
COSC160: Data Structures

Jeremy Bolton, PhD

Assistant Teaching Professor

Outline

I. Why Features?

II. What makes a “good” feature?

I. Invariance

III. Common Features

IV. Features for Classification

Big Picture: Computer Vision

Scene
Image

Formation
Image

Processing
Feature

Generation

Models for
Recognition,
Tracking, etc

Machine
Learning

High Level
Scene

Understanding

Feature extraction: Corners and blobs

Motivation: Automatic panoramas (stitching)

Credit: Matt Brown

Why extract features?
We know how to detect good points
Next question: How to match them?

Lots of possibilities (this is a popular research area)
– Simple option: match square windows around the

point (tailor-made, matched filter)

– State of the art approach: SIFT
• David Lowe, UBC http://www.cs.ubc.ca/~lowe/keypoints/

?

http://www.cs.ubc.ca/~lowe/keypoints/

Why extract features?

• Motivation: panorama stitching

– We have two images – how do we combine them?

Step 1: extract features
Step 2: match features
Step 3: align images

Why Features? Feature matching for Recognition

Feature Matching

More motivation…

Feature points are used for:

– Image alignment (e.g., mosaics)

– 3D reconstruction

– Motion tracking

– Object recognition

– Indexing and database retrieval

– Robot navigation

– … other

Local vs. Global Features:
Advantages of local features

Locality

– features are local, so robust to occlusion and clutter

Quantity

– hundreds or thousands in a single image

Distinctiveness:

– can differentiate a large database of objects

Efficiency

– real-time performance achievable

Feature Generation

• Some common features
– Edge kernels (Previously Discussed)

– Texture Features (Previously Discussed)

– Orientation
• Histogram of Gradients (HoG)

• Edge Histogram Descriptors (EHD)

• Hough Transform (Note: Often Global Feature)

– Invariant Features
• SIFT

• MOPS

• Harris (Corner)

– Tailor-made features
• design your own kernel that works for a specific problem

Snoop demo

What makes a good feature?

Depends on a few factors

• Purpose:
– Classification (models used)

– Feature (Image) Matching

• Data Characteristics (Do you want to capture changes in)
– Scale

– Intensity

– Rotations

– color

Invariance

Suppose we are comparing two images I1 and I2
– I2 may be a transformed version of I1
– What kinds of transformations are we likely to encounter in practice?

We’d like to find the same features regardless of the transformation
– This is called transformational invariance

– Most feature methods are designed to be invariant in some way …
• Translation, 2D rotation, scale

– Some can also handle
• Limited 3D rotations (SIFT works up to about 60 degrees)

• Limited affine transformations

• Limited illumination/contrast changes

Invariant local features

Find features that are invariant to transformations

– geometric invariance: translation, rotation, scale

– photometric invariance: brightness, exposure, …

Feature Descriptors

How to achieve invariance

Need both of the following:

1. Make sure your detector is invariant
– EG invariant to translation and rotation

– Scale is trickier
• common approach is to detect features at many scales using a Gaussian pyramid (e.g., MOPS)

• Other methods find “the best scale” to represent each feature (e.g., SIFT)

2. Design an invariant feature descriptor
– A descriptor captures the information in a region around the detected feature

point

– The simplest descriptor: a matched filter (fixed size kernel)
• What’s this invariant to?

– Let’s look at some better approaches…

Some “Invariant” Features

• When orientation matters …

– HOG

– Hough

• Highly Invariant

– MOPS

– Harris

– SIFT

Orientations - I

• Gradient magnitude is affected by illumination changes

– but gradient direction isn’t

Orientations - II

• Notice larger gradients are “better”

– we know the orientation “better”; associated image points are “more

interesting”

Orientation Histograms (at different scales)

Rose plot

Orientation Histograms Vary

Building Orientation Representations

• GOAL: We would like to represent a pattern in an image patch
– to detect things in images (recognition)

– to match points in one image to corresponding points in another image (matching)

• Necessary properties
– we have to know which (image property) patch to describe

– think of this as knowing the center and size of an image window

• Desirable features (dependent upon feature!)
– representation doesn’t change much if the center is slightly wrong

– representation doesn’t change much if the size is slightly wrong

– representation is distinctive

– representation doesn’t change much if the patch gets brighter/darker

– large gradients are more important than small gradients

Histograms of Oriented Gradients

• Necessary properties
– we have to know which patch to describe

– think of this as knowing the center and size of an image window

• Desirable features
– representation doesn’t change much if the center is slightly wrong

– representation doesn’t change much if the size is slightly wrong

– representation is distinctive

– representation doesn’t change much if the patch gets brighter/darker

– large gradients are more important than small gradients

assume window

size is known

Use histograms
Break window

into boxes,

describe each

Separately

(does order

matter?)

