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Outline

. What Is texture?

Il. Approaches to specifying or modelling texture
.  (Matched) Filters
II. Tuple of features (use HoG, Hough, Edge, ...)

Ill. Texture in frequency domain
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« Structure:
— texture representations
— texture synthesis
— shape from texture
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Texture

« Patterns of structure from
— changes in surface albedo (eg printed cloth)
— changes in surface shape (eg bark)
— many small surface patches (eg leaves on a bush)

 Hard to define; but texture tells us
— what a surface is like

— (sometimes) object identity
— (sometimes) surface shape
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Texture: Core Problems

* Represent complex surface textures to recognize
— objects
— materials
— textures

« Synthesize texture from examples
— to create big textures for computer graphics
— to fill in holes in images caused by editing
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Texture representation

e Core idea: Textures consist of
— a set of elements
— repeated in some way

« Representations
— Identify the elements
— summarize the repetition
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Notice how the change in
pattern elements and
repetitions is the main
difference between different
textured surfaces
(the plants, the ground, etc.)

FIGURE 6.1: Although texture is difficult to define, it has some important and valuable
properties. In this image, there are many repeated elements (some leaves form repeated
“spots”; others, and branches, form “bars” at various scales; and so on). Our perception
of the material is quite intimately related to the texture (what would the surface feel like
if you ran your fingers over it? what is soggy? what is prickly? what is smooth?). Notice
how much information you are getting about the type of plants, their shape, the shape
of free space, and so on, from the textures. Geoff Brightling (¢) Dorling Kindersley, used

with permission. FORGETOW.
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FIGURE 6.2: Typically, different materials display different image textures. These are
example images from a collection of 1,000 material images, described in by Sharan et al.
(2009); there are 100 images in each of the ten categories, including the two categories
shown here (fabric and stone). Notice how (a) the textures vary widely, even within a
material category; and (b) different materials seem to display quite different textures.
This figure shows elements of a database collected by C. Liu, L. Sharan, E. Adelson, and
R. Rosenholtz, and published at http: //people. csail. mit. edu/ lavanya/ research_
sharan. html . Figure by kind permission of the collectors.

Different materials tend
to have different textures
(though these are not
the same 1deas)
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Filter based texture representations

Choose a set of filters, each representing a pattern element
— typically a spot and some oriented bars

Filter the image at a variety of scales

Rectify the filtered images
— typically half wave, to avoid averaging contrast reversals
» eg should not average dark spot on light background, light spot on dark background to zero
Compute summaries of rectified filtered images
— eg smoothed average
— at a variety of scales to capture
« nearby pattern elements and general picture of pattern elements
Now describe each pixel by vector of summaries
— which could be very long
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Rectify Summarize

I
I
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Image Filter responses
at various orientations —>

and scales

Rectified images Summaries

FIGURE 6.3: Local texture representations can be obtained by filtering an image with a
set of filters at various scales, and then preparing a summary. Summaries ensure that, at
a pixel, we have a representation of what texture appears near that pixel. The filters are
typically spots and bars (see Figure 6.4). Filter outputs can be enhanced by rectifying
them (so that positive and negative responses do not cancel), then computing a local
summary of the rectified filter outputs. Rectifying by taking the absolute value means
that we do not distinguish between Light spots on a dark background and dark spots
on a light background; the alternative, half-wave rectification (described in the text),
preserves this distinction at the cost of a fuller representation. One can summarize either
by smoothing (which will tend to suppress noise, as in the schematic example above) or
by taking the maximum over a neighborhood. Compare this figure to Figure 6.7, which
shows a representation for a real image.
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FIGURE 6.4: Left shows a set of 48 oriented filters used for expanding images into a series
of responses for texture representation. Each filter i1s shown on its own scale, with zero
represented by a mid-gray level, lighter values being positive, and darker values being
negative. The left three columns represent edges at three scales and six orientations; the
center three columns represent stripes; and the right two represent two classes of spots
(with and without contrast at the boundary) at different scales. This is the set of filters
used by Leung and Malik (2001). Right shows a set of orientation-independent filters,
used by Schmid (2001), using the same representation (there are only 13 filters in this set,
so there are five empty slots in the image). The orientation-independence property means
that these filters look like complicated spots.
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FIGURE 6.5: Filter responses for the oriented filters of Figure 6.4, applied to an image of
a wall. At the center, we show the filters for reference (but not to scale, because they
would be too small to resolve). The responses are laid out in the same way that the filters
are (i.e., the response map on the top left corresponds to the filter on the top left, and
so on). For reference, we show the image at the left. The image of the wall is small, so
that the filters respond to structures that are relatively large; compare with Figure 6.6,
which shows responses to a larger image of the wall, where the filters respond to smaller
structures. These are filters of a fixed size, applied to a small version of the image, and
so are equivalent to large-scale filters applied to the original version. Notice the strong
response to the vertical and horizontal lines of mortar between the bricks, which are at
about the scale of the bar filters. All response values are shown on the same intensity
scale: lighter is positive, darker is negative, and mid-gray is zero.
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FIGURE 6.6: Filter responses for the oriented filters of Figure 6.4, applied to an image
of a wall. At the center, we show the filters for reference (not to scale). The responses
are laid out in the same way that the filters are (i.e., the response map on the top left
corresponds to the filter on the top left, and so on). For reference, we show the image at
the left. Although there is some response to the vertical and horizontal lines of mortar
between the bricks, it is not as strong as the coarse scale (Figure 6.5); there are also quite
strong responses to texture on individual bricks. All response values are shown on the
same intensity scale: lighter is positive, darker is negative, and mid-gray is zero.
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Rectified Summarized

