COSC160: Data Structures

Jeremy Bolton, PhD
Assistant Teaching Professor

FORGETOW:
gUNI VERSIT Tg\c

Outline

. Why Features?

II. What makes a “good” feature?
l. Invariance

1. Common Features

FEORGETOW:
gUZVI VERSI ZTIL:Z\C

Big Picture: Computer Vision

Models for
' Recognition, [T Scene
Tracking, etc Understanding

High Level

Image Image Feature
Formation Processing Generation

Machine
Learning

EORGETOW:
gU}VIV.ERSITiz\C’

Feature extraction: Corners and blobs

‘:}".‘:‘.o "‘;z; b
o A%

FEORGETOW:
glﬂVIVERSI 7*1'2(

Motivation: Automatic panoramas (stitching)

GETOW:
V RST Tl.g('

O/
Credit: Matt Brown

Why extract features?

We know how to detect good points
Next question: How to match them?

Lots of possibilities (this is a popular research area)

— Simple option: match square windows around the
point (tailor-made, matched filter)

— State of the art approach: SIFT
 David Lowe, UBC http://www.cs.ubc.ca/~lowe/keypoints/ g%%?%

http://www.cs.ubc.ca/~lowe/keypoints/

Why extract features?

Motivation: panorama stitching
— We have two images — how do we combine them?

Step 1: extract features

Step 2: match features

Step 3: align images FORGETOW,
glMVERSITl.;\C

Why Features? Feature matching for Recognition

Multiple View
Geometry

10 COMmnuler wision

T Taaed 1 Tey o) Al oo Tnonrsian

FEORGETOW:
glﬂVIT/.ERSI Tl'g('

Feature Matching

Multiple View
Geometry

10 COMmnuler wision

T 1 ey o) Al o :~

FEORGETOW:
glﬂVIT/.ERSI Tl'g('

More motivation...

Feature points are used for:
— Image alignment (e.g., mosaics)
— 3D reconstruction
— Motion tracking
— ODbject recognition
— Indexing and database retrieval
— Robot navigation
— ... other

FEORGETOW:
gUZVI VERSI ZTIL:Z\C

Local vs. Global Features:
Advantages of local features

Locality

— features are local, so robust to occlusion and clutter
Quantity

— hundreds or thousands in a single image
Distinctiveness:

— can differentiate a large database of objects
Efficiency

— real-time performance achievable

FEORGETOW:
gUZVI VERSI ZTIL:Z\C

Feature Generation

« Some common features

— Orientation
» Histogram of Gradients (HoG)
» Edge Histogram Descriptors (EHD)
« Hough Transform (Note: Often Global Feature)

— Invariant Features
« SIFT
« MOPS
» Harris (Corner)
— Tailor-made features
 design your own kernel that works for a specific problem

FEORGETOW:
gUZVI VERSI ZTIL:Z\C

ration to revive

a-hyd

LiolS vl

-

Depends on a few factors

* Purpose:
— Classification (models used)
— Feature (Image) Matching

« Data Characteristics (Do you want to capture changes in)
— Scale
— Intensity
— Rotations
— color

FEORGETOW:
gUZVI VERSI ZTIL:Z\C

Invariance

Suppose we are comparing two images |, and I,
— |, may be a transformed version of |,
— What kinds of transformations are we likely to encounter in practice?

We'd like to find the same features regardless of the transformation
— This is called transformational invariance
— Most feature methods are designed to be invariant in some way ...
« Translation, 2D rotation, scale

— Some can also handle
» Limited 3D rotations (SIFT works up to about 60 degrees)
» Limited affine transformations
» Limited illumination/contrast changes

FEORGETOW:
gUZVI VERSI ZTIL:Z\C

Invariant local features

Find features that are invariant to transformations
— geometric invariance: translation, rotation, scale
— photometric invariance: brightness, exposure, ...

