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Motivation

« Detection and Classification are common goals in CV applications

« Examples
— Face Detection (eg in cameras)
— Face Recognition
— Object Classification
— Optical Character Recognition
— Material Classification
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Detection vs. Classification

Detection simply a 2-class classification problem

— EG: Target vs Background.

— General discrimination between classes is not necessary
— lIdentification of the 1 class is key

Classification
— N-class problem
— Must be able to identify and discriminate between classes.

Detection vs Recognition
— EG Face

The general classification problem is difficult relative to detection.

FEORGETOW:
gUZVI VERSI ZTIL:Z\C



Problems

Image vs Sample.

— Machine learning and Pattern Recognition Schemes are often used to achieve
automation and good results.

- However, it is not always clear how to optimize models based on an image of observations when
most machine learning schemes are based on single observations

— Scale of classification: pixel — window — image.

Spatial vs Spectral
The curse of dimensionality.

Scale.
— In image data sets, objects may be observed at different scales.

— However, standard Pattern Recognition tools will use fixed size-sized windows and/or
fixed-sized vectors.
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It all starts with the features!

Garbage in, Garbage out!
Choose features that effectively distinguish between classes.

Is classification at the pixel-level or window-level?
— |Is spatial information needed to distinguish between classes
— Is the instance observation (and features) enough?

Can the concept be “captured” in one pixel
— Dependent upon imagery
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More observations per pixel should improve results

* Multi-spectral and multi-feature
observations
— If there is multiple spectral or feature

observations per pixel, then pixel-based
classification may be sufficient. Spatial

Tt

A;ctra or features

Spatial
— EG Identifying Tree canopy in Satellite imagery \
* Pixel represents multiple square meter swath //_\
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Pixel-based Models

e Pros:

— Able to use standard Machine Learning /
Pattern Recognition approaches

« Based on feature vectors
— Many approaches well-studied and verified.

HERT

° ConS: Spatial :
— May need labels for each pixel when training! — ,A‘“ra‘”feat”m
— Ignoring spatial information
» Unless feature computation includes spatial

information ]//“\
— To have enough discriminative powers, may -
usually need a large number of observations s
(high dimensionality)
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“Window™-based Models

» Collections of pixels used for learning and detection / recognition
— Use spatial information (co-occurrence information)

« Window or sub-image subimage is a collection of observation vectors

— Maintain order
* Vectorize windows
» Kernel (matched-filter)
« Markov models / graph models

— Does not maintain order

« Set-based models =
» Histogram based models

| I []
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Classifying entire images

Classification done at image-level
— Vectorize entire image: often not tractable
— (Global) features computed across entire

Image face: K x K bitmap of pixels "UZNfC}ld" each bitmap to
- Image characterized by resulting feature = ek
vector.
arrange in a matrix
each face = column
Examples | | —
— Labels are categories of imagery
» Urban image bR
* Rural image .
 Agricultural
— Content-based image retrieval
GEORGETOWIN_,
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The Curse of Dimensionality

* To Increase discrimination abllities
— Many features are computed for each pixel
— Many pixels are used to characterize some object

* Resulting vector may be huge!

* If the number of dimensions is high relative to the number of samples,
models learned will be “erratic”.
— Moreover: the data itself may only occupy a small subspace (lower dimensional

subspace). Using a higher dimensional space may simply lead to over training or
learning noise.

— Hughes phenomenon: the predictive power of a classifier decreases as the
number of dimensions increases.
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Reducing dimension

* High dimensional features may present problems
— hard to summarize
— estimates of classifier coefficients may be noisy

» Solution: Reduce dimensionality
* Principal components analysis
— project features onto dimensions that preserve variance

* Linear discriminant analysis
— project features onto dimensions that are discriminative
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Assume we have a set of n feature vectors x; (i = 1,...,n) in R%. Write
1
K= . Z Ly
T

1

n—1

v —

Z(mi — p)(zi — PL)T

The unit eigenvectors of ¥—which we write as v{,v9,...,v4, where the order is
given by the size of the eigenvalue and v, has the largest eigenvalue—give a set of
features with the following properties:

e They are independent.

e Projection onto the basis {vq,..., vk} gives the k-dimensional set of linear

2 2

features that preserves the most variance.

