

COSC579: Edge Detection

Jeremy Bolton, PhD Assistant Teaching Professor

Outline

I. Edge Detection

- I. Gradient
- II. Laplacian
- III. Marr Hildreth
- IV. Sobel
- V. Canny
- VI. Harris Structure
- VII. Smooth first (... ask questions later). Witkins
- II. Filtering as Matrix Multiplication
- III. (Detection) Thresholding Schemes

Readings

- Read
 - Marr and Hildreth Theory of Edge Detection
 - Witkins: Gaussian Smoothing
 - Skip* Cipolla (on edge detection)
 - Szeliski 3.4.1 3.4.2

Edge detection

- Convert a 2D image into a set of curves
 - Extracts salient features of the scene
 - More compact than pixels

Origin of Edges

• Edges are caused by a variety of factors

Characterizing edges

Observe: Extrema of

first derivative are

characterized by

"zero-crossings" of

second derivative.

• An edge is a place of rapid change (discontinuity) in the image intensity function

intensity function (along horizontal scanline) first derivative image edges correspondetoRGETOWN extrema of derivative

Image derivatives

- How can we differentiate a *digital* image F[x,y]?
 - Option 1: reconstruct a continuous image, *f*, then compute the derivative
 - Option 2: take discrete derivative (finite difference)

$$\frac{\partial f}{\partial x}[x,y] \approx F[x+1,y] - F[x,y]$$

How would you implement this as a linear filter?

Image gradient

• The gradient of an image: $\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right]$

The gradient points in the direction of most rapid increase in intensity

$$\nabla f = \begin{bmatrix} \frac{\partial f}{\partial x}, 0 \end{bmatrix}$$

$$\nabla f = \begin{bmatrix} 0, \frac{\partial f}{\partial y} \end{bmatrix}$$

$$\nabla f = \begin{bmatrix} 0, \frac{\partial f}{\partial y} \end{bmatrix}$$

The *edge strength* is given by the gradient magnitude:

$$\|\nabla f\| = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2}$$

The gradient direction is given by:

$$\theta = \tan^{-1} \left(\frac{\partial f}{\partial y} / \frac{\partial f}{\partial x} \right)$$

how does this relate to the direction of the edge?

Image gradient

 $rac{\partial f}{\partial x}$

 $\|\nabla f\| = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2}$

Effects of noise

Where is the edge?

Solution: smooth first

Associative property of convolution

- Differentiation is convolution, and convolution is associative: $\frac{d}{dx}(f*h) = f*\frac{d}{dx}h$
- This saves us time:

Derivative of Gaussian filter

Side note: How would you compute a directional derivative?

2D edge detection filters

 ∇^2 is the **Laplacian** operator:

$$\nabla^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$$

The Sobel operator

 Common approximation of derivative of Gaussian

- The standard defn. of the Sobel operator omits the 1/8 term
 - doesn't make a difference for edge detection
 - the 1/8 term is needed to get the right gradient value

Sobel operator: example

Example

• original image (Lena)

Finding edges

gradient magnitude

Finding edges

thresholding

Non-maximum supression

- Check if pixel is local maximum along gradient direction
 - requires interpolating pixels p and r

Finding edges

thresholding

Finding edges

thinning

(non-maximum suppression)

Canny edge detector

MATLAB: edge (image, 'canny')

- 1. Filter image with derivative of Gaussian
- 2. Find magnitude and orientation of gradient

- 3. Non-maximum suppression
- 4. Linking and thresholding (hysteresis):
 - Define two thresholds: low and high
 - Use the high threshold to start edge curves and the low threshold to continue them

Canny edge detector

Still one of the most widely used edge detectors in computer vision

J. Canny, <u>A Computational Approach To Edge Detection</u>, IEEE Trans. Pattern Analysis and Machine Intelligence, 8:679-714, 1986.

