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Goals of Stereo Matching

• Given two or more images of the same scene or object, compute 

a representation of its shape

• What are some possible representations?

– depth maps

– volumetric models

– 3D surface models



Stereo

scene point

optical center

image plane

• What is gained from stereo?
– Assuming we know …

1. Geometric details (extrinsic and intrinsic 
parameters), and

2. Corresponding pixels in each image,

We can directly extract depth 
information.

• What could go wrong?
– Geometric details often unknown

– Finding corresponding pixels is difficult!

– Error: Vectors from corresponding 
image coordinates rarely intersect 
(perfectly). 

• There are many sources of unknowns and 
error.



Stereo 

Binocular Reconstruction: Estimating 

depth from stereo

Common Approaches: 

1. Simple Triangulation: Gives reconstruction as intersection of two 

rays

» Requires camera origins and pixel correspondences (enough 

information to characterize both rays)

2. Inverse Transformation Approach: Project both image coordinates 

to the 3-D scene using Each Cameras projection matrix

» Requires pixel correspondence and projection matrix of each camera 

(intrinsic and extrinsic parameters)



Triangulation

• Recall, camera projection matrix 
P, determines homography from 
point in 3-d scene to image plane.

• Conceptually The reverse map 
projects a point from the image 
plane, to a line in 3-d

• Since these vectors rarely 
intersect in practice, it is common 
to find the point nearest to the two 
lines



Triangulation

• The ray v can be determined using the 
information contained in Camera Matrix 
or simply using two points cj and xj

• The nearest point to p on ray vj is qj

• This point can be characterized by a 
distance and directional vector dj vj, and 
minimizes the following “error” (deviation 
from true p).

• The squared error rj can be computed, 
and thus value for p that minimizes this 
error can be computed using a least 
squares projection

Minimum is when dj is 
projection of vj onto (p-cj) 



Simple Triangulation Solution

• Observe: Here we solved for p without using the projection matrix. 

Only using camera centers c and vectors (corresponding to points 

x) v.



Algebraic Approach

• Algebraically, we can alternatively make 
use of the camera matrix P (if these 
parameters are known or have been 
learned during calibration)

• Given known pixel correspondences, 
(x,y) and (x,y) we can construct a series 
of linear equations and solve for the 3-D 
point (homogeneous) p = (X,Y,Z,W). 

• Note there are 4 unknowns. How many 
images of the scene are needed to 
compute the location of point p?



Notes about reconstruction

• Requires information about cameras and pixel correspondences.

• Finding pixel correspondences is difficult in practice

– Search over all pairs of pixels looking for similar pixel values?

– Can we simplify this search?
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Epipoles

• Background

– For two images (or images with collinear camera centers), can find 

epipolar lines

– Epipolar lines are the projection of the pencil of planes passing through 

the centers



Epipoles

• A pixel in one image x0 exists at some 
point along a line in 3D. 

• Thus its corresponding point in another 
image x1 will be found somewhere along 
that lines projection into the second 
images plane (epipolar line segment).

– Reduces search to find correspondence

• Points p, x1, x2, c1, c2, e1, and e2 lie on 
the epipolar plane.

– x: coordinates in image plane

– c: camera centers

– e: epipoles
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Image Rectification

• Rectification: Warp the input images (perspective 

transformation) so that epipolar lines are horizontal

– Simplifies stereo correspondence search along horizontal lines

– Simplifies disparity (and therefore depth) computation



Stereo correspondence
• Determine Pixel Correspondence

– Pairs of points that correspond to same scene point

Epipolar Constraint

• Reduces correspondence problem to 1D search along conjugate

epipolar lines

epipolar plane epipolar lineepipolar line



Image Warping for Image Rectification

• Goal: Warp image(s) so corresponding epipolar lines are horizontal 
and/or co-align.
1. Choose coordinate system to map both images … or for simplification… 

Choose one of the image coordinate systems (and warp the other image to this 
coordinate system, rather than warping both).

2. Using knowledge of Camera Matrix, Homography, and Epipolar Constraint 
compute the appropriate Warping Matrix (Essential or Fundamental).