Algorithm 16.1: Principal Components Analysis
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FIGURE 16.11: A dataset that is well represented by a principal component analysis. The
axes represent the directions obtained using PCA; the vertical axis 1s the first principal
component, and is the direction in which the variance is highest.
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Difficulties with PCA

* Projection may suppress important detail
— smallest variance directions may not be unimportant

« Method does not take discriminative task into account
— typically, we wish to compute features that allow good discrimination
— not the same as largest variance
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PCA Example

« WIll projecting this 2-d
data set onto the first
eigenvector help?
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FIGURE 16.12: Not every dataset is well represented by PCA. The principal components
of this dataset are relatively unstable, because the variance in each direction is the same
for the source. This means that we may well report significantly different principal compo-
nents for different datasets from this source. This i1s a secondary 1ssue; the main difficulty
1s that projecting the dataset onto some axis suppresses the main feature, its circular
structure.



PCA Example

 Classes
— Star
— Circle

* The principal component

analysis does not take into
account the discriminative -

capabillities after the
dimensionality reduction.

* 0 8B40 vIES H0NE O ¥ L ¢

4ok He O

4 E4 0 D00 © 0 00




Linear Discriminant Analysis

« Otherwise known as canonical variates

* Project onto dimensions that preserve discrimination
— by comparing between class variance to within class variance
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Assume that we have a set of data items of g different classes. There are ng

items in each class, and a data item from the kth class is x ;, for ¢ € {1,. .. , Tk }-
The jth class has mean p;. We assume that there are p features (i.e., that the x;
are p-dimensional vectors).

Write @ for the mean of the class means, that is,

1 g
m==D H
94
Write
1 & -
BZQTIZ(Mj—F)(Hj—E) :
j=1

Assume that each class has the same covariance ¥, which is either known or esti-
mated as

g ne
1 T
S= > Y e — o) (@es — )
N -1 _
c=1 \i=1
The unit eigenvectors of ¥~'B, which we write as v1, va, ..., v4, where the order

is given by the size of the eigenvalue and v; has the largest eigenvalue, give a set
of features with the following property:

¥ 1

features that best separates the class means.

e Projection onto the basis {v1,..., v} gives the k-dimensional set of linear

Algorithm 16.2: Canonical Variates
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LDA (Linear Discriminant Analysis)

 LDA will perform a
projection that

scales each ] o 1]
dimension based on I
within and between | o 1T
class variance. | S I

FIGURE 16.14: Canonical variates use the class of each data item as well as the features in
estimating a good set of linear features. In particular, the approach constructs axes that
separate different classes as well as possible. The dataset used in Figure 16.13 1s shown
on the left, with the axis given by the first canonical variate overlaid. On the bottom
right, we show the projection onto that axis, where the classes are rather well separated.
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Feature bagging

« Random Subspace Method
— Randomly select a subset of features
— Train multiple classifiers on different on random feature subsets

e Strategies

« Ensemble Classification: Use all resulting classifiers as ensemble of weak learners.
» Feature Selection: Identify which features yield good classifiers.
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Generalizing for multiple scales

* During feature generation
— Scale invariant features, eg, SIFT features

« Before classification

— Create features using Scale Space Analysis
« Gaussian / Laplacian Pyramids

« During classification

— Have multiple classifiers trained to recognize
pattern at different scales

* Fuse results across multiple classifiers.

Pyramid level

level O level | level 2
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FIGURE 16.8: A simplified example of constructing a spatial pyramid kernel, with three
levels. There are three feature types, too (circles, diamonds, and crosses). The image is
subdivided into one-, four-, and sixteen-grid boxes. For each level, we compute a histogram
of how many features occur in each box for each feature type. We then compare two images
by constructing an approximate score of the matches from these histograms. This figure
was originally published as Figure 1 of “Beyond bags of features: Spatial pyramid matching
for recognizing natural scene categories,” by S. Lazebnik, C. Schmid, and J. Ponce, Proc.
IEEE CVPR 2006, © IEEE 2006.
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Recognition and Classification problems

What is it?

— Object and scene recognition

Who is it?

— |dentity recognition

Where is it?

— Object detection

What is it doing?

— Activities

All of these are classification problems

— Choose one class from a list of possible candidates

FEORGETOW:
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What is recognition?