Vertical stripes

Light stripes
Dark background

_Posmve response

Dark stripes
Light background

Negative response

Light stripes

Positive response Dark background

Dark stripes
Light background

Negative response

FIGURE 6.7: Filter-based texture representations look for pattern subelements such as
oriented bars. The brick image on the left is filtered with an oriented bar filter (shown as
a tiny inset on the top left of the image at full scale) to detect bars, yielding stripe responses
(center left; negative is dark, positive is light, mid-gray is zero). These are rectified (here
we use half-wave rectification) to yield response maps (center right; dark is zero, light
is positive). In turn, these are summarized (here we smoothed over a neighborhood twice
the filter width) to yield the texture representation on the right. In this, pixels that have
strong vertical bars nearby are light, and others are dark; there is not much difference
between the dark and light vertical structure for this image, but there is a real difference
between dark and light horizontal structure.
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Example based texture representations

* Q: how does one choose the filters?

« Alternative
— build a vocabulary of pattern elements from pictures

— describe using this vocabulary

FEORGETOW:
gUZVI VERSI ZTIL:Z\C



Building a vocabulary
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Learning a dictionary

FIGURE 6.8: There are two steps to building a pooled texture representation for a texture
in an image domain. First, one builds a dictionary representing the range of possible pat-
tern elements, using a large number of texture patches. This is usually done in advance, us-

ing a training data set of some form. |IEEEE—
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Clustering the examples

Natural to use k-means

— represent patches with
* intensity vector
« vector of filter responses over patch

Choose k data points to act as cluster centers
Until the cluster centers change very little
Allocate each data point to cluster whose center is nearest.
Now ensure that every cluster has at least
one data point; one way to do this is by
supplying empty clusters with a point chosen at random from
points far from their cluster center.
Replace the cluster centers with the mean of the elements
in their clusters.
end

Algorithm 6.3: Clustering by K-Means.
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Representing a region

* Vector Quantization

— Represent a high-dimensional data item with a single number
* Find the number of the nearest cluster center in dictionary

« Use that
« Summarize the pattern of patches

— Cut region into patches

— Vector guantize - vector quantized image patches often called visual
words

— Build histogram of resulting numbers

Replace .
with 1 3
closest > —>
|
o 2 GEORGETOWIN_

Histogram UNIVERSITY

Representing a region




Build a dictionary:
Collect many training example textures
Construct the vectors & for relevant pixels; these could be
a reshaping of a patch around the pixel, a vector of filter outputs
computed at the pixel, or the representation of Section 6.1.
Obtain k cluster centers ¢ for these examples

Represent an image domain:
For each relevant pixel 7 in the image
Compute the vector representation x; of that pixel
Obtain j, the index of the cluster center ¢; closest to that pixel
Insert 7 into a histogram for that domain

Algorithm 6.2: Texture Representation Using Vector Quantization.
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FIGURE 6.9: Pattern elements can be identified by vector quantizing vectors of filter
outputs, using k-means. Here we show the top 50 pattern elements (or textons), obtained
from all 1,000 images of the collection of material images described in Figure 6.2. These
were filtered with the complete set of oriented filters from Figure 6.4. Each subimage
here illustrates a cluster center. For each cluster center, we show the linear combination
of filter kernels that would result in the set of filter responses represented by the cluster
center. For some cluster centers, we show the 25 image patches in the training set whose
filter representation is closest to the cluster center.  This figure shows elements of a
database collected by C. Liu, L. Sharan, E. Adelson, and R. Rosenholtz, and published
at http: //people. csail. mit. edu/ lavanya/ research_ sharan. html. Figure by kind
permission of the collectors.
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FIGURE 6.10: Pattern elements can also be identified by vector quantizing vectors obtained
by reshaping an image window centered on each pixel. Here we show the top 50 pattern
elements (or textons), obtained using this strategy from all 1,000 images of the collection
of material images described in Figure 6.2. Each subimage here illustrates a cluster center.
For some cluster centers, we show the closest 25 image patches. To measure distance, we
first subtracted the average image intensity, and we weighted by a Gaussian to ensure that
pixels close to the center of the patch were weighted higher than those far from the center.
This figure shows elements of a database collected by C. Liu, L. Sharan, E. Adelson, and
R. Rosenholtz, and published at http: //people. csail. mit. edu/ lavanya/ research_
sharan. html . Figure by kind permission of the collectors.
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Texture representations

