

COSC579: Image Formation

Jeremy Bolton, PhD Assistant Teaching Professor

Outline

- I. The journey: from scene to image
- II. Digital Cameras
- III. Color vs Grayscale images
- IV. Concerns

Camera is not a photometer!

- Limited dynamic range
 - 8 bits captures only 2 orders of magnitude of light intensity
 - We can see ~10 orders of magnitude of light intensity
- Unknown, nonlinear response
 - pixel intensity ≠ amount of light (# photons, or "radiance")

Digital camera

FIGURE 2.17 (a) Continuos image projected onto a sensor array. (b) Result of image sampling and quantization.

- A digital camera replaces film with a sensor array
 - Each cell in the array is light-sensitive diode that converts photons to electrons
 - Two common types
 - Charge Coupled Device (CCD)
 - Complementary metal oxide semiconductor (CMOS)

CCD vs. CMOS

- **CCD:** transports the charge across the chip and reads it at one corner of the array. An **analog-to-digital converter (ADC)** then turns each pixel's value into a digital value by measuring the amount of charge at each photosite and converting that measurement to binary form
- **CMOS:** uses several transistors at each pixel to amplify and move the charge using more traditional wires. The CMOS signal is digital, so it needs no ADC.

http://electronics.howstuffworks.com/digital-camera.htm

CCDs move photogenerated charge from pixel to pixel and convert it to voltage at an output node. CMOS imagers convert charge to voltage inside each pixel.

Color

- What about color?
- Most digital images are comprised of three color channels – red, green, and, blue – which combine to create most of the colors we can see

• Why are there three?

Color perception

- Three types of cones
 - Each is sensitive in a different region of the spectrum
 - but regions overlap
 - Short (S) corresponds to blue
 - Medium (M) corresponds to green
 - Long (L) corresponds to red
 - Different sensitivities: we are more sensitive to green than red
 - varies from person to person (and with age)
 - Colorblindness—deficiency in at least one type of cone

Field sequential

Field sequential

Field sequential

Bayer's pattern

Color sensing in camera: Color filter array

Bayer grid

Estimate missing components from neighboring values (demosaicing)

Why more green?

Human Luminance Sensitivity Function GEORGETOWA UNIVERSITY Source: Steve Seitz

Color filter array

red

green

OUTPUT GEORGETOWN YungYu Chuards May ERSITY

Color images

• We'll treat color images as a vector-valued function:

$$f(x, y) = \begin{bmatrix} r(x, y) \\ g(x, y) \\ b(x, y) \end{bmatrix}$$

Note: To do this, each pixel is composed of multiple sensors responses from a Bayer grid. This process is called demosaicing.

Each pixels value is a result of a set of neighboring sensors

Common equation to convert to grayscale
(0.3 * r + 0.59 * g + 0.11 * b)

Problem with demosaicing: color moire

Color sensing: Separate colors using Prism (rather than filter)

- Requires three chips and precise alignment
- Pro
 - Records rgb measurements for each point in image plane
- Con
 - more expensive

Color sensing in camera: Foveon X3

- CMOS sensor
- Takes advantage of the fact that red, blue and green light penetrate silicon to different depths

http://www.foveon.com/article.php?a=67

http://en.wikipedia.org/wiki/Foveon X3 sensor

better image quality

Issues with digital cameras

- Noise
 - low light is where you most notice <u>noise</u>
 - light sensitivity (ISO) / noise tradeoff
 - stuck pixels
- Resolution: Are more megapixels better?
 - requires higher quality lens
 - noise issues
- In-camera processing
 - oversharpening can produce <u>halos</u>
- RAW vs. compressed
 - file size vs. quality tradeoff
- Blooming
 - charge <u>overflowing</u> into neighboring pixels
- Color artifacts
 - purple fringing from microlenses, artifacts from Bayer patterns
 - white balance
- More info online:
 - <u>http://electronics.howstuffworks.com/digital-camera.htm</u>
 - <u>http://www.dpreview.com/</u>

Historical context

- **Pinhole model:** Mozi (470-390 BCE), Aristotle (384-322 BCE)
- Principles of optics (including lenses): Alhacen (965-1039 CE)
- Camera obscura: Leonardo da Vinci (1452-1519), Johann Zahn (1631-1707)
- **First photo:** Joseph Nicephore Niepce (1822)
- Daguerréotypes (1839)
- Photographic film (Eastman, 1889)
- Cinema (Lumière Brothers, 1895)
- **Color Photography** (Lumière Brothers, 1908)
- **Television** (Baird, Farnsworth, Zworykin, 1920s)
- First consumer camera with CCD: Sony Mavica (1981)
- First fully digital camera: Kodak DCS100 (1990)

Alhacen's notes

Niepce, "La Table Servie," 1822

Some Issues (Segue to Image Processing)

- Brightness issues
 - Skewed Histograms
 - Compositing
 - Histogram Normalization (soon ... but later!)
- Color Mapping
 - Color transforms
- Others Discussed
 - Noise
 - Distortion

What do we see?

Vs

Problem: Dynamic Range

The real world has high dynamic range.

Visual dynamic range

Background	Luminance (candelas per square meter)
Horizon sky	
Moonless overcast night	0.00003
Moonless clear night	0.0003
Moonlit overcast night	0.003
Moonlit clear night	0.03
Deep twilight	0.3
Twilight	3
Very dark day	30
Overcast day	300
Clear day	3,000
Day with sunlit clouds	30,000
Daylight fog	
Dull	300-1,000
Typical	1,000-3,000
Bright	3,000-16,000
Ground	
Overcast day	30-100
Sunny day	300
Snow in full sunlight	16,000

FIGURE 1.13

Luminance of everyday backgrounds. Source: Data from Rea, ed., Lighting Handbook 1984 Reference and Application, fig. 3-44, p. 3-24.

Dynamic range

- Our total dynamic range is high (~10⁹)
- Our dynamic range *at a given time* is still pretty high (~10⁴)
- A camera's dynamic range for a given exposure is relatively low (2⁸ = 256 tonal values, range of about ~10³)

Long Exposure

Short Exposure

Dynamic Range

Typical cameras have limited dynamic range

HDR images – merge multiple inputs

Scene Radiance

HDR images – merged

Pixel count

GEORGETOWN UNIVERSITY

Radiance

Dynamic range

- What is the range of light intensity that a camera can capture?
 - Called dynamic range
 - Digital cameras have difficulty capturing both high intensities and low intensities in the same image

High dynamic range imaging