Use orientations

Weight orientation histogram entries

Histograms of Oriented Gradients

• Strategy:

– break patch up into blocks

– construct histogram representing gradient orientations in that block

• which won’t change much if the patch moves slightly

• entries weighted by magnitude

• Variants

– histogram of angles

– histogram of gradient vectors, length normalized by block averages

HOG features

HOG - Crucial Points

• Gradient orientations are not affected by intensity

• Orientations with larger magnitude are more important

– Use weighting scheme

• Describe an image window of known location, size

– Histograms reduce the effect of poor estimate of location, size

– Break window into subwindows

• for each, compute an orientation histogram, weighting orientations by magnitude

– Numerous variants available …

Feature Patterns and the Hough Transform

– A line is the set of points (x, y) such that

• Different choices of θ, d>0 give different lines

– For any (x, y) there is a one parameter family of lines through this point,

given by

– Each point gets to vote for each line in the family; if there is a line that has

lots of votes, that should be the line passing through the points



sin x  cos y d  0



sin x  cos y d  0

Hough
Example

• Assume input features
are thresholded edge
features.

• Hough transform will
help to “connect”
features and identify
edge contours,
direction, ….

Mechanics of the Hough transform

• Construct an array representing θ, d

• For each point, render the curve (θ, d) into this array, adding one at each
cell

• Difficulties
– how big should the cells be?

• too big - can’t distinguish between quite different lines

• too small - noise causes lines to be missed

– How many lines?
• count the peaks in the Hough array

– Who belongs to which line?
• tag the votes

• Hardly ever satisfactory in practice
– problems with noise and cell size defeat it

Basic idea:

• Take 16x16 square window around detected feature

• Compute edge orientation (angle of the gradient - 90) for each pixel

• Throw out weak edges (threshold gradient magnitude)

• Create histogram of surviving edge orientations

Scale Invariant Feature Transform

Adapted from slide by David Lowe

0 2
angle histogram

SIFT descriptor
Full version

• Divide the 16x16 window into a 4x4 grid of cells (2x2 case shown below)

• Compute an orientation histogram for each cell

• 16 cells * 8 orientations = 128 dimensional descriptor

Adapted from slide by David Lowe

Properties of SIFT
Extraordinarily robust matching technique

– Can handle changes in viewpoint

• Up to about 60 degree out of plane rotation

– Can handle significant changes in illumination

• Sometimes even day vs. night (below)

– Fast and efficient—can run in real time

– Lots of code available
• http://people.csail.mit.edu/albert/ladypack/wiki/index.php/Known_implementations_of_SIFT

http://people.csail.mit.edu/albert/ladypack/wiki/index.php/Known_implementations_of_SIFT

MOPS: Feature Matching Approach

• We need a way to describe regions around each feature, so that

matching is robust

• How do you account for changes in viewpoint or scale?

• Tradeoff between discriminative power and invariance to

appearance changes, may be domain specific

Find dominant gradient orientation of the image patch

– Rotate the patch according to this angle

• If this gradient is dominant in all instances of the feature in all images, this pre-

alignment step assures rotation invariance

Rotation invariance for feature descriptors

Figure by Matthew Brown

Take 40x40 square window around detected feature
– Scale to 1/5 size (smooth and downsample to remove noise or localization errors)

– Rotate to horizontal

– Sample 8x8 square window centered at feature

– Intensity normalize the window by subtracting the mean, dividing by the standard deviation in the window

Multiscale Oriented PatcheS descriptor

8 pixels

Adapted from slide by Matthew Brown

Detections at multiple scales (MOPS with Scale Space)