« Avector summarizing the trends in pattern elements
— either overall trend in filter responses
— or histogram of vector quantized patches

« At a pixel
— compute representations for domains centered on the pixel

* For aregion
— compute representations the whole region
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Texture synthesis

* Problem:
— Take a small example image of pure texture
— Use this to produce a large domain of “similar” texture
« Why:
— Computer graphics demands lots of realistic texture, hard to find
— Fill in holes in images created by removing objects

« Simple case:
— Assume we must synthesize a single pixel in a large image

— Approach:
« Match the window around that pixel to other windows in the image

* Choose a value from the matching windows
— most likely, uniformly and at random
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Texture synthesis

« EXxpand to large images
— Start: take a piece of the example image

— Fill in pixels on the boundary

« But these are missing more than the center
— Discount missing pixels when matching

— Each time you fill in a pixel, you can use that to match

FEORGETOW:
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Choose a small square of pixels at random from the example image
Insert this square of values into the image to be synthesized
Until each location in the image to be synthesized has a value
For each unsynthesized location on
the boundary of the block of synthesized values
Match the neighborhood of this location to the
example image, ignoring unsynthesized
locations in computing the matching score
Choose a value for this location uniformly and at random
from the set of values of the corresponding locations in the
matching neighborhoods
end

end

Algorithm 6.4: Non-parametric Texture Synthesis.
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FIGURE 6.11: Efros and Leung (1999) synthesize textures by matching neighborhoods of
the image being synthesized to the example image, and then choosing at random amongst
the possible values reported by matching neighborhoods (Algorithm 6.4). This means
that the algorithm can reproduce complex spatial structures, as these examples indicate.
The small block on the left is the example texture; the algorithm synthesizes the block
on the right. Note that the synthesized text looks like text: it appears to be constructed
of words of varying lengths that are spaced like text, and each word looks as though it
is composed of letters (though this illusion fails as one looks closely). This figure was
originally published as Figure 3 of “Texture Synthesis by Non-parametric Sampling,” A.
Efros and T.K. Leung, Proc. IEEE ICCV, 1999 (©) IEEE, 1999.

Small blocks are examples,

large are synthesized.

Notice how (for example)
synthesized text looks like

actual text.
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FIGURE 6.12: The size of the image neighborhood to be matched makes a significant
difference in Algorithm 6.4. In the figure, the textures at the right are synthesized from
the small blocks on the left, using neighborhoods that are increasingly large as one moves
to the right. If very small neighborhoods are matched, then the algorithm cannot capture
large-scale effects easily. For example, in the case of the spotty texture, if the neighborhood
is too small to capture the spot structure (and so sees only pieces of curve), the algorithm
synthesizes a texture consisting of curve segments. As the neighborhood gets larger, the
algorithm can capture the spot structure, but not the even spacing. With very large
neighborhoods, the spacing is captured as well. This figure was originally published as
Figure 2 of “Texture Synthesis by Non-parametric Sampling,” A. Efros and T.K. Leung,
Proc. IEEE ICCV, 1999 (© IEEE, 1999.
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FIGURE 6.13: If an image contains repeated structure, we have a good chance of finding
examples to fill a hole by searching for patches that are compatible with its boundaries.
Top left: An image with a hole in it (black pixels in a rough pedestrian shape). The
pixels on the region outside the hole, but inside the boundary marked on the image,
match pixels near the other curve, which represents a potentially good source of hole-
filling pixels. Top right: The hole filled by placing the patch over the hole, then using
a segmentation method (Chapter 9) to choose the right boundary between patch and
image. This procedure can work for apparently unpromising images, such as the one on
the bottom left, an image of the facade of a house, seen at a significant slant. This
slant means that distant parts of the facade are severely foreshortened. However, if we
rectify the facade using methods from Section 1.3, then there are matching patches. On
the bottom right, the hole has been filled in using a patch from the rectified image,
that is then slanted again. This figure was originally published as Figures 3 and 6 of
“Hole Filling through Photomontage,” by M. Wilczkowiak, G. Brostow, B. Tordoff, and
R. Cipolla, Proc. BMVC, 2005 and is reproduced by kind permission of the authors.

Fill in holes by
looking for example
patches in the image.