A different taxonomy from [Csurka et al. 2006]:

Recognition

— Where is this particular object?
Categorization

— What kind of object(s) is(are) present?
Content-based image retrieval

— Find me something that looks similar

Detection
— Locate all instances of a given class

FEORGETOW:
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Detection with a classifier

Searching the image
— all windows
— at relevant scales

Prepare Features
Classify

Issues

— How to get only one response

* Fusion

« Confidence accumulation or aggregation
— Speed

» Images can be large; all classification schemes (and feature generation schemes) do not scale well.
— Accuracy

» Are results good, repeatable, generalizable?
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Classifiers

Take a measurement x, predict a bit (yes/no; 1/-1; 1/0; etc)
— Note: spatial information may be included with feature calculation

Common Strategies:

— non-parametric

* nearest neighbor
— probabillistic

* histogram

* logistic regression
— decision boundary

« SVM
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Nearest neighbor classification

« Training: Construct a Set of Examples

— (x_Ly_)

* hereyisyes/no or-1/1 or 1/0 or....

— training set

« Strategy

— to label new example (test example)
+ find closest training example

 report its label
« Advantage

— Maintains essentially training information; no summarization

Issue

— how do we find closest example?
— what distance should we use?
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k-nearest neighbors

e Strategy

— to classify test example
« find k-nearest neighbors of test point
 vote (it's a good idea to have k odd)

* |Issues (again)
— how do we find nearest neighbors?
— what distance should we use?
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Nearest neighbors

« EXxact nearest neighbor In large dataset
— linear search is very good
— very hard to do better (surprising fact)

« Approximate nearest neighbor is easier
— methods typically give probabilistic guarantees
— Time tradeoff: may have good “enough” accuracy

— methods
* |locality sensitive hashing
« k-d tree
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Locality Sensitive Hashing

 Locality Hashing —

17 " X’\
— Vectors "near” to each other are mapped to o X0
the same hash bucket (collide). | |
— Thus finding a nearest neighbor, or k
nearest neighbors o e
— Issues: |
* Finding LSH is hard s — LW
- Various Bucket Size issues: o
— EG Bucket(s) may be empty
GEORGETOWIN_,
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Common Classifiers

* Probabilistic Models
— Naive Bayes Classifier
— Relevance Vector Machine (RVM)
— Gaussian Process
— Random Forest
— Markov Models

 Other common models
— SVM
— Neural Network
— Graph-Based Models
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Machine Learning in Vision

« Learn model parameters given labeled examples
— But HOW do we get the labels?
— EG:
« LabelMe app
» Annotation Tools

* Ground Truth
— Pixelwise
— Pixel-set
— Image-level
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Classification schemes with spatial information

« Features may include spatial information, but do classifiers?

« Markov Models / Graph-based models
— Both observation and location of samples are considered
— Often posed as energy minimization of multiple terms

Background

! Background
@ terminal @ terming
cut
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Detection Maps

Once detection or classification is completed for a pixel-based
classifier, a label (with confidence) is associated with each pixel

In detection, resulting map can be thresholded to make decision
— Often called decision map.

— Confidence is displayed for each pixel (as an image), thus a detection map

If no spatial information was included in classification, this can be
iIncorporated into a post processing step ...
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Post processing of Detection and Classification Maps:
Decision Maps

« Spatial information can be incorporated
INto a post processing step
— Connected Components
— Morphology

(false color)

« Example
— Indian Pines

a post-classification

step
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Evaluating Results

 Classification Accuracy
— Confusion Matrix

— Receiver Operating Characteristic Curve
- AUC

— Precision vs recall

« Accuracy as a function of ...
— Number of training samples
— Training time
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Confusion Matrix

Is the classifier confused?
— Which classes does classifier

have difficulty distinguishing

between?

Predicted class

2 N
True False
P | Positives Negatives
(TP) (FN)
Actual
Class
False True
N | Positives Negatives
(FP) (TN)

N

True Class

Predicted Class

1 2 - m
C1.1 C1,3 C1,m
Cs1 Coo Com
Cm.‘l Cm.2 Cm,s

Predictive value for class k
(total correct / column total)

Sensitivity for class k
(total correct / row total)

Summary measures:

Accuracy:
m
a=2 Z s
=—> S
k=1

Overall Predictive Value:

m
p—lzp
=2 P

=i
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Confusion Matrix

 Example (SVM-KNN)
Confusion matrix
(illustrated using 2-d
color map)
— Red: high probability
— Blue: low probability

