut (Graphs)

• Active Contours (Variational Methods)



Common Regularization Strategies

• Deep ANNs have many parameters; subject to overfitting
– Simple Example k-means with many parameters

• Regularization
– Pooling

• Max pooling

– Data Augmentation
• Add Noise

– Parameter Sharing

– Sparsity Promotion (wrt parameters)
• L1 and L2 norms; adds term to update equation.

• Bayesian Solution: Sparsity promoting priors

– Dropout  



Norm-based Regularization

• Increase generalization ability by reducing chance of overfitting.

• Add a penalty for non-zero parameter
– Penalty often related to norm: L1 or L2

– Increased cost results in driving parameter values to zero thus reduces number 
of parameters 

• Scheme often used for feature selection

• Similarly, some Bayesian approaches utilize sparsity promoting priors 
which have similar results. 



Data Augmentation 

• The best way to train a classifier to generalize better is to have 

more data!

• Data is often limited in practice

• Create “fake” data

– Alter existing training samples: rotation, translation, warping… etc

– Add noise



Parameter Sharing

• Restrict the number of parameters explicitly using intuition

– Most patterns in CV are conceptually, translation invariant.

– Use similar filter during matched filter computations. 

• Force sharing of parameters at multiple stages of computation for 

multiple purposes

– Used often in CNNs (kernels are shared parameters)



Historic Note:  NIPS 2000

• NIPS,  Neural Information Processing 

Systems, is the premier conference on 

machine learning.  Evolved from an 

interdisciplinary conference to a machine 

learning conference.

• For the NIPS 2000 conference: 

– title words predictive of paper acceptance:  

“Belief Propagation” and “Gaussian”.

– title words predictive of paper rejection:  

“Neural” and “Network”.
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Perceptrons

Minsky and Papert

PDP book Krizhevsky,

Sutskever,

Hinton

AI winter



LeCun conv nets, 1998
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http://yann.lecun.com/exdb/lenet/index.html

Demos:

http://yann.lecun.com/exdb/lenet/index.html


Scale Space

• Observe.

– Many CNN structures inherently perform 

scale space analysis 

• One layer: Linear filter applied to input image

• Next layer: subsampling

• Next layer: Linear filter … 



LeCun Results
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Structural Designs

• Shallow may require 

more templates

• Deep more powerful 

classifier but subject 

to overtraining



Krizhevsky et al (NIPS 2012)

• Structure

– 5 convolutional layers

– 3 fully connected layers

– Activation: ReLU

– (See paper)

• Reduce Overtraining by 
– Data Augmentation

1. Translate inputs and horizontally mirror 
input

2. Randomly perturb RGB values

– Dropout
• Randomly zero-out neurons during 

feedforward and backprop.
– (Noted significantly less overtraining with 

Drop Out.)



Slide from Rob Fergus, NYU



Krizhevsky, Sutskever, and Hinton, NIPS 2012
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Test Nearby images, according to NN features

Krizhevsky, Sutskever, and Hinton, NIPS 2012



In Summary

• ANNs have a rich history in machine learning

• CNNs are an intuitive variant for Computer Vision tasks

– Utilize convolutions of kernels

– Learning / Classification is robust given comprehensive kernels 

– Understanding learned parameters: more “accessible” than generic ANNs

– Regularization and structure are key factors in deep networks



Projects

• Experimental Design with CNNs

– What features are used?

– What structure is used?

• Shallow (with more units per layer) or deep (with less units per layer)

– What regularization scheme is used?
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