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Motivation

• Detection and Classification are common goals in CV applications

• Examples
– Face Detection (eg in cameras)

– Face Recognition

– Object Classification

– Optical Character Recognition

– Material Classification



Detection vs. Classification 

• Detection simply a 2-class classification problem
– EG: Target vs Background. 

– General discrimination between classes is not necessary

– Identification of the 1 class is key

• Classification
– N-class problem

– Must be able to identify and discriminate between classes. 

• Detection vs Recognition
– EG Face

• The general classification problem is difficult relative to detection.



Problems

• Image vs Sample.
– Machine learning and Pattern Recognition Schemes are often used to achieve 

automation and good results. 
• However, it is not always clear how to optimize models based on an image of observations when 

most machine learning schemes are based on single observations

– Scale of classification: pixel – window – image.

• Spatial vs Spectral 

• The curse of dimensionality.

• Scale.
– In image data sets, objects may be observed at different scales.

– However, standard Pattern Recognition tools will use fixed size-sized windows and/or 
fixed-sized vectors.



It all starts with the features!

• Garbage in, Garbage out!

• Choose features that effectively distinguish between classes.

• Is classification at the pixel-level or window-level?
– Is spatial information needed to distinguish between classes

– Is the instance observation (and features) enough?

• Can the concept be “captured” in one pixel
– Dependent upon imagery



More observations per pixel should improve results

• Multi-spectral and multi-feature 

observations

– If there is multiple spectral or feature 

observations per pixel, then pixel-based 

classification may be sufficient.

– EG Identifying Tree canopy in Satellite imagery

• Pixel represents multiple square meter swath
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Pixel-based Models

• Pros:
– Able to use standard Machine Learning / 

Pattern Recognition approaches

• Based on feature vectors

– Many approaches well-studied and verified.

• Cons:
– May need labels for each pixel when training!

– Ignoring spatial information

• Unless feature computation includes spatial 
information

– To have enough discriminative powers, may 
usually need a large number of observations 
(high dimensionality) 
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“Window”-based Models

• Collections of pixels used for learning and detection / recognition
– Use spatial information (co-occurrence information)

• Window or sub-image subimage is a collection of observation vectors
– Maintain order

• Vectorize windows

• Kernel (matched-filter)

• Markov models / graph models

– Does not maintain order

• Set-based models

• Histogram based models



Classifying entire images

• Classification done at image-level
– Vectorize entire image: often not tractable 

– (Global) features computed across entire 
image

• Image characterized by resulting feature 
vector. 

• Examples
– Labels are categories of imagery

• Urban image

• Rural image

• Agricultural

• … 

– Content-based image retrieval



The Curse of Dimensionality

• To increase discrimination abilities
– Many features are computed for each pixel

– Many pixels are used to characterize some object

• Resulting vector may be huge!

• If the number of dimensions is high relative to the number of samples, 
models learned will be “erratic”.
– Moreover: the data itself may only occupy a small subspace (lower dimensional 

subspace). Using a higher dimensional space may simply lead to over training or 
learning noise.

– Hughes phenomenon: the predictive power of a classifier decreases as the 
number of dimensions increases. 



Reducing dimension

• High dimensional features may present problems
– hard to summarize

– estimates of classifier coefficients may be noisy

• Solution: Reduce dimensionality

• Principal components analysis
– project features onto dimensions that preserve variance

• Linear discriminant analysis
– project features onto dimensions that are discriminative







Difficulties with PCA

• Projection may suppress important detail

– smallest variance directions may not be unimportant

• Method does not take discriminative task into account

– typically, we wish to compute features that allow good discrimination

– not the same as largest variance



PCA Example

• Will projecting this 2-d 

data set onto the first 

eigenvector help?



PCA Example

• Classes
– Star

– Circle 

• The principal component 
analysis does not take into 
account the discriminative 
capabilities after the 
dimensionality reduction.  



Linear Discriminant Analysis

• Otherwise known as canonical variates

• Project onto dimensions that preserve discrimination

– by comparing between class variance to within class variance





LDA (Linear Discriminant Analysis)

• LDA will perform a 

projection that 

scales each 

dimension based on 

within and between 

class variance.



Feature bagging

• Random Subspace Method

– Randomly select a subset of features

– Train multiple classifiers on different on random feature subsets

• Strategies
• Ensemble Classification: Use all resulting classifiers as ensemble of weak learners.

• Feature Selection: Identify which features yield good classifiers. 



Generalizing for multiple scales

• During feature generation
– Scale invariant features, eg, SIFT features

• Before classification
– Create features using Scale Space Analysis

• Gaussian / Laplacian Pyramids 

• During classification
– Have multiple classifiers trained to recognize 

pattern at different scales
• Fuse results across multiple classifiers. 
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Recognition and Classification problems

• What is it?
– Object and scene recognition

• Who is it?
– Identity recognition

• Where is it?
– Object detection

• What is it doing?
– Activities

• All of these are classification problems
– Choose one class from a list of possible candidates
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What is recognition?

• A different taxonomy from [Csurka et al. 2006]:

• Recognition
– Where is this particular object?

• Categorization
– What kind of object(s) is(are) present?

• Content-based image retrieval
– Find me something that looks similar

• Detection
– Locate all instances of a given class



Detection with a classifier

• Searching the image
– all windows

– at relevant scales

• Prepare Features

• Classify

• Issues
– How to get only one response

• Fusion

• Confidence accumulation or aggregation 

– Speed
• Images can be large; all classification schemes (and feature generation schemes) do not scale well. 