FIGURE 15.3: An example of a class confusion matrix from a recent image classification
system, due to Zhang et al. (2006a). The vertical bar shows the mapping of color to
number (warmer colors are larger numbers). Note the redness of the diagonal; this is
good, because it means the diagonal values are large. There are spots of large off-diagonal
values, and these are informative, too. For example, this system confuses: schooners and
ketches (understandable); waterlily and lotus (again, understandable); and platypus and
mayfly (which might suggest some feature engineering would be a good idea). This fig-
ure was originally published as Figure 5 of “SVM-KNN: Discriminative Nearest Neighbor
Classification for Visual Category Recognition,” by H. Zhang, A. Berg, M. Maire, and J.
Malik, Proc. IEEE CVPR, 2006, (© IEEE, 2006.
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Material classification

« Example (using e

foliage
SIFT features) l;f;
Confusion matrix metal
(illustrated using et
2-d color map) i

wood

— Purple: high
probability

Blue ) IOW FIGURE 16.17: Liu et al. (2010) prepared a material classification dataset from flickr im-
p ro b ab | I |ty ages, and used a combination of SIFT features and novel features to classify the materials.
This is a difficult task, as the class confusion matrix on the left shows; for example, it is
quite easy to mix up metal with most other materials, particularly glass. On the right,
examples of misclassified images (the italic label is the incorrect prediction). This figure
was originally published as Figure 12 of “Exploring Features in a Bayesian Framework for
Material Recognition,” by C. Liu, L. Sharan, E. Adelson, and R. Rosenholtz Proc. CVPR
2010, 2010 @gIEEE, 2010, RGETOWIN
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Receiver Operating Characteristic Curve

— For each threshold, plot true = I g
. .. = agk
positive vs false positive rates = |
ﬁ e .
Criterion value % C
| = 40f
Without _ o I
disease With - [
disease 5 200
= _
FHFFI_ D__rrlllllllli.lllll.llll.lll
i 0 20 40 G0 a0 100
Testresult False Fositive rate (100-5Specificity)

line represents threshold GEORGETOWIN
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Recetver operating curve

ROC curves on test sel showing effect of increased bin size

(=}
et

=]
o

« Example ROC for
skin detector

Probability of comect daection

[\ 1] . mered e Eemtamnsauas R By _.21_“:_:_ histogram .
— 2, 3Z hisiogram
— 3,16 b SO I
1

1 1
a3 o35 o4

el I 1 1 I ]
a 005 o1 (XL [iF] I8
Probahility of false delection

FIGURE 15.4: The receiver operating curve for a classifier, used to build a skin detector
by Jones and Rehg. This curve plots the detection rate against the false-negative rate for
a variety of values of the parameter 8. A perfect classifier has an ROC that, on these axes,
is a horizontal line at 100% detection. There are three different versions of this classifier,
depending on the detailed feature construction; each has a slightly different ROC. This
figure was originally published as Figure 7 of “Statistical color models with application to
skin detection,” by M.J. Jones and J. Rehg, Proc. IEEE CVPR, 1999 (c) IEEE, 1999.

FEORGETOW:
glﬂVIVERSI 7*1'2(



 AUC (Area under the curve)
— Can be numerically computed similar

Summarizing a ROC curve

to Riemann integral

True Positive rate (Sensitivity)

100

a0
60 -
a0k

20F

[ A R B B A B A B B A |

0

20 40 G0 a0 100
False Positive rate (100-Specificity)

1.0 |

05

TABLE 1

AUC ror MIL ALGORITHMS USING MUSK 1

Algorithm Musk 1 Algorithm Musk 1
E-RSE-MIL-1  0.902 C-RSF-MIL-1 0.916
E-RSE-MIlL.-4 0.912 C-RSF-MIL-2 0.942
E-RSE-MIL-8  0.948 C-RSF-MIL-3 0.949
MIEVM (1.942 MIBoost 0.899
MILR (. 546 MISYVM 0.899
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Accuracy on Caltech