’

Al

N

P

A

Feature Descriptors

FEORGETOW:
glﬂVIT/.ERSI Tl'g('

How to achieve invariance

Need both of the following:

1. Make sure your detector Is invariant
— EG invariant to translation and rotation

— Scale is trickier
« common approach is to detect features at many scales using a Gaussian pyramid (e.g., MOPS)
» Other methods find “the best scale” to represent each feature (e.g., SIFT)

2. Design an invariant feature descriptor

— A descriptor captures the information in a region around the detected feature
point
— The simplest descriptor: a matched filter (fixed size kernel)
« What's this invariant to?

— Let’s look at some better approaches...

FEORGETOW:
gUZVI VERSI ZTIL:Z\C

Some “Invariant” Features

 \When orientation matters ...
— HOG
— Hough

« Highly Invariant
— MOPS
— Harris
— SIFT

FEORGETOW:
gUZVI VERSI ZTIL:Z\C

Onrientations - 1

« Gradient magnitude is affected by illumination changes
— but gradient direction isn’t

FIGURE 5.7: The magnitude of the image gradient changes when one increases or decreases
the intensity. The orientation of the image gradient does not change; we have plotted every
10th orientation arrow, to make the figure easier to read. Note how the directions of the
gradient arrows are fixed, whereas the size changes. Philip Gatward (€) Dorling Kindersley,

used with permission.
FORGETOW:
GWIVERSI Ti?'\c

Onrientations - 11

* Notice larger gradients are “better”

— we know the orientation “better”; associated image points are “more
interesting”

FIGURE 5.7: The magnitude of the image gradient changes when one increases or decreases
the intensity. The orientation of the image gradient does not change; we have plotted every
10th orientation arrow, to make the figure easier to read. Note how the directions of the
gradient arrows are fixed, whereas the size changes. Philip Gatward (©) Dorling Kindersley,

used with permission.
FORGETOW:
g(ﬂVIT/.ERSI Tig\c

Orientation Histograms (at different scales)

Rose plot

FIGURE 5.8: The scale at which one takes the gradient affects the orientation field. We
show the overall trend of the orientation field by plotting a rose plot, where the size of a
wedge represents the relative frequency of that range of orientations. Left shows an image
of artists pastels at a fairly fine scale; here the edges are sharp, and so only a small set of
orientations occurs. In the heavily smoothed version on the right, all edges are blurred
and corners become smooth and blobby; as a result, more orientations appear in the rose
plot. Philip Gatward (€) Dorling Kindersley, used with permission.

EORGETOW:
gU}VIV.ERSI Tl.g\c

Orientation Histograms Vary

FIGURE 5.9: Different patterns have quite different orientation histograms. The left shows
rose plots and images for a picture of artists pastels at two different scales; the right shows
rose plots and images for a set of pastels arranged into a circular pattern. Notice how the
pattern of orientations at a particular scale, and also the changes across scales, are quite
different for these two very different patterns. Philip Gatward () Dorling Kindersley, usec

with permission.

EORGETOW:
gU}VIV.ERSI Tl.g\c

Building Orientation Representations

GOAL: We would like to represent a pattern in an image patch
— to detect things in images (recognition)
— to match points in one image to corresponding points in another image (matching)

Necessary properties
— we have to know which (image property) patch to describe
— think of this as knowing the center and size of an image window

Desirable features (dependent upon feature!)

— representation doesn’t change much if the center is slightly wrong

— representation doesn’t change much if the size is slightly wrong

— representation is distinctive

— representation doesn’t change much if the patch gets brighter/darker
— large gradients are more important than small gradients

FEORGETOW:
gUZVI VERSI ZTIL:Z\C

Histograms of Oriented Gradients

* Necessary properties

we have to know which patch to describe

think of this as knowing the center and size of an image window assume window
size 1S known

 Desirable features

Use histograms< -

Use orientations — —

Weight orientation histogram entries

representation doesn’t change much if the center is slightly wrong

representation doesn’t change much if the size is slightly wrong Break window

e into boxes,
representation is distinctive ,
. , : : describe each
representation doesn’t change much if the patch gets brighter/darker
. . . Separately
large gradients are more important than small gradients
(does order
matter?)
GEORGETOWN_,