• Depends on several parameters:

 σ : width of the Gaussian blur

high threshold low threshold

Canny edge detector

- The choice of $\,\sigma\,$ depends on desired behavior
 - large σ detects "large-scale" edges
 - small σ detects fine edges

Multiplying row and column vectors

Filtering as matrix multiplication

0.2	0.2	0.2	0	0	0	0	0	0	0	0	0	0	0	0.2	0.2	$\begin{bmatrix} 0 \end{bmatrix}$
0.2	0.2	0.2	0.2	0	0	0	0	0	0	0	0	0	0	0	0.2	0
0.2	0.2	0.2	0.2	0.2	0	0	0	0	0	0	0	0	0	0	0	0
0	0.2	0.2	0.2	0.2	0.2	0	0	0	0	0	0	0	0	0	0	0
0	0	0.2	0.2	0.2	0.2	0.2	0	0	0	0	0	0	0	0	0	0
0	0	0	0.2	0.2	0.2	0.2	0.2	0	0	0	0	0	0	0	0	0
0	0	0	0	0.2	0.2	0.2	0.2	0.2	0	0	0	0	0	0	0	0
0	0	0	0	0	0.2	0.2	0.2	0.2	0.2	0	0	0	0	0	0	0
0	0	0	0	0	0	0.2	0.2	0.2	0.2	0.2	0	0	0	0	0	1
0	0	0	0	0	0	0	0.2	0.2	0.2	0.2	0.2	0	0	0	0	1
0	0	0	0	0	0	0	0	0.2	0.2	0.2	0.2	0.2	0	0	0	1
0	0	0	0	0	0	0	0	0	0.2	0.2	0.2	0.2	0.2	0	0	1
0	0	0	0	0	0	0	0	0	0	0.2	0.2	0.2	0.2	0.2	0	1
0	0	0	0	0	0	0	0	0	0	0	0.2	0.2	0.2	0.2	0.2	1
0.2	0	0	0	0	0	0	0	0	0	0	0	0.2	0.2	0.2	0.2	1
0.2	0.2	0	0	0	0	0	0	0	0	0	0	0	0.2	0.2	0.2	1

What kind of filter is this?

Filtering as matrix multiplication

Scale Space

- Recall: Edges can be identified by zero-crossings of first derivative.
- Observe derivative filter may be "fixed" (in size).
- But edges may exist at various levels of fineness.

Scale space (Witkin 83)

Gaussian illereu signai

- Properties of scale space (w/ Gaussian smoothing)
 - edge position may shift with increasing scale (σ)
 - two edges may merge with increasing scale
 - an edge may *not* split into two with increasing scale

Observe: Each "zerocontour" (set of (x,σ) pairs) characterizes an edge

Interval Tree Representation

- Each entity or event may have "a beginning and an end"
 - Interval bounded by zero-crossings
 - The scale of the event can be determined by the zero-contour representation.
 - Zero-contours can be reduced to a hierarchical representation or a simple partition of the contour space.
 - Tree representation: each interval is simply a node in a tree.
- Uses:
 - Image characterization
 - Course to fine localization

Some times we want many resolutions

Idea: Represent NxN image as a "pyramid" of 1x1, 2x2, 4x4,..., 2^kx2^k images (assuming N=2^k)

Known as a Gaussian Pyramid [Burt and Adelson, 1983]

• A precursor to wavelet transform

Gaussian Pyramids have all sorts of applications in computer vision

Gaussian pyramid construction

Repeat

- Filter
- Subsample

Until minimum resolution reached

- can specify desired number of levels (e.g., 3-level pyramid)
- Can find edges (or features) at <u>fine</u> and <u>gross</u> scales.
- Analyze an image at multiple scales
 - Referred to as Scale Space analysis

Subsampling with Gaussian prefiltering

G 1/8

G 1/4

Gaussian 1/2

Filter the image, then subsample

Subsampling with Gaussian prefiltering

Gaussian 1/2 G 1/4 Filter the image, *then* subsample

G 1/8

Subsampling without pre-filtering

1/2

1/4 (2x zoom)

1/8 (4x zoom)

Summary

