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facial recognition

• Ability for a computer application to identify or verify an individual given 

an image of that person. 

• Sometimes combined with other biometrics, such as finger prints and 

eye rental scans. 

• Face recognition algorithms often use a dimensionality reduction 

techniques 

– EG PCA (Principle Component Analysis). 



Why feature reduction?



Key ideas for facial recognition with pca

• Images of faces (assuming some preprocessing constants 
such as the size and position of the faces) have a similar 
configuration overall. 
– humans all have 2 eyes, 1 nose in the center, a chin, lips, etc..

• Therefore, face images will NOT be randomly distributed 
within the image space.
– The image space, for say a 100 by 100 pixel image is a 10,000 

dimensional space.

• Instead, images of faces can be described in a relatively low-D 
subspace (or manifold). 



Eigenvalues and Eigenvectors - Definition

• If v is a nonzero vector and λ is a number such that 

Av = λv, then

v is said to be an eigenvector of A with eigenvalue λ.

Example
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Eigenface: Preprocessing Procedure

1) Get the data.

2) Transform each face into a column vector and place all into a face matrix.

3) Calculate the mean vector from all the faces and render it so you can see it. 

4) Normalize the face matrix by subtracting the mean from each column face in the 
matrix. (Call this A)

5) Get the reduced version of the covariance matrix (Turk & Pentland):   C’ = ATA

6) Find the eigenvalues and eigenvectors of C’

7) Enable an option to choose the k highest eigenvalues and corresponding 
eigenvectors. Create a matrix of the k highest eigenvectors. 

8) Transform the k highest eigenvectors back into the original space by multiplying 
each of them by A.  These are called the eigenfaces – they are (r*c) by 1 

Recall that A is size (r*c) by N, where N is the number of faces in the dataset.



Eigenfaces

• PCA – Principle Component Analysis – (AKA Karhunen Loeve
Expansion) is to determine the vectors which best account for the 
distribution of the face images (Turk and Pentland 1991). 

• - These vectors (eigenfaces) will then define a subspace or basis  
of face images – a face space. 

• - Each eigenvector (eigenface) will be R*C by 1, where R are the 
num of row pixels and C are the num of column pixels. 

• - Because each eigenvector of the covariance matrix of the original 
faces space is the same size as a face in the dataset, it will have 
face-like qualities (minus the mean). 

• - This is why the eigenvectors in this case are referred to as 
eigenfaces. 



eigenface method

RE: Sirovish and Kirby (1987)    and    Turk and Pentland (1991)

• 1) Create a low-dimensional representation of face images using PCA. 

• 2) Specifically, use a collection of face images (properly preprocessed) to create a 
basis for a set of features. 

• - The basis images are called eigenfaces. 

• 3) Then, the reduced basis of eigenfaces can be linearly combined to re-create and 
match to any image in the original (large) dataset of face images (often called the 
training set). 

• Example: Suppose the training set of face images has N images. Then PCA will form 
a very reduced basis of Y (Y << N) images with which any of the original N images 
can be constructed. 

• Each face is a proportion of faces from the basis:

• SomeFace1 = mean + .12*BF1 + .45*BF2 + …+ .05BFn  (where BF is basis face)

• Interestingly, it does not require many eigenfaces to approximate most faces.



reducing size and computation

• 1) Creating a basis of eigenfaces from which all faces in the 
original dataset (or even a variation of a face from the original 
dataset) can be constructed – reduces the search space size.

• 2) To create the basis, the eigenvectors and eigenvalues from 
the covariance matrix of the original set must be calculated. 

• - This is often highly time and space intensive and in some 
cases intractable (depending on the size of the dataset, the size of 
each image in pixels, and the nature of the computer being used). 

• 3) Turk and Pentland (1991) created a method for calculating the 
eigenvectors without the use of such space and time. 

• - Their method used matrices sized by images, not by pixels. 



Creating Eigenfaces

• Recall that the eigenfaces are the eigenvectors (from the 
largest eigenvalues) due to  PCA on a covariance matrix. 

• Steps:

1) Create/prepare a dataset of face images. This is the training 
set. 

- Note: Face training sets are always taken under the same lighting, 
are normalized to that the eyes and mouth align, and are resampled 
to a pixel resolution of r x c (all images are the same exact size). 

