

COSC579: Image Align, Mosaic, Stitch

Jeremy Bolton, PhD Assistant Teaching Professor

Outline

- I. Multi-Image Vision
 - I. Mosaic and Align
 - II. Morphing
- II. Revisit scene geometry
- III. Image Warping
 - I. Finding the appropriate transformation (warp)
 - II. Forward Warping
 - III. Backward Warping
 - IV. Implementation Details
 - I. Holes
 - II. Feathering

Image alignment

Full screen panoramas (cubic): <u>http://www.panoramas.dk/</u> Mars: <u>http://www.panoramas.dk/fullscreen3/f2_mars97.html</u> 2003 New Years Eve: <u>http://www.panoramas.dk/fullscreen3/f1.html</u>

Why Mosaic?

- Are you getting the whole picture?
 - Compact Camera FOV = $50 \times 35^{\circ}$

Why Mosaic?

- Are you getting the whole picture?
 - Compact Camera FOV = $50 \times 35^{\circ}$
 - Human FOV = $200 \times 135^{\circ}$

Why Mosaic?

- Are you getting the whole picture?
 - Compact Camera FOV = $50 \times 35^{\circ}$
 - Human FOV = $200 \times 135^{\circ}$
 - Panoramic Mosaic = $360 \times 180^{\circ}$

Mosaics: stitching images together

Image alignment

Image taken from same viewpoint, just rotated.

Can we line them up?

Image alignment

Why don't these image line up exactly?

What is the geometric relationship between these two images?

What is the geometric relationship between these two images?

Is this an affine transformation?

Problem: Transforming from one image to another

 Conceptually, given a camera matrix P, we can map a point to the image plane. The reverse transformation will map the image coordinate to a line (or point if we know the disparity or depth)

$$ilde{oldsymbol{x}}_0\sim ilde{oldsymbol{K}}_0 oldsymbol{E}_0 oldsymbol{p} = ilde{oldsymbol{P}}_0 oldsymbol{p}.$$

 If the Camera matrix for the second image is known, we can then map to the second image

$$ilde{m{x}}_1 \sim ilde{m{K}}_1 m{E}_1 m{p} = ilde{m{K}}_1 m{E}_1 m{E}_0^{-1} m{ ilde{m{K}}}_0^{-1} m{ ilde{m{x}}}_0 = m{m{P}}_1 m{m{P}}_0^{-1} m{ ilde{m{x}}}_0 = m{M}_{10} m{ ilde{m{x}}}_0.$$

Image reprojection

 Rather than thinking of this as a 3D reprojection, think of it as a 2D image warp from one image to another <u>GEORGETOWN</u>

Transforming from one image to another Simplifying Assumption: Planar Scene

- Simplifying Assumption:
 - Choose a plane to project back onto (planar scene)

 $\tilde{x}_1 \sim \tilde{K}_1 E_1 p = \tilde{K}_1 E_1 E_0^{-1} \tilde{K}_0^{-1} \tilde{x}_0 = \tilde{P}_1 \tilde{P}_0^{-1} \tilde{x}_0 = M_{10} \tilde{x}_0.$

- Analogous to replacing last row of P0 with homogeneous plane equation

 $\hat{\boldsymbol{n}}_0 \cdot \boldsymbol{p} + c_0$

- Observe the points map onto a plane, so we are not concerned about the depth (d=0)
- Thus we can ignore the last column of M_{10}

Observe: This sequence of matrix operations can be collapsed into one 3x3 homography.

