
COSC579: Image Segmentation

Jeremy Bolton, PhD

Assistant Teaching Professor

Outline

I. Motivation
I. Spectral, Feature, and Spatial Information

I. Basic histogram vs nearness

II. Split and Merge Approaches
I. Watershed

II. Agglomerative and Divisive Clustering

III. Graph discussion
I. Shortest Paths: Scissors

II. Min Cuts

IV. Snakes
I. Find object boundaries using contours

II. Energy Minimization using Variational Methods

Segmentation

• Today’s Readings

– Szelinski CH 5

From images to objects

• What Defines an Object?
– Subjective problem, but has been well-studied

– Gestalt Laws seek to formalize this

• proximity, similarity, continuation, closure

• see notes by Steve Joordens, U. Toronto

http://www.psych.utoronto.ca/~joordens/courses/PsyA01/Chapter7/sld010.htm

Extracting objects

• How could this be done?

Segmentation

• Segmentation in general is a
tough problem.
– Ill-posed problem

– Concept of “segments” is
subjective

• There are many approaches
to segmentation

• There is no universal
approach that works well in
all scenarios

Image Segmentation

• The segmentation problem is the problem of

identifying different segments in an image

• Based on a number of factors (which will vary

based on specific application)

– Color / intensity

– Distance / proximity

– Features (local)

Similarity

• Based only on color or intensity
– no image coordinate information

– very basic

• Based on Features
– May provide contextual information (or other based on feature computed)

• Common Approaches
– Modes in Histograms (intensity or some color space)

• Quantizing / binning required

– Metrics in a Vector Space (multi-dimensional)

Histogram-based segmentation

• Goal
– Break the image into K regions (segments)

– Solve this by reducing the number of colors to K and
mapping each pixel to the closest color

Histogram-based segmentation

• Goal
– Break the image into K regions (segments)

– Solve this by reducing the number of colors to K and
mapping each pixel to the “closest” color

Here’s what it looks like if we use K = two colors

Finding Modes in a Histogram

• How Many Modes Are There?

– Easy to see (sometimes), hard to compute

Mean Shift [Comaniciu & Meer]

• Iterative Mode Search
1. Initialize random seed, and window W

2. Calculate center of gravity (the “mean”) of W:

3. Translate the search window to the mean

4. Repeat Step 2 until convergence

Mean-Shift
• Approach

– Initialize a window around each point

– See where it shifts—this determines which segment
it’s in

– Multiple points will shift to the same segment

http://www.caip.rutgers.edu/~comanici/clusterDemo.html
http://www.caip.rutgers.edu/~comanici/clusterDemo.html

Mean-shift for image segmentation

• Useful to take into account spatial information

– instead of (R, G, B), run in (R, G, B, x, y) space
– D. Comaniciu, P. Meer, Mean shift analysis and applications, 7th International Conference on Computer Vision,

Kerkyra, Greece, September 1999, 1197-1203.
• http://comaniciu.net/Papers/MsAnalysis.pdf

More Examples: http://www.caip.rutgers.edu/~comanici/segm_images.html

http://comaniciu.net/Papers/MsAnalysis.pdf
http://www.caip.rutgers.edu/~comanici/segm_images.html

Watershed Approach

• Interpret image as a landscape where intensity represents height.

• Approach: flood the landscape and see where the water flows

– All pixels that flow to the same minima (water basin) are in a segment

– To adjust granularity of segments, add or drain water.

Segmentation as Clustering
• How to choose the representative colors?

– This is a clustering problem!

Objective

• Each point should be as close as possible to a cluster center

– Minimize sum squared distance of each point to closest center

R

G

R

G

Break it down into subproblems
• Suppose I tell you the cluster centers ci

– Q: how to determine which points to associate with each ci?

• A: for each point p, choose closest ci

Suppose I tell you the points in each cluster

• Q: how to determine the cluster centers?

• A: choose ci to be the mean of all points in the cluster

Split and Merge

• Simple approach for using spatial and intensity.