2) Each image can be represented as r*c by 1 vector. 

3) One matrix will contain all the images - Each column of the 
matrix is one linearize (vectorized) image from the original faces 
dataset.



Eigenface Model

• 1) The set of eigenfaces (also called eigenimages and 

eigenpictures) will form a basis for any search image.

• 2) The basis (or set of eigenfaces) can be linearly combined to 

reconstruct an estimate of any face from the original dataset. 

• Example:

• Face23 = .14*Eigenface1 + .56*Eigenface2 + .30*Eigenface3 + 

mean

• NOTE: You must add back the mean that was subtracted initially. 



closer look at steps 1 - 3

matrix of numbers between 0 and 255 (grayscale) vector of numbers 

then convert to vector of numbers 

Face                          Labeled Pixels         Corresponding matrix



turn the entire faces dataset into one matrix of 
column vectors. Each column in the matrix is a 

face. 

Note: The size of each face does not have to be k by k, it can be a rectangle



the next steps

• Assuming a proper dataset of faces, the dataset can be turned into one 
large matrix. 

• Example:

• 1) Suppose you have a dataset of 100 faces

• 2) Suppose each face is 25 pixels by 30 pixels, 

• 3) Then, each facevector will be (25*30) rows by 1 column

• 4) The matrix of all faces will be: (25*30) rows by 100 columns. Each 
column is a face.

• 5) Given a face matrix, we need to normalize the matrix by subtracting 
the mean. 

• - Subtracting the mean will force each column (face) in the matrix to retain 
only individualized/unique features. 

• - Find the mean of all columns in the face matrix and then subtract the 
mean from all columns. 



example: 
my facematrix before subtracting the mean

For this, I used 150 face images.

Each face image was 112 by 92 
pixels. 

There are 256 (or 2^8) shades of 
grey in 8-bit grey scale. 



normalizing the matrix

…

Calculate the mean column using all columns.
Subtract the mean from EACH column to create
the normalized matrix. 

…

Normalized face matrix

Subtract the mean 

NOTE: It does not matter whether you have each 
image as a column or as a row – BUT you must 
remember which you did.



Average Image and Difference Images
• The average of the 

face dataset is 

defined by  

m= (1/m) ∑m
i=1 xi

Note that is a column 

vector that describes 

one face.

• Each face differs from 

the average by vector 

ri = xi – m

This is the mean face from
the dataset of 400 faces
that I used. 



The Covariance Matrix
• A covariance matrix is constructed as

C = AAT

where A is the normalized face matrix. 

Recall that an image can be any size. The images that I used were 112 by 

92.   

(112 * 92 = 10304)  Therefore, C = AAT is 10304*10304 =  106,172,416

• Finding eigenvectors for any an (r*c) x (c*r) matrix  is (or can be)  

intractable.



Using Alt to Cov Matrix

• (Turk and Pentland 1991)

• The matrix ATA of size c x c, and find eigenvectors of this small 

matrix. 

• Why?

– For example, if you have 150 faces, this is 150*150 = 22,500    (not 

106,172,416)



why turk and pentland proposed method is correct?

• The eigenvectors vi of ATA are based on:

ATA  vi = ui vi

Then by pre-multiplying both sides by A (the normalized face matrix), 

we have the eigenvectors of the original space. 

A ATA  vi = A ui vi                 (AAT)  (Avi ) = ui (Avi )

• Therefore,  Av1 is an eigenvector (eigenface) for our face dataset and ui is the 

eigenvalue.

• This matters because the Eigenvectors generated using Turk’s ATA will have to be 

projected back into our original space. We can do this by multiplying by A. 



Learning the Model

1) Get the data.

2) Transform each face into a column vector and place all into a face 

matrix.

3) Calculate the mean vector from all the faces and render it so you 

can see it. It should look like a face!

4) Normalize the face matrix by subtracting the mean from each column 

(face) in the matrix. (Call this normalized matrix, A)

5) Get the reduced version of the covariance matrix:   C’ = ATA

6) Find the eigenvalues and eigenvectors of C’



Learning the Model

7) Enable an option to choose the k highest eigenvalues and corresponding 
eigenvectors.