 $ilde{m{x}}_1 \sim ilde{m{H}}_{10} ilde{m{x}}_0,$

Transforming from one image to another Simplifying Assumption: Pure Rotation

- Assume no translation and only pure rotation (eg panorama)
 - Assume the scene is "large", points are at infinity.
 - Assume no translation
 - Assume simple Intrinsics Matrix

$$ilde{x}_1 \sim ilde{H}_{10} ilde{x}_0, \qquad ilde{H}_{10} = K_1 R_1 R_0^{-1} K_0^{-1} = K_1 R_{10} K_0^{-1}$$

$$\begin{bmatrix} x_1 \\ y_1 \\ 1 \end{bmatrix} \sim \begin{bmatrix} f_1 & & \\ & f_1 & \\ & & 1 \end{bmatrix} R_{10} \begin{bmatrix} f_0^{-1} & & \\ & f_0^{-1} & \\ & & & 1 \end{bmatrix} \begin{bmatrix} x_0 \\ y_0 \\ 1 \end{bmatrix}$$

 $\left[\begin{array}{c} x_1 \\ y_1 \\ f_1 \end{array}\right] \sim \boldsymbol{R}_{10} \left[\begin{array}{c} x_0 \\ y_0 \\ f_0 \end{array}\right]$

This further simplification results in less parameters, since the rotation matrix entries can be calculated using 3 angles.

Homographies

- Perspective projection of a plane
 - Lots of names for this:
 - Modeled as a 2D warp using homogeneous coordinates

$$\begin{bmatrix} wx' \\ wy' \\ w \end{bmatrix} = \begin{bmatrix} * & * & * \\ * & * & * \\ * & * & * \end{bmatrix} \begin{bmatrix} x \\ y \\ l \end{bmatrix}$$

$$p' \qquad H \qquad p$$

To apply a homography H

- Compute **p'** = **Hp** (regular matrix multiply)
- Convert **p**' from homogeneous to image coordinates
 - divide by w (third) coordinate

Image reprojection for mosaicing

- The mosaic has a natural interpretation in 3D
 - The images are reprojected onto a common plane
 - idea: replace camera with slide projector, project onto new PP
 - The mosaic is formed on this plane

An Image Alignment Scheme (mosaic)

Given images A and B

- 1. Find corresponding points between images (You will manually do this for your assignment)
 - 1. Compute image features for A and B (Later!)
 - 2. Match features between A and B (Later!)
- 2. Solve for homography between A and B using least squares on set of matches.
- 3. Blend images (composite)

What could go wrong?

Estimating Translations

$$egin{array}{rcl} \mathbf{x}_i + \mathbf{x_t} &=& \mathbf{x}_i' \ \mathbf{y}_i + \mathbf{y_t} &=& \mathbf{y}_i' \end{array}$$

- Problem: more equations than unknowns
 - "Overdetermined" system of equations
 - We will find the *least squares* solution

Simplified Least squares formulation

- For each point $(\mathbf{x}_i, \mathbf{y}_i)$ $\mathbf{x}_i + \mathbf{x_t} = \mathbf{x}'_i$ $\mathbf{y}_i + \mathbf{y_t} = \mathbf{y}'_i$
- we define the *residuals* as

$$r_{\mathbf{x}_i}(\mathbf{x}_t) = (\mathbf{x}_i + \mathbf{x}_t) - \mathbf{x}'_i$$

$$r_{\mathbf{y}_i}(\mathbf{y}_t) = (\mathbf{y}_i + \mathbf{y}_t) - \mathbf{y}'_i$$

Least squares formulation

• Goal: minimize <u>sum of squared residuals</u>

$$C(\mathbf{x}_t, \mathbf{y}_t) = \sum_{i=1}^n \left(r_{\mathbf{x}_i}(\mathbf{x}_t)^2 + r_{\mathbf{y}_i}(\mathbf{y}_t)^2 \right)$$

- "Least squares" solution
- For translations, is equal to mean displacement

Simplified Least squares formulation

• Can also write as a matrix equation

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 0 \\ 0 & 1 \\ \vdots \\ 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x_t \\ y_t \end{bmatrix} = \begin{bmatrix} x'_1 - x_1 \\ y'_1 - y_1 \\ x'_2 - x_2 \\ y'_2 - y_2 \\ \vdots \\ x'_n - x_n \\ y'_n - y_n \end{bmatrix}$$
$$\underbrace{\mathbf{A}}_{2n \times 2} \quad \underbrace{\mathbf{t}}_{2 \times 1} = \underbrace{\mathbf{b}}_{2n \times 1}$$