1. Threshold

2. Identify connected components

• Performing these operations once in sequence rarely works; however

repeatedly performing these operations improves results.

– Terrain - based model: Watershed

– Cluster-based models

– Graph-based

Divisive Clustering (Region Splitting)

• (Often) Based on Histogram

– Starting at a high threshold and continuing to decrease, find a “good”

threshold for the histogram that best separates the large peaks.

Agglomerative-clustering (Region Merging)

• Approach

1. Seed (many) coordinates in the image as cluster centers

2. If a neighboring pixel is “similar enough” then add it to the cluster

3. If a neighboring pixel is to be added to a cluster, but is already a member

of another cluster, then merge clusters

4. Repeat until some stopping criterion is met

Contours as Segment Edges

• Segmentation as identifying the boundaries of segments

• Segmentation: intrinsic balance between spectral (or feature) and spatial similarities
– Pose as energy minimization with two terms: similarity and nearness

• Interpret image as a graph
– Pixels are nodes

• Have observed spectra, features, etc

– Neighboring pixels have connecting edges
• Nearness measured in image coordinates

– Approaches are often interactive:
• How are representatives of each cluster determined?

• How are terminals defined?!?

Interactive “Seeding” of Graph

• Problem with Segmentation:

segment representative is

unknown.

– Solution: Interactively choose “Seed”

Weights on the Graph

• Links

– N-link: link to image neighbors

– T-link: link to terminal (label)

• Model for R is often determined by seeding process

Segmentation by min (s-t) cut [Boykov 2001]

• Graph

– node for each pixel, link between pixels

– specify a few pixels as foreground and background

• create an infinite cost link from each bg pixel to the “t” node

• create an infinite cost link from each fg pixel to the “s” node

– compute min cut that separates s from t

– how to define link cost between neighboring pixels?

t s

min cut

Example Results [Boykov]

• Results

– Dependent upon seeding

process

– Dependent on choice of

\lambda

Intelligent Scissors (interactive, contour-based, graph-
model)

• Basic Idea
– Define edge score for each pixel

• edge pixels have low cost

– Find lowest cost path from seed to mouse

seed

mouse

Questions
• How to define costs?

• How to find the path?

Intelligent Scissors (demo)

https://youtu.be/X_dZ_7xAcIM

https://youtu.be/X_dZ_7xAcIM

Intelligent Scissors [Mortensen 95]

• Approach answers a basic question
– Q: how to find a path from seed to

mouse that follows object boundary as
closely as possible?

Can escape local
optima as cursor
moves and more

information about
the boundary is

learned.

Path Search (basic idea)

• Graph Search

Algorithm

– Computes minimum

cost path from seed to

all other pixels

How does this really work?

• Treat the image as a graph

Graph

• node for every pixel p

• link between every adjacent pair of pixels, p,q

• cost c for each link

Note: each link has a cost

p

q

c

Defining the costs

• Treat the image as a graph

Want to “hug” image edges: how to define cost of a link?

p

q

c

• the link should follow the intensity edge

– want intensity to change rapidly ┴ to the link

• c  - |difference of intensity ┴ to link |

Defining the costs

p

q

c

• c can be computed using a cross-correlation filter

– assume it is centered at p

• Also typically scale c by its length

– set c = (max-|filter response|)

• where max = maximum |filter response| over all pixels in the image

Defining the costs

p

q

c 1

-1w
-1-1

11

• c can be computed using a cross-correlation filter

– assume it is centered at p

• Also typically scale c by its length

– set c = (max-|filter response|)

• where max = maximum |filter response| over all pixels in the image

Dijkstra’s shortest path algorithm

0
5
31

33

4
9

2

Algorithm

1. init node costs to , set p = seed point, cost(p) = 0

2. expand p as follows:

for each of p’s neighbors q that are not expanded

» set cost(q) = min(cost(p) + cpq, cost(q))

link cost

Dijkstra’s shortest path algorithm

4

1 0

5

3

3 2 3

9

Algorithm

1. init node costs to , set p = seed point, cost(p) = 0

2. expand p as follows:

for each of p’s neighbors q that are not expanded

» set cost(q) = min(cost(p) + cpq, cost(q))