1. Camera Motion Model: Instrinsics are known, working in normalized image space

2. General model: accounts for intrinsics, scale, skew, … 

Simple Solution 1: Choose a plane parallel to the baseline.

SS 2, Weak perspective assumption: Project onto planar scene

3. Perform Warp.
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Rectification

• Project each image onto same plane, which is parallel to the epipole

• Resample (interpolate) lines (and shear/stretch) to place lines in 

correspondence, and minimize distortion

• [Loop and Zhang, CVPR’99]



Deriving the Epipolar Constraint

• Find projection matrix from one image to the other.

• Conceptually, given a camera matrix P, we can map a point to the image plane. The 
reverse transformation will map the image coordinate to a line (or point if we know 
the depth)

• If the Camera matrix for the second image is known, we can then map to the 
second image



Deriving the Epipolar Constraint

• Assuming the relative camera locations can be encoded by a 

rotation and translation, if we re-orient the general coordinate 

system to coincide with that of one of the cameras, then this 

projection from one image to another is simplified.

• Taking the cross product with t, then dot product with  𝑥1 hat, 

yields



Thus the Epipolar constraint

• E is referred to as the Essential Matrix

• Observe that E projects some point in image 1 to a line in image 

two. Give the equation above, E can be learned using point 

correspondences. 



Stereo image rectification



Stereo image rectification

• Image projection
– project image planes onto common 

(there are two degrees of freedom 
for this projection)

– Goal: projection results in epipolar
lines being horizontal image scans

1. plane parallel to line between optical 
centers

– a homography (3x3 transform)
applied to both input images

– pixel motion is horizontal after this 
transformation

– C. Loop and Z. Zhang. Computing Rectifying 
Homographies for Stereo Vision. IEEE Conf. 
Computer Vision and Pattern Recognition, 
1999.

http://research.microsoft.com/~zhang/Papers/TR99-21.pdf
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Stereo: epipolar geometry

• Match features along epipolar lines

viewing rayepipolar plane

epipolar line
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Rectification: Examples

BAD!
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Rectification: Examples

GOOD!
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Stereo Matching

• What are some possible algorithms?

– match “features” and interpolate

– match edges and interpolate

– match all pixels with windows (coarse-fine)

– Pose as optimization problem:

• iterative updating

• dynamic programming

• energy minimization (regularization, stochastic)

• graph algorithms



Your basic stereo algorithm

For each epipolar line

For each pixel in the left image

• compare with every pixel on same epipolar line in right image

• pick pixel with minimum “match” cost

Improvement:  match windows

• Can use Lukas-Kanade (will discuss later!) 



Stereo matching algorithms

• Match Pixels in Conjugate Epipolar Lines

– Assume brightness constancy

– This is a tough problem

– Numerous approaches

• dynamic programming [Baker 81,Ohta 85]

• smoothness functionals

• more images (trinocular, N-ocular) [Okutomi 93]

• graph cuts [Boykov 00]

– A good survey and evaluation:  http://www.middlebury.edu/stereo/

http://www.middlebury.edu/stereo/
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Matching criteria

• Raw pixel values (correlation)

• Band-pass filtered images [Jones & Malik 92]

• “Corner” like features [Zhang, …]

• Edges [many people…]

• Gradients [Seitz 89;  Scharstein 94]

• Rank statistics [Zabih & Woodfill 94]
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Parameterize using disparity d

• How do we determine correspondences?

– block matching or SSD (sum squared differences)

d is the disparity (horizontal motion)

• How big should the neighborhood be?

Why is disparity d so 
important?



Stereo matching as energy minimization

• Matching Cost Formulated as Energy

– “data” term penalizing bad matches

– “neighborhood term” encouraging spatial smoothness
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Dynamic Programming Solution

• Finding image pixel correspondences across epipolar lines is 
analogous to finding a min path across a graph where nodes are all 
possible pairwise correspondences. 

• The path cost is the energy or error function.

• Smoothness constraints limit the nature of the path on the graph. 

• Dynamic programming assumption:
– Optimal path consists of optimal subpaths,

assuming ordering constraint holds.