Least squares

At = b

• Find t that minimizes

$$||At - b||^2$$

• To solve, form the normal equations

$$\mathbf{A}^{\mathrm{T}}\mathbf{A}\mathbf{t} = \mathbf{A}^{\mathrm{T}}\mathbf{b}$$
$$\mathbf{t} = (\mathbf{A}^{\mathrm{T}}\mathbf{A})^{-1}\mathbf{A}^{\mathrm{T}}\mathbf{b}$$

GEORGETOWN

Affine Assumption: Oversimplification

- How many unknowns?
- How many equations per match?
- How many matches do we need?

Affine transformations

• Residuals:

$$r_{x_i}(a, b, c, d, e, f) = (ax_i + by_i + c) - x'_i$$

$$r_{y_i}(a, b, c, d, e, f) = (dx_i + ey_i + f) - y'_i$$

• Cost function:

$$C(a, b, c, d, e, f) = \sum_{i=1}^{n} \left(r_{x_i}(a, b, c, d, e, f)^2 + r_{y_i}(a, b, c, d, e, f)^2 \right)$$

Affine transformations

• Matrix form

$$\begin{bmatrix} x_1 & y_1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & x_1 & y_1 & 1 \\ x_2 & y_2 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & x_2 & y_2 & 1 \\ & \vdots & & & \\ x_n & y_n & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & x_n & y_n & 1 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \\ d \\ e \\ f \end{bmatrix} = \begin{bmatrix} x'_1 \\ y'_1 \\ x'_2 \\ y'_2 \\ \vdots \\ x'_n \\ y'_n \end{bmatrix}$$
$$\underbrace{\mathbf{A}}_{2n \times 6} \qquad \qquad \mathbf{t}_{6 \times 1} = \underbrace{\mathbf{b}}_{2n \times 1}$$

GEORGETOWN UNIVERSITY

Solving for homographies

$$\begin{bmatrix} x'_i \\ y'_i \\ 1 \end{bmatrix} \cong \begin{bmatrix} h_{00} & h_{01} & h_{02} \\ h_{10} & h_{11} & h_{12} \\ h_{20} & h_{21} & h_{22} \end{bmatrix} \begin{bmatrix} x_i \\ y_i \\ 1 \end{bmatrix}$$

$$x'_{i} = \frac{h_{00}x_{i} + h_{01}y_{i} + h_{02}}{h_{20}x_{i} + h_{21}y_{i} + h_{22}}$$
$$y'_{i} = \frac{h_{10}x_{i} + h_{11}y_{i} + h_{12}}{h_{20}x_{i} + h_{21}y_{i} + h_{22}}$$

$$\begin{aligned} x_i'(h_{20}x_i + h_{21}y_i + h_{22}) &= h_{00}x_i + h_{01}y_i + h_{02} \\ y_i'(h_{20}x_i + h_{21}y_i + h_{22}) &= h_{10}x_i + h_{11}y_i + h_{12} \\ georegative{} Georematic{} Georematic$$

Solve for transformation parameters

 $\begin{aligned} x_i'(h_{20}x_i + h_{21}y_i + h_{22}) &= h_{00}x_i + h_{01}y_i + h_{02} \\ y_i'(h_{20}x_i + h_{21}y_i + h_{22}) &= h_{10}x_i + h_{11}y_i + h_{12} \end{aligned}$

$$\begin{bmatrix} x_i & y_i & 1 & 0 & 0 & 0 & -x'_i x_i & -x'_i y_i & -x'_i \\ 0 & 0 & 0 & x_i & y_i & 1 & -y'_i x_i & -y'_i y_i & -y'_i \end{bmatrix} \begin{bmatrix} h_{00} \\ h_{01} \\ h_{02} \\ h_{10} \\ h_{11} \\ h_{12} \end{bmatrix}$$