Caltech101 comparison to literature Caltech-256 (39 kernels)
80 : :
70l L R =
60
0 5]
g S0 s L £ _
=l  [~+—Znang, Barg, Maire and Malik (CVPROB).  © —
o 40 —e—Lazebrik, Schmid and Ponce (CVPR06) @ 3. " | =@ = best feature
m —+—Wang, Zhang and Fei-Fei (CVPROS) == product
30t B Grauman and Darrell (ICCV05) ey
) - Mutch and Lowe (CVPROEG) —e—LP_p
2[}"' ,/ _____ —e—Finta, Cox and DiCarlo (FLOS0E) g =@=|P.B
I ¢ —o—Giriffin, Holub and Perona (TROB) 2D AR — e Griffin, Helub and Perona (TFDB) i
1 D| . —-I—LP-ﬁ {this papear) . . . g : : @ _Pinte, Gox and DiGarle (PLOSOS)
5 10 15 20 25 30 10 20 30 40 50
#training examples #lraining examples

FIGURE 16.20: Graphs illustrating typical performance on Caltech 101 for single descriptor
types (left) and on Caltech 256 for various types of descriptor (right; notice the vertical
scale 1s different), plotted against the number of training examples. Although these figures
are taken from a paper advocating nearest neighbor methods, they illustrate performance
for a variety of methods. Notice that Caltech 101 results, while not perfect, are now quite
strong; the cost of going to 256 categories is quite high. Methods compared are due to:
Zhang et al. (2006b), Lazebnik et al. (2006), Wang et al. (2006), Grauman and Darrell
(2005), Mutch and Lowe (2006), Griffin et al. (2007), and Pinto et al. (2008); the graph
is from Gehler and Nowozin (2009), which describes multiple methods (anything without
a named citation on the graph). This figure was originally published as Figure 2 of “On
Feature Combination for Multiclass Object Classification,” by P. Gehler and S. Nowozin
Proe. ICCV 2009, 2009 (¢ IEEE 2009.
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(More) Evaluation

Some problems require multiple decisions per input

— eg Image Retrieval
— Given an image input, find all images “similar” to it

Precision
— percentage of items in retrieved set that are relevant

Recall
— percentage of relevant items that are retrieved

Precision vs recall
— use classifier to label a collection of images
— now plot precision against recall for different classifier thresholds

FEORGETOW:
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Precision vs recall
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FIGURE 16.19: Plots of precision as a function of recall for six object queries. Notice
how precision generally declines as recall goes up (the occasional jumps have to do with
finding a small group of relevant images; such jumps would become arbitrarily narrow
and disappear in the limit of an arbitrarily large dataset). Each query is made using the
system sketched in Figure 16.5. Each graph shows a different query, for two different
configurations of that system. On top of each graph, we have indicated the average
precision for each of the configurations. Notice how the average precision is larger for
systems where the precision is higher for each recall value. This figure was originally
published as Figure 9 of J. Sivic and A. Zisserman “Efficient Visual Search for Objects in
Videos,” Proc. IEEE, Vol. 96, No. 4, April 2008 (c) IEEE 2008.
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Experimental Design

« How well does the classification scheme work?

— We wary of “overtraining”
— Do not assess a scheme based on results gather from “test on train”

— Does it generalize?

« Do not Test on Train: Divide your set into training and testing sets (iteratively)

Test data <———{ Training data }—‘—}
[Ieration 1 {0000 0|000000000000000
20000 10000000000
2000000009 100000

 Crossvalidation
— k-fold
— Leave one out

|Iteration k=4 “““““"“
“ J All data l —
— GEORGETOWIN(,
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Repeatability of Experimental Results

 Thresholded classification of data sets
~ binomial random variable

« Assume each point on the ROC curve is the result of n Bernoulli
trials (binomial random variable)
— The number of successful target identifications is given for each threshold

— The MLE of the probability of success, p, of the binomial is then precisely
the PD as shown on the ROC

FEORGETOW:
gUZVI VERSI ZTIL:Z\C



Reliability of PD estimates:

Upper and Lower bound estimates

« Using the CDF of the binomial we can find upper and lower bound estimates of the
parameter, p, given our observed data with x successes from n trials with a confidence
interval 1 - o

—| That is, we perform two (distinct), one-tailed tests (Clopper—Pearson method)
— ~Giventhe two equations below, We SOIVE TOF Pyg,e, aNd Pypper USING the F disStribution approximation (in Matlab)

pliower (1 ~ Prower ) "

plIJpper (1_ pupper )n_l
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Confidence Interval Visual
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Chapter 9

Classification Models
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