UNIVERSITY

Histograms of Oriented Gradients

Strategy:

— break patch up into blocks

— construct histogram representing gradient orientations in that block

« which won’t change much if the patch moves slightly
 entries weighted by magnitude

Variants

— histogram of angles
— histogram of gradient vectors, length normalized by block averages

FEORGETOW:
gUZVI VERSI ZTIL:Z\C

HOG features

Y iy g e

T o5 T oo e
FEEE S PSS WRAA 4

FIGURE 5.15: The HOG features for each the two images shown here have been visualized
by a version of the rose diagram of Figures 5.7-5.9. Here each of the cells in which the
histogram is taken is plotted with a little rose in it; the direction plotted is at right angles
to the gradient, so vou should visualize the overlaid line segments as edge directions.
Notice that in the textured regions the edge directions are fairly uniformly distributed,
but strong contours (the gardener, the fence on the left; the vertical edges of the french
windows on the right) are very clear. This figure was plotted using the toolbox of Dollar
and Rabaud. Left: (©) Dorling Kindersley, used with permission. Right: Geoff Brightling
© Dorling Kindersley, used with permission.

g .- ———

' ETOWN

UNIVERSITY

HOG - Crucial Points

Gradient orientations are not affected by intensity

Orientations with larger magnitude are more important
— Use weighting scheme

Describe an image window of known location, size

— Histograms reduce the effect of poor estimate of location, size

— Break window into subwindows
 for each, compute an orientation histogram, weighting orientations by magnitude

— Numerous variants available ...

FEORGETOW:
gUZVI VERSI ZTIL:Z\C

Feature Patterns and the Hough Transform

— Aline is the set of points (x, y) such that (sinO)x +(cosO)y+d =0

« Different choices of 6, d>0 give different lines

— For any (X, y) there is a one parameter family of lines through this point,
given by
(sin@x +(cosO@y+d =0

— Each point gets to vote for each line in the family; if there is a line that has
lots of votes, that should be the line passing through the points

FEORGETOW:
gUZVI VERSI ZTIL:Z\C

Hough ‘
Thresholded P
Example odiiiiges S

|
(a) Lo (b) Weench (c) Wreonch with nowne ‘

— 1

Visualizing the
accumulator space

« Assume input features
are thresholded edge

¢ The height of the | | .
eatures. peak will be defined |
by the number of |
 Houg h transform wiill pixels in the line. | omomn | @romn) |0 1
G ” B ' |
help to “connect Thresholding the

features and identify
edge contours,

accumulator space | I
direction,

and superimposing
this onto the edge |
image | }

(9) Line trom (d) I (M) Lines rom (o) ‘ () Linos from ()

FEORGETOW:
glﬂVIT/.ERSI Tl'g('

FIGURE 10.1: The Hough transform maps each point like token to a curve of possible
lines (or other parametric curves) through that point. These figures illustrate the Hough
transform for lines. The left-hand column shows points, and the right-hand column
shows the corresponding accumulator arrays (the number of votes is indicated by the
gray level, with a large number of votes being indicated by bright points). The top row
shows what happens using a set of 20 points drawn from a line. On the top right, the
accumulator array for the Hough transform of these points. Corresponding to each point is
a curve of votes in the accumulator array; the largest set of votes is 20 (which corresponds
to the brightest point). The horizontal variable in the accumulator array is #, and the
vertical variable is r; there are 200 steps in each direction, and r lies in the range [0, 1.55].
On the bottom, these points have been offset by a random vector, each element of which
is uniform in the range [0,0.05]. Note that this offsets the curves in the accumulator
array shown next to the points and the maximum vote is now 6 (which corresponds to the
brightest value in this image; this value would be difficult to see on the same scale as the
top image).