8) Transform the k highest eigenvectors back into the original space by 
multiplying each of them by A.  These are called the eigenfaces and are the 
PCA reduced space.

Recall that A is size (r*c) by the number of faces in the dataset.  (In our case  A 
is shape: (10304, N)), 

N is number of faces in the original dataset.

The eigenvectors of C’ = ATA will be the size of data set by 1. (In our case, is N 
by 1)

So, A * eigenvector will be (r*c) by 1 which is exactly what we need.  RE:   
(10304, N) * (N,1) = (10304,1)



Learning the Model

9) Render (view the image of) the k top eigenfaces just created, 
AND save each to its own jpg file. 

10) View the eigenfaces yourself - they should look a bit like 
creepy faces. If they do not, you are doing something wrong 

11) Now that you have the eigenfaces, its time to test your face-
recognition ability. 



Using the model
1) Choose any face in the dataset and remove it from the dataset. 

2) Replace it with a copy of some other face in the dataset to maintain a 
consistent dataset size and naming scheme, etc.  Yes – there are other ways to do 
this 

3) Run the program to generate k = 30 eigenfaces. 

4) Add code that will compare your test face with all other faces using the PCA 
reduced space. 

– Read in the test face and convert it to a vector. 

– Subtract the mean from the test face.

– Project the normalized test face into the eigenfaces matrix reduced space.

– Project each image in the face dataset (minus the mean) into the eigenfaces reduced 
space.

– Use Euclidean distance to compare each projected dataset face to the test face. Choose 
the min. 

NOTES:

- Try this first by leaving the test face in the dataset. In this case, if your code works, 
you will get an exact match.



Using the model

1) To test a face, you will have to read the face in, vectorize it, and subtract the mean 
from it. 

2) Next, multiply the test face (minus the mean) by the eigenface matrix to project it 
into eigenface space (reduced space). 

3) Recall that your test face is (10304 , 1). The eigenface matrix is (10304 by k) 
because it contains k eigenfaces. 

Transpose the eigenface matrix and then multiply it by the test face vector. The 
resulting size and shape will be (k by 1). 

4) Do this same exact process with all of the faces in the database (normalized). 

5) Find the least Euclidean distance between your projected test face and all other 
projected faces in the dataset.

Recall that our faces are all 112 by 92 = 10304. This number will be different for 
different size face images. 



Example Exercise: 
Using python and coding eigenfaces

• Step 1: Get the data

• http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.htm

l

• - Look at the preview

• http://www.cl.cam.ac.uk/research/dtg/attarchive/facesataglance.ht

ml

The files are in PGM format, and can conveniently be viewed on UNIX (TM) systems using the 'xv' program. The 
size of each image is 112 pixels (rows) by 92 pixels (columns), with 256 grey levels per pixel. The images are 
organized in 40 directories (one for each subject), which have names of the form sX, where X indicates the 
subject number (between 1 and 40). In each of these directories, there are ten different images of that subject, 
which have names of the form Y.pgm, where Y is the image number for that subject (between 1 and 10).



Python Instructions:
how to convert an image to a vector

• ##Install PIL

• ##On PC from cmd

• ## anaconda search -t conda PIL

• ## find a good option

• ## I used:

• ## conda install -c conda-forge pillow=4.0.0

• ## RE

• #https://pypi.python.org/pypi/Pillow/3.3.1

• #Interesting Reference

• #http://www.pythonware.com/media/data/pil-handbook.pdf

• import numpy as np

• from PIL import Image



Python:
Vectorize the image

fullpath=p+"\Face1.pgm"  #Here p is the path to the image

img1=Image.open(fullpath).convert('L')

imagearray1 = np.array(img1)

original_shape=imagearray1.shape

flat1 = imagearray1.ravel()

facevector1 = np.matrix(flat1)

facematrix=facevector1

shape = flat1.shape

print(shape)



Python:
Create Face Matrix

for i in range(n-1):

fullpath=p+"\Face"+str(i+2)+".pgm“

print(fullpath)

img=Image.open(fullpath).convert(‘L')

imagearray = np.array(img)

# make a 1-dimensional view of imagearray

flat = imagearray.ravel()