If needed, rectify
faces (lower images).
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Onionskin order

Boundary edges

FIGURE 6.14: Texture synthesis methods can fill in holes accurately, but the order in
which pixels are synthesized is important. In this figure, we wish to remove the sign,
while preserving the signpost. Generally, we want to fill in pixels where most of the
neighbors are known first. This yields better matching patches. One way to do so is to fill
in from the boundary. However, if we simply work our way inwards (onionskin filling), long
scale image structures tend to disappear. It is better to fill in patches close to edges first.
This figure was originally published as Figure 11 of “Region Filling and Object Removal
by Exemplar-Based Image Inpainting,” by A. Criminisi, P. Perez, and K. Toyama, IEEE
Transactions on I'mage Processing, 2004 (©) IEEE, 200j.
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State of the art in
image fill-in is very
good. This uses
texture synthesis
and other methods.

-_p. l";_—'_‘-;’;m —
——————— S ——— -
Initial Image Hole Extended by hole filling

FIGURE 6.15: Modern hole-filling methods get very good results using a combination of
texture synthesis, coherence, and smoothing. Notice the complex, long-scale structure
in the background texture for the example on the top row. The center row shows an
example where a subject was removed from the image and replaced in a different place.
Finally, the bottom row shows the use of hole-filling to resize an image. The white block
in the center mask image is the “hole” (i.e., unknown pixels whose values are required to
resize the image). This block is filled with a plausible texture. This figure was originally
published as Figures 9 and 15 of “A Comprehensive Framework for Image Inpainting,”
by A. Bugeau, M. Bertalmio, V. Caselles, and G. Sapiro, Proc. IEEE Transactions on

Image Processing, 2010 (¢) IEEE, 2010. g FORGETO W._?(l
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Shape from texture

Texture is a powerful shape cue
— most likely because small pattern elements deform in predictable ways

Recovering shape from texture
— ldentify repeating pattern elements
— Determine frontal view

— From this, determine normal

— Integrate normals to get surface

Shape from texture offers information about lighting

— If pattern elements are repetitions, then
 brighter (resp. darker) ones receive more (resp. less) light
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FIGURE 6.19: Humans obtain information about the shape of surfaces in space from the
appearance of the texture on the surface. The figure on the left shows one common use
for this effect; away from the contour regions, our only source of information about the
surface depicted is the distortion of the texture on the surface. On the right, the texture
gives a clear sense of the orientation of the ground plane, how the plants stand out from
the path, and how far away the building at the back is. Geoff Brightling (© Dorling
Kindersley, used with permission.
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Viewing Plane
direction

Projected
normal

Surface orientation foreshortens
texture elements. If you know
what the element is, you can
figure out the surface orientation,
and so the shape.

The trick is recovering the
element from repeated examples.

FIGURE 6.20: The orientation of a plane with respect to the camera plane can be given
by the slant, which is the angle between the normal of the textured plane and the viewing
direction, and the tilt, which 1s the angle the projected normal makes with the camera
coordinate system. The figure illustrates the tilt, and shows a circle projecting to an
ellipse. The direction of the minor axis of this image ellipse 1s the tilt, and the slant 1s
revealed by the aspect ratio of the ellipse. However, the slant 1s ambiguous because the
foreshortening is given by coso, where o is the slant angle. There will be two possible
values of ¢ for each foreshortening, so two different slants yield the same ellipse (one is
slanted forwards, the other backwards).
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If pattern elements are
repetitions, then brighter
(resp. darker) ones
receive more (resp. less)
light, so we get an
estimate of lighting.

FIGURE 6.21: On the left, a textured surface, whose texture is a set of repeated elements,
in this case, spots. Center left, a reconstruction of the surface, made using texture
information alone. This reconstruction has been textured, which hides some of its imper-
fections. Center right, the same reconstruction, now rendered as a slightly glossy gray
surface. Because texture elements are repeated, we can assume that if different elements
have a significantly different brightness, this is because they experience different illumi-
nation. Right shows an estimate of the illumination on the surface obtained from this
observation. Notice how folds in the dress (arrows) tend to be darker; this is because, for a
surface element at the base of a fold, nearby cloth blocks a high percentage of the incident
light. This figure was originally published as Figure j of “Recovering Shape and Irradiance
Maps from Rich Dense Texton Fields,” by A. Lobay and D. Forsyth Proc. IEEE CVPR
2004 © IEEE, 2004.
GEORGETOWN_,
UNIVERSITY



Texture: crucial points

Texture Is the result of repetition of pattern elements

Represent by representing

— vocabulary of pattern elements
« either filters or visual words

— summary of how they repeat
* local averages of rectified filter responses or histograms

Good texture synthesis procedures are available
Texture reveals shape
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