» if q’s cost changed, make q point back to p

» put q on the ACTIVE list (if not already there)

5
31

33

4
9

2

11

Dijkstra’s shortest path algorithm

4

1 0

5

3

3 2 3

9

5
31

33

4
9

2

1
5

2
33

3
2

4

Algorithm

1. init node costs to , set p = seed point, cost(p) = 0

2. expand p as follows:

for each of p’s neighbors q that are not expanded

» set cost(q) = min(cost(p) + cpq, cost(q))

» if q’s cost changed, make q point back to p

» put q on the ACTIVE list (if not already there)

3. set r = node with minimum cost on the ACTIVE list

4. repeat Step 2 for p = r

Dijkstra’s shortest path algorithm

3

1 0

5

3

3 2 3

6

5
31

33

4
9

2

4

3 1

4

5
2

33

3
2

4

Algorithm

1. init node costs to , set p = seed point, cost(p) = 0

2. expand p as follows:

for each of p’s neighbors q that are not expanded

» set cost(q) = min(cost(p) + cpq, cost(q))

» if q’s cost changed, make q point back to p

» put q on the ACTIVE list (if not already there)

3. set r = node with minimum cost on the ACTIVE list

4. repeat Step 2 for p = r

Dijkstra’s shortest path algorithm

• Properties
– It computes the minimum cost path from the seed to every node in the

graph. This set of minimum paths is represented as a tree

– Running time, with N pixels:
• O(N2) time if you use an active list

• O(N log N) if you use an active priority queue (heap)

• takes fraction of a second for a typical (640x480) image

– Once this tree is computed once, we can extract the optimal path from any
point to the seed in O(N) time.

• it runs in real time as the mouse moves

– What happens when the user specifies a new seed?

Grabcut [Rother et al., SIGGRAPH 2004]

https://youtu.be/ufiTlDp4Iqc

http://research.microsoft.com/vision/cambridge/i3l/segmentation/GrabCut.htm
https://youtu.be/ufiTlDp4Iqc

GrabCut: Iterated Graph Cuts
similar to Boykov et al

User Initialisation

Learn foreground

color model

Graph cuts to

infer the

foreground

?

Graph Cuts modelling in images

Image

Min Cut

Cut: separating source and sink; Energy: collection of edges

Min Cut: Global minimal enegry in polynomial time

Foreground

(source)

Background

(sink)

Graph Cuts for foreground extraction

Min Cut

Foreground

(source)

Background

(sink)

Assume we know foreground

is white and background is

black

Min Cut

Foreground

(source)

Background

(sink)

Assume we know foreground

is white and background is

black

Data term =

(cost of assigning label)

Regularization =

(cost of separating neighbors)

Graph Cuts for foreground extraction

Min Cut

Foreground

(source)

Background

(sink)

Assume we know foreground

is white and background is

black

Data term = whiteness

(cost of assigning label)

Regularization =

(cost of separating neighbors)

Graph Cuts for foreground extraction

Min Cut

Foreground

(source)

Background

(sink)

Assume we know foreground

is white and background is

black

Data term = whiteness

(cost of assigning label)

Regularization = color match

(cost of separating neighbors)

Graph Cuts for foreground extraction

We are all set now !

User Initialisation

Learn foreground

color model

Graph cuts to

infer the

foreground

?

Moderately straightforward
examples

… GrabCut completes automatically

Difficult Examples

Camouflage &

Low Contrast
No telepathyFine structure

Initial

Rectangle

Initial

Result

GrabCut – Interactive Foreground Extraction 11

Notes: Is user-input required?

• Fully-Automated vs semi-automated

– Automatic methods are possible, but are often very application specific

• classical image segmentation methods are automatic

– Argument for user-directed methods?

• Pros: only user knows desired scale/object of interest

• Cons: Requires a User

– Many approaches and variants exist