Ordering Constraint

• Ordering Constraint: Point correspondences should have the 

same relative order to other correspondences. 

– Not necessarily true in all cases, but assumed here.    



Finding the optimal path

• Assume two images with epipolar lines with only 6 pixels (or 6 

features). Find correspondences. Assume C(1,1) = 0, as boundary 

condition. 

• Cost of adding an edge to the path

– Pixel or feature difference (+ smoothness)



Pseudo-code for DP Stereo Correspondence

• Forward – Backward 
Algorithm

• Repeatedly, scan 
forward and find next 
correspondence 
based on cost/energy 
function. 

• Keep track of back 
pointer and trace back 
to find optimal path.
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Dynamic programming

• Can we apply this trick in 2D as well?

dx,ydx-1,y

dx,y-1dx-1,y-1

Not really: dx,y-1 and dx-1,y may depend on different values of dx-1,y-1
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Graph cuts

• Solution technique



Stereo as a graph problem [Boykov, 1999]

• Pixels
Labels 

(disparities)

d1

d2

d3

edge weight

edge weight
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Graph definition

d1

d2

d3

• Initial state

– Each pixel connected to it’s immediate neighbors

– Each disparity label connected to all of the pixels



Stereo matching by graph cuts

d1

d2

d3

• Graph Cut
– Delete enough edges so that

• each pixel is (transitively) connected to exactly one label 
node 

– Cost of a cut:  sum of deleted edge weights

– Finding min cost cut equivalent to finding global 
minimum of the energy function



Computing a multiway cut
• With two labels:  classical min-cut problem

– Solvable by standard network flow algorithms

• More than 2 labels: NP-hard [Dahlhaus et al., 

STOC ‘92]

– But efficient approximation algorithms exist
• Yuri Boykov, Olga Veksler and Ramin Zabih, Fast Approximate Energy Minimization via 

Graph Cuts, International Conference on Computer Vision, September 1999.

– Basic idea

• reduce to a series of 2-way-cut sub-problems

http://www.cs.cornell.edu/rdz/Papers/BVZ-iccv99.pdf


Stereo results

Ground truthScene

– Data from University of Tsukuba

– Similar results on other images without ground truth



Results with window search

Window-based matching
(best window size)

Ground truth



Better methods exist...

State of the art method
Boykov et al., Fast Approximate Energy Minimization via Graph Cuts, 

International Conference on Computer Vision, September 1999.

Ground truth

http://www.cs.cornell.edu/rdz/Papers/BVZ-iccv99.pdf
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Other Approaches

• Variational Approach
– Find function that optimizes energy functional

– Common vision constraints are interpreted as constraints on kth 
derivatives of the function. 

• Regularization

• Probabilistic Approach
– Energy minimization is analogous to maximizing probabilities
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Example: Bayesian inference

• Formulate as statistical inference problem

• Prior model pP(d)

• Measurement model pM(IL, IR| d)

• Posterior model

• pM(d | IL, IR)  pP(d) pM(IL, IR| d)

• Maximum a Posteriori (MAP estimate):

• maximize pM(d | IL, IR)
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Measurement model

• Likelihood of intensity correspondence

• Corresponds to Gaussian for quadratic r
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Markov Random Field

• Probability distribution on disparity field d(x,y)

• Enforces smoothness or coherence on field
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MAP estimate

• Maximize posterior likelihood

• Equivalent to regularization (energy minimization with smoothness 

constraints)
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Why probabilistic estimation?

• Principled way of determining cost function

• Explicit model of noise and prior knowledge

• Admits a wider variety of optimization algorithms:
– gradient descent (local minimization)

– stochastic optimization (Gibbs Sampler)

– mean-field optimization

– graph theoretic (actually deterministic) [Zabih]

– [loopy] belief propagation

– large stochastic flips [Swendsen-Wang]



Other Methods for Extracting Depth Information

• When stereo imagery is not available, we can rely on other image 
characteristics to infer depth information

• Depth from
– Texture

– Shading 

– Motion 

– Focus

– Visual Cues (and Scene Understanding)
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