Observe: here we construct the A matrix differently (such that the linear combination with the transformation parameters yields 0). This is a different way to formulate the system of equations.

 h_{20}

 h_{21}

 h_{22}

0

Solving for homographies

Defines a least squares problem: minimize $||Ah - 0||^2$

- Since $\, {f h} \,$ is only defined up to scale, solve for unit vector $\, {f \hat{h}} \,$
- Solution: $\hat{\mathbf{h}}$ = eigenvector of $\mathbf{A}^T \mathbf{A}$ with smallest eigenvalue
- Works with 4 or more points

We have now learned how to solve for warping transformation ... Done?

 Given a coordinate transform (x',y') = h(x,y) and a source image f(x,y), how do we compute a transformed image g(x',y') = f(h(x,y))?

Forward warping

- Send each pixel f(x,y) to its corresponding location
- (x',y') = h(x,y) in the second image

Q: what if pixel lands "between" two pixels?

Forward warping

- Send each pixel f(x,y) to its corresponding location
- (x',y') = h(x,y) in the second image
- Q: what if pixel lands "between" two pixels?
- A: distribute color among neighboring pixels (x',y')
 - Known as "splatting"

Inverse warping

- Get each pixel g(x',y') from its corresponding location
- $(x,y) = h^{-1}(x',y')$ in the first image

Q: what if pixel comes from "between" two pixels?

Inverse warping

- Get each pixel g(x',y') from its corresponding location
- $(x,y) = h^{-1}(x',y')$ in the first image
- Q: what if pixel comes from "between" two pixels?
- A: "resample" color value
 - Resampling techniques before
 - nearest neighbor, interpolation, ...

Forward vs. inverse warping

- Q: which is better?
- A: usually inverse—eliminates holes
 - however, it requires an invertible warp function

Blending

• We've aligned the images – now what?

Blending

• Want to seamlessly blend them together

Image Blending

Feathering

Effect of window size

Effect of window size

Good window size

"Optimal" window: smooth but not ghosted

• Doesn't always work...

Alpha Blending

Encoding blend weights: $I(x,y) = (\alpha R, \alpha G, \alpha B, \alpha)$ color at $p = \frac{(\alpha_1 R_1, \alpha_1 G_1, \alpha_1 B_1) + (\alpha_2 R_2, \alpha_2 G_2, \alpha_2 B_2) + (\alpha_3 R_3, \alpha_3 G_3, \alpha_3 B_3)}{\alpha_1 + \alpha_2 + \alpha_3}$

Implement this in two steps:

- 1. accumulate: add up the (α premultiplied) RGB α values at each pixel
- 2. normalize: divide each pixel's accumulated RGB by its α value

Q: what if $\alpha = 0$?

Other Fun Applications of Compositing and Blending

Some panorama examples

• Every image on Google Streetview

Poisson Image Editing

cloning

sources/destinations

seamless cloning

GEORGETOWN

- For more info: Perez et al, SIGGRAPH 2003
 - http://research.microsoft.com/vision/cambridge/papers/perez_siggraph03.pdf

Magic: ghost removal

M. Uyttendaele, A. Eden, and R. Szeliski. *Eliminating ghosting and exposure artifacts in image mosaics*. In Proceedings of the Interational Conference on Computer Vision and Pattern Recognition, volume 2, pages 509--516, Kauai, Hawaii, December 2001.

Magic: ghost removal

M. Uyttendaele, A. Eden, and R. Szeliski.

Eliminating ghosting and exposure artifacts in image mosaics. In Proceedings of the Interational Conference on Computer Vision and Pattern Recognition, volume 2, pages 509--516, Kauai, Hawaii, December 2001.