– Accuracy
• Are results good, repeatable, generalizable?



Classifiers

• Take a measurement x, predict a bit (yes/no; 1/-1; 1/0; etc)
– Note: spatial information may be included with feature calculation

• Common Strategies:
– non-parametric

• nearest neighbor

– probabilistic
• histogram

• logistic regression

– decision boundary
• SVM



Nearest neighbor classification

• Training: Construct a Set of Examples
– (x_i, y_i)

• here y is yes/no or -1/1 or 1/0 or....

– training set

• Strategy
– to label new example (test example)

• find closest training example

• report its label

• Advantage
– Maintains essentially training information; no summarization 

• Issue
– how do we find closest example?

– what distance should we use?



k-nearest neighbors

• Strategy

– to classify test example

• find k-nearest neighbors of test point

• vote (it’s a good idea to have k odd)

• Issues (again)

– how do we find nearest neighbors?

– what distance should we use?



Nearest neighbors

• Exact nearest neighbor in large dataset

– linear search is very good

– very hard to do better (surprising fact)

• Approximate nearest neighbor is easier

– methods typically give probabilistic guarantees

– Time tradeoff: may have good “enough” accuracy

– methods

• locality sensitive hashing

• k-d tree



Locality Sensitive Hashing

• Locality Hashing

– Vectors “near” to each other are mapped to 

the same hash bucket (collide).

– Thus finding a nearest neighbor, or k 

nearest neighbors

– Issues:

• Finding LSH is hard

• Various Bucket Size issues: 

– EG Bucket(s) may be empty 



Common Classifiers

• Probabilistic Models

– Naïve Bayes Classifier 

– Relevance Vector Machine (RVM)

– Gaussian Process

– Random Forest

– Markov Models

• Other common models 

– SVM

– Neural Network

– Graph-Based Models



Machine Learning in Vision

• Learn model parameters given labeled examples
– But HOW do we get the labels?

– EG: 

• LabelMe app

• Annotation Tools

• Ground Truth
– Pixelwise

– Pixel-set

– Image-level



Classification schemes with spatial information

• Features may include spatial information, but do classifiers?

• Markov Models / Graph-based models

– Both observation and location of samples are considered

– Often posed as energy minimization of multiple terms



Detection Maps

• Once detection or classification is completed for a pixel-based 

classifier, a label (with confidence) is associated with each pixel

• In detection, resulting map can be thresholded to make decision

– Often called decision map.

– Confidence is displayed for each pixel (as an image), thus a detection map

• If no spatial information was included in classification, this can be 

incorporated into a post processing step … 



Post processing of Detection and Classification Maps:
Decision Maps

• Spatial information can be incorporated 

into a post processing step

– Connected Components

– Morphology

• Example

– Indian Pines

Pixel-based classifier 
results

Spatial Grouping as 
a post-classification 

step 

Ground Truth

HSI data 
(false color)



Evaluating Results

• Classification Accuracy

– Confusion Matrix

– Receiver Operating Characteristic Curve

• AUC

– Precision vs recall

• Accuracy as a function of …

– Number of training samples

– Training time



Confusion Matrix

• Is the classifier confused?

– Which classes does classifier 

have difficulty distinguishing 

between? 



Confusion Matrix

• Example (SVM-KNN) 

Confusion matrix 

(illustrated using 2-d 

color map)

– Red: high probability

– Blue: low probability 



Material classification

• Example (using 

SIFT features) 

Confusion matrix 

(illustrated using 

2-d color map)

– Purple: high 

probability

– Blue: low 

probability 



Receiver Operating Characteristic Curve

• ROC

– For each threshold, plot true 

positive vs false positive rates

Distributions represent truth; vertical 
line represents threshold



Receiver operating curve

• Example ROC for 

skin detector



Summarizing a ROC curve

• AUC (Area under the curve)

– Can be numerically computed similar 

to Riemann integral



Accuracy on Caltech



(More) Evaluation

• Some problems require multiple decisions per input
– eg Image Retrieval 

– Given an image input, find all images “similar” to it

• Precision
– percentage of items in retrieved set that are relevant

• Recall
– percentage of relevant items that are retrieved

• Precision vs recall
– use classifier to label a collection of images

– now plot precision against recall for different classifier thresholds



Precision vs recall



Experimental Design

• How well does the classification scheme work?
– We wary of “overtraining”

– Do not assess a scheme based on results gather from “test on train”

– Does it generalize?

• Do not Test on Train: Divide your set into training and testing sets (iteratively)

• Crossvalidation
– k-fold

– Leave one out



Repeatability of Experimental Results

• Thresholded classification of data sets 

~ binomial random variable

• Assume each point on the ROC curve is the result of n Bernoulli 

trials (binomial random variable)

– The number of successful target identifications is given for each threshold

– The MLE of the probability of success, p, of the binomial is then precisely 

the PD as shown on the ROC



Reliability of PD estimates:
Upper and Lower bound estimates

• Using the CDF of the binomial we can find upper and lower bound estimates of the 

parameter, p, given our observed data with x successes from n trials with a confidence 

interval 1 - 

– That is, we perform two (distinct), one-tailed tests (Clopper–Pearson method)

– Given the two equations below, we solve for plower and pupper using the F distribution approximation (in Matlab)
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Confidence Interval Visual
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Appendix

Chapter 9 

Classification Models