sl

sl

=21

ozl

-1

sl

ol

(=11

FEORGETOW:
gUZVI VERSI ZTIL:Z\C

T T T T T
1k . y
+
.*
08¢ E
#
06 -
-*
* *
L # # -
04 #* *
*
*
02r #* -
+* * * #*
0 1 1 L # L L
o 02 04 08 08 1

FIGURE 10.2: The Hough transform for a set of random points can lead to quite large sets
of votes in the accumulator array. As in Figure 10.1, the left-hand column shows points,
and the right-hand column shows the corresponding accumulator arrays (the number
of votes is indicated by the gray level, with a large number of votes being indicated by
bright points). In this case, the data points are noise points (both coordinates are uniform
random numbers in the range [0, 1]); the accumulator array in this case contains many
points of overlap, and the maximum vote is now 4 (compared with 6 in Figure 10.1).

FEORGETOW:
gUZVI VERSI ZTIL:Z\C

Mechanics of the Hough transform

Construct an array representing 6, d

For each point, render the curve (0, d) into this array, adding one at each
cell

Difficulties

— how big should the cells be?
 too big - can'’t distinguish between quite different lines
« too small - noise causes lines to be missed

— How many lines?
« count the peaks in the Hough array

— Who belongs to which line?

 tag the votes
Hardly ever satisfactory in practice
— problems with noise and cell size defeat it

FEORGETOW:
gUZVI VERSI ZTIL:Z\C

Scale Invariant Feature Transform
Basic idea:

« Take 16x16 square window around detected feature

« Compute edge orientation (angle of the gradient - 90°) for each pixel

« Throw out weak edges (threshold gradient magnitude)

« Create histogram of surviving edge orientations

N

0 27

angle histogram

GEORGETOWIN_,

Adapted from slide by David Lowe UNIVERSITY

Image gradients

SIFT descriptor

Full version
* Divide the 16x16 window into a 4x4 grid of cells (2x2 case shown below)
« Compute an orientation histogram for each cell
« 16 cells * 8 orientations = 128 dimensional descriptor

a0
K

k-

Image gradients Keypoint descriptor

_ _ GEORGETOWIN_
Adapted from slide by David Lowe UNIVERSITY

Properties of SIFT

Extraordinarily robust matching technique
— Can handle changes in viewpoint
» Up to about 60 degree out of plane rotation
— Can handle significant changes in illumination
« Sometimes even day vs. night (below)
— Fast and efficient—can run in real time

— Lots of code available
http://people.csail.mit.edu/albert/ladypack/wiki/index.php/Known_implementations _of SIFT

y

http://people.csail.mit.edu/albert/ladypack/wiki/index.php/Known_implementations_of_SIFT

MOPS: Feature Matching Approach

We need a way to describe regions around each feature, so that
matching Is robust

How do you account for changes in viewpoint or scale?

Tradeoff between discriminative power and invariance to
appearance changes, may be domain specific

FEORGETOW:
gUZVI VERSI ZTIL:Z\C

Rotation invariance for feature descriptors

Find dominant gradient orientation of the image patch

— Rotate the patch according to this angle

« If this gradient is dominant in all instances of the feature in all images, this pre-
alignment step assures rotation invariance

| | | GEORGETOWN_
Figure by Matthew Brown UNIVERSITY

Multiscale Oriented PatcheS descriptor

Take 40x40 square window around detected feature

— Scale to 1/5 size (smooth and downsample to remove noise or localization errors)
— Rotate to horizontal

— Sample 8x8 square window centered at feature
— Intensity normalize the window by subtracting the mean, dividing by the standard deviation in the window

_ GEORGETOWIN_
Adapted from slide by Matthew Brown UNIVERSITY

Detections at multiple scales (MOPS with Scale Space)

Figure 1. Multi-scale Oriented Patches (MOPS) extracted at five pyramid levels from one of the Matier images. The
boxes show the feature orientation and the region from which the descriptor vector is sampled.

FEORGETOW:
glﬂVIT/.ERSI Tl'g('

FEORGETOW:
glﬂVIVERSI 7*1'2(