# convert it to a matrix

facevector = np.matrix(flat)

facematrix=np.r_[facematrix,facevector]

print(facematrix, facematrix.shape)

file_counter=file_counter+1



transpose so that each column is an 
image

facematrix_t=np.transpose(facematrix)

print(facematrix_t)

print(facematrix_t.shape)



Python:
How to transform a vector back to an image

• face_example = 
np.asarray(facematrix_t[:,0]).reshape(original_shape)

• # make a PIL image and save it to jpg

• face_example_img = Image.fromarray(face_example, ‘L')

• face_example_img.show()

• face_example_img.save("FaceExampleOutput.jpg")

• ---------------------------------------------------------------------------------
----------------

• ###Recall that original_shape is from here:

• ###fullpath=p+"\Face1.pgm"

• ###img1=Image.open(fullpath).convert(‘L')

• ### imagearray1 = np.array(img1)

• ### original_shape=imagearray1.shape



Implementation Details:
issues with rendering images

1) There are many options for managing and rendering (viewing) images.

2) Our dataset contains .pgm images.

3) One option (that I think would have been easier) would be to first 
convert all images to jpg. However, I did not choose this option. 

4) If you read in .pgm images, you can best do so with the “L” option. You 
can also render them with “L”.

5) However – to render images as .jpg successfully, such as the mean 
face vector, etc. I had to use RGBA. 

6) You are welcome to work with the images in whatever way you wish –
BUT – you must render them as .jpg or another format that is easy to 
view on most computers. 



what happened so far?

1) So far, we took 5 images from a large database (all .pgm). 

2) We converted each of the 5 images into a vector.

3) We then placed all the 5 vectors into one matrix. 

4) We transposed the matrix so that each column is an image.

5) We then took one of the columns and reversed the process to get an image 
back.

The overall goal here is to place a set of images into a matrix. 

The next steps will include performing PCA on the matrix to get the eigenfaces.

Finally, we will use the eigenfaces for prediction. 



perform PCA on the facematrix – step 1

1) After creating a matrix of all the faces in the dataset – each 

column is a face:

2) Find the mean of the columns.

3) Subtract the mean from all columns.

!! Important !! This process can be done with a matrix such that each 

ROW is an image OR with a matrix such that each COLUMN is an 

image. The KEY is that you know and then code it correctly. 



Python: eigenfaces

1) Get the reduced covariance matrix based on Turk and Pentland:

Norm_Face_Matrix_t=np.transpose(Norm_Face_Matrix)

CovMatrix=np.matmul(Norm_Face_Matrix_t, Norm_Face_Matrix)

print("The covar matrix is\n",CovMatrix)

2) Get eigenvalues and eigenvectors

evals,evects=np.linalg.eig(CovMatrix)

print("The eigenvalues are\n",evals)

print("The eigenvectors are\n",evects)



Python

1) Sort the eigenvalues

2) CHoose the top k eigenvectors based on the top k 
eigenvalues – these are called the eigenfaces.

3) Convert them back to original image space.

4) Render (view) and save into files all the eigenfaces. These 
should look like creepy faces. 

5) Create an eigenface matrix.

6) Use the eigenface matrix to compare a test face with the 
dataset to identify the face. 

NOTE: You may need to make some calculations on paper 
and/or to assure that your rows and columns are in the right 
place. 



test face and prediction

Test Face on Left



Face Space: general example

• The eigenvectors of covariance 

matrix are  

ui = Avi

• ui resemble facial images which look ghostly, hence called Eigenfaces



A few notes

• Test k for a few values. The value of k (the number of eigenfaces) 

should be less than half of the size of the dataset. (Mine worked 

pretty well at k = 30).

• Test your code at all steps using reduced dataset sizes, etc. 

• Code this one step at a time and make sure that you can 

transform face images to vectors and vectors back to face 

images. 

• I used numpy for all the linear alg and math. 



Other dim reduction methods

• 1) LDA

• 2) ICA

• 3) Random Forest

• 4) Clustering

• 5) Regression

• 6) Binning



Linear Discriminant Analysis

• PCA does not use class information

– PCA projections are optimal for 

reconstruction from a low dimensional 

basis, they may not be optimal from a 

discrimination standpoint.

• LDA is an enhancement to PCA

– Constructs a discriminant subspace 

that minimizes the scatter between 

images of same class and maximizes 

the scatter between different class 

